COMP718: Ontologies and Knowledge Bases

Lectures 9 and 10: ontology-based data access

C. Maria Keet School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, South Africa

April 17, 2012

The following slides are heavily based on David Toman's slides of his seminar at UKZN d.d. 29-3-2011; slides used with permission

一日

Ontology-Based Data Access: Options

David Toman

D.R. Cheriton School of Computer Science, University of Waterloo, Canada

Joint work with:

R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev E. Franconi and G. Weddell

(日)

Queries and Ontologies

Ontology-based Data Access

Enriches query answers over *explicitly represented data* using *background knowledge* (captured using an *ontology*.)

く 同 ト く ヨ ト く ヨ ト -

Queries and Ontologies

Ontology-based Data Access

Enriches query answers over *explicitly represented data* using *background knowledge* (captured using an *ontology*.)

Example	
Bob is a BOSS	(explicit data)
 Every BOSS is an EMPloyee 	(ontology)
<i>List all EMPloyees</i> \Rightarrow {Bob}	(query)

A D A D A D A

Q $(\mathcal{A}, \mathcal{T})$ $\rightarrow \Delta'$

 \mathcal{A} "the data"Set of ground tuples BOSS(Bob) \mathcal{T} "the knowledge"FO sentences of BOSS(r) \mathcal{Q} "the question"EMP(r)

ⁱ or an appropriate fragment of FO

・ロト ・ 四ト ・ ヨト ・ ヨト

- Enriches explicit data with background knowledge
- Physical Data Independence

 \mathcal{A} "the data"set of ground tuples: BOSS(Bob) \mathcal{T} "the knowledge"FO sentences: $\forall x.BOSS(x) \rightarrow EMP(x)$ \mathcal{Q} "the question"a FO formula: EMP(x)

or an appropriate fragment of FO

・ロト ・ 四ト ・ ヨト ・ ヨト

- Enriches explicit data with background knowledge
- Physical Data Independence

 \mathcal{A} "the data"set of ground tuples: BOSS(Bob) \mathcal{T} "the knowledge" FO^{\dagger} sentences: $\forall x.BOSS(x) \rightarrow EMP(x)$ \mathcal{Q} "the question"a FO^{\dagger} formula: EMP(x)

[†] or an appropriate fragment of FO

< 6 b

A B A A B A

- Enriches explicit data with background knowledge
- Physical Data Independence

 \mathcal{A} "the data"set of ground tuples: BOSS(Bob) \mathcal{T} "the knowledge" FO^{\dagger} sentences: $\forall x.BOSS(x) \rightarrow EMP(x)$ \mathcal{Q} "the question"a FO^{\dagger} formula: EMP(x)

[†] or an appropriate fragment of FO

- Enriches explicit data with background knowledge
- 2 Physical Data Independence

Interpretation \mathcal{I} :

- A Domain △ of objects
- An Interpretation Function $(\cdot)^{\mathcal{I}}$ that maps

constants to objects and predicates to sets of tuples of objects

Models

A *model* of a *formula (set of formulas)* is an interpretation that makes the formula (all formulas in the set) true.

What does $A = \{ Emp(Bob), Emp(Sue) \}$ mean?

Interpretation \mathcal{I} :

- A Domain △ of objects
- An Interpretation Function $(\cdot)^{\mathcal{I}}$ that maps

constants to objects and predicates to sets of tuples of objects

Models

A *model* of a *formula (set of formulas)* is an interpretation that makes the formula (all formulas in the set) true.

What does $\mathcal{A} = \{ \texttt{Emp}(Bob), \texttt{Emp}(Sue) \}$ mean?	
$CWA: \ \{ \textit{Bob}^{\mathcal{I}}, \textit{Sue}^{\mathcal{I}} \} = \mathtt{Emp}^{\mathcal{I}}$	(DB folks)

< ロ > < 同 > < 回 > < 回 >

Interpretation \mathcal{I} :

- A Domain △ of objects
- An Interpretation Function $(\cdot)^{\mathcal{I}}$ that maps

constants to objects and predicates to sets of tuples of objects

Models

A *model* of a *formula (set of formulas)* is an interpretation that makes the formula (all formulas in the set) true.

What does $\mathcal{A} = \{ \operatorname{Emp}(Bob), \operatorname{Emp}(Sue) \}$ mean?OWA: $Bob^{\mathcal{I}} \in \operatorname{Emp}^{\mathcal{I}}, Sue^{\mathcal{I}} \in \operatorname{Emp}^{\mathcal{I}}$ (KR folks)OWA: $Bob^{\mathcal{I}} \in \operatorname{Emp}^{\mathcal{I}}, Sue^{\mathcal{I}} \in \operatorname{Emp}^{\mathcal{I}}$ (DB folks)

< 日 > < 同 > < 回 > < 回 > < □ > <

Interpretation \mathcal{I} :

- A Domain △ of objects
- An Interpretation Function $(\cdot)^{\mathcal{I}}$ that maps

constants to objects and predicates to sets of tuples of objects

Models

A *model* of a *formula (set of formulas)* is an interpretation that makes the formula (all formulas in the set) true.

What does $\mathcal{A} = \{ \operatorname{Emp}(Bob), \operatorname{Emp}(Sue) \}$ mean?OWA: $Bob^{\mathcal{I}} \in \operatorname{Emp}^{\mathcal{I}}, Sue^{\mathcal{I}} \in \operatorname{Emp}^{\mathcal{I}}$ (KR folks)CWA: $\{Bob^{\mathcal{I}}, Sue^{\mathcal{I}}\} = \operatorname{Emp}^{\mathcal{I}}$ (DB folks)

ヘロト ヘ回ト ヘヨト ヘヨト

How do we Answer Queries: The Simple Answer

Logical Implication

A set of formulas entails (\models) another formula if every model of the former is also model of the later.

efinition (Query Answering) $Q(\mathcal{A},\mathcal{T}) = \{\vec{a} \mid \mathcal{T} \cup \mathcal{A} \models Q\}$

Operationally (with standard names):

$$Q(\mathcal{A}, \mathcal{T}) = \bigcap_{\substack{\mathcal{I} \models \mathcal{T} \cup \mathcal{A}}} Q(\mathcal{I})$$

$$\uparrow \qquad \uparrow$$
this is a problem but this is not

< ロ > < 同 > < 回 > < 回 >

How do we Answer Queries: The Simple Answer

Logical Implication

A set of formulas entails (\models) another formula if every model of the former is also model of the later.

Definition (Query Answering)

$$Q(\mathcal{A},\mathcal{T}) = \{ \vec{a} \mid \mathcal{T} \cup \mathcal{A} \models Q[\vec{a}] \}$$

Operationally (with standard names):

$$Q(\mathcal{A}, \mathcal{T}) = \bigcap_{\substack{\mathcal{I} \models \mathcal{T} \cup \mathcal{A} \\ \uparrow}} Q(\mathcal{I})$$

$$\uparrow \qquad \uparrow$$
this is a problem but this is not

・ロト ・聞ト ・ ヨト ・ ヨト

How do we Answer Queries: The Simple Answer

Logical Implication

A set of formulas entails (\models) another formula if every model of the former is also model of the later.

Definition (Query Answering)

$$Q(\mathcal{A},\mathcal{T}) = \{ \vec{a} \mid \mathcal{T} \cup \mathcal{A} \models Q[\vec{a}] \}$$

Operationally (with standard names):

$$Q(\mathcal{A}, \mathcal{T}) = \bigcap_{\mathcal{I} \models \mathcal{T} \cup \mathcal{A}} Q(\mathcal{I})$$

$$\uparrow \qquad \uparrow$$
this is a problem but this is not

A D A D A D A

Running rather Slowly, Eh?

Example

- relations: "ColNode(x, y)" and "Edge(x, y)";
- ontology: $\forall x.Node(x) \rightarrow \exists y.ColNode(x, y), \\ \forall x, y.ColNode(x, y) \rightarrow Colour(y);$
- the data: a graph ($Node^{\mathcal{I}}, Edge^{\mathcal{I}}$), and $Colour^{\mathcal{I}} = \{r, g, b\}.$

What does the following query say?

 $\exists x, y, z. Edge(x, y) \land ColNode(x, z) \land ColNode(y, z)$

A (10) A (10)

Running rather Slowly, Eh?

Example

- relations: "ColNode(x, y)" and "Edge(x, y)";
- ontology: $\forall x.Node(x) \rightarrow \exists y.ColNode(x, y), \\ \forall x, y.ColNode(x, y) \rightarrow Colour(y);$
- the data: a graph ($Node^{\mathcal{I}}, Edge^{\mathcal{I}}$), and $Colour^{\mathcal{I}} = \{r, g, b\}.$

What does the following query say?

 $\exists x, y, z. Edge(x, y) \land ColNode(x, z) \land ColNode(y, z)$

the graph (Node, Edge) is NOT 3-colourable"

く 同 ト く ヨ ト く ヨ ト -

Running rather Slowly, Eh?

Example

- relations: "ColNode(x, y)" and "Edge(x, y)";
- ontology: $\forall x.Node(x) \rightarrow \exists y.ColNode(x, y), \\ \forall x, y.ColNode(x, y) \rightarrow Colour(y);$
- the data: a graph ($Node^{\mathcal{I}}, Edge^{\mathcal{I}}$), and $Colour^{\mathcal{I}} = \{r, g, b\}.$

What does the following query say?

 $\exists x, y, z. Edge(x, y) \land ColNode(x, z) \land ColNode(y, z)$

"the graph (Node, Edge) is NOT 3-colourable"

Problem

The KB has TOO MANY MODELS (so we have to look at many)

1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$

② $(\mathcal{T},\mathcal{A})$ have many models, say $\mathcal{I}_j \;\; (j \in J)$:

Option I: restrict T to make it feasible: (simple) Horn theories

Problem

The KB has TOO MANY MODELS (so we have to look at many)

1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how *people will think about query answering* anyway!

(𝒯, 𝒜, 𝒜) have many models, say 𝒯_j (j ∈ J):
Option I: restrict 𝒯 to make it feasible: (simple) Horn theories

Problem

The KB has TOO MANY MODELS (so we have to look at many)

- 1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how *people will think about query answering* anyway!
- (*T*, *A*) have many models, say *I_j* (*j* ∈ *J*):
 Option I: restrict *T* to make it feasible: (simple) Horn theories
 a canonical (Herbrand) models (and small ones)
 but this works well only for positive queries)
 Option II: restrict *Q* to make it feasible: those
 for which it doesn't matter which model is used

Problem

The KB has TOO MANY MODELS (so we have to look at many)

- 1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how *people will think about query answering* anyway!
- **2** $(\mathcal{T}, \mathcal{A})$ have many models, say $\mathcal{I}_j \ (j \in J)$:

Option I: restrict T to make it feasible: *(simple) Horn theories* \Rightarrow canonical (Herbrand) models (and small ones!)

⇒ but this works well only for positive queries! Option II: restrict Q to make it feasible: those for which it doesn't matter which model is used

イロト イ団ト イヨト イヨト

Problem

The KB has TOO MANY MODELS (so we have to look at many)

- 1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how people will think about query answering anyway!
- **2** $(\mathcal{T}, \mathcal{A})$ have many models, say $\mathcal{I}_j \ (j \in J)$:

Option I: restrict \mathcal{T} to make it feasible: (simple) Horn theories \Rightarrow canonical (Herbrand) models (and small ones!) \Rightarrow but this works well only for positive queries!

Problem

The KB has TOO MANY MODELS (so we have to look at many)

- 1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how people will think about query answering anyway!
- **2** $(\mathcal{T}, \mathcal{A})$ have many models, say $\mathcal{I}_j \ (j \in J)$:

Option I: restrict \mathcal{T} to make it feasible: *(simple) Horn theories* \Rightarrow canonical (Herbrand) models (and small ones!) \Rightarrow but this works well *only for positive queries!* Option II: restrict Q to make it feasible: those *for which it doesn't matter which model is used*

e.g., safe queries in Codd's relational model

< 日 > < 同 > < 回 > < 回 > < □ > <

Problem

The KB has TOO MANY MODELS (so we have to look at many)

- 1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how people will think about query answering anyway!
- **2** $(\mathcal{T}, \mathcal{A})$ have many models, say $\mathcal{I}_j \ (j \in J)$:

Option I: restrict *T* to make it feasible: (simple) Horn theories
 ⇒ canonical (Herbrand) models (and small ones!)
 ⇒ but this works well only for positive queries!
 Option II: restrict *Q* to make it feasible: those
 for which it doesn't matter which model is used
 ⇒ e.g., safe queries in Codd's relational model

・ロト ・ 四ト ・ ヨト ・ ヨト …

Option I

v1.0: rewrite: incorporate \mathcal{T} into Q, complete: an identity ($\mathcal{A}' = \mathcal{A}$) ...[Calvanese et al.]

v2.0: rewrite: rewrite independently of $\mathcal{T} \cup \mathcal{A}$, complete: incorporate \mathcal{T} into \mathcal{A} ... [L

э

・ロ・・ (日・・ モ・・ ・ 日・・

Option I

v1.0: rewrite: incorporate \mathcal{T} into Q, complete: an identity $(\mathcal{A}' = \mathcal{A})$... [Calvanese et al.]

v2.0: rewrite: rewrite independently of $\mathcal{T} \cup \mathcal{A}$, complete: incorporate \mathcal{T} into \mathcal{A} ...[Lutz et al.]

A (10) A (10)

How to make T Easy?

Definition (DL-Litehorn)

roles: $R ::= P \mid P^-$, concepts: $C ::= \bot \mid A \mid \exists R$.

- **1** An *ontology (TBox)* is a finite set T of *concept* inclusions $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C$;
- 2 The Data (ABox) is a finite set A of concept and role assertions C(a) and R(a, b);
- 3 A Conjunctive Query (CQ):

an existentially quantified finite conjunction of atoms.

イロト イポト イヨト イヨト

IDEA:

1 Incorporate the background knowledge (i.e., T) into the query.

2 Use the *rewritten query* against the ABox A

 \Rightarrow and use a relational system to do this *efficiently*.

Example

 $\mathcal{T} = \{ EMP \sqsubseteq \exists MANAGES, \exists MANAGES^{-} \sqsubseteq BOSS, BOSS \sqsubseteq EMP \} \\ \mathcal{A} = \{ BOSS(Bob), EMP(Sue) \}$

 $Q(x, z) \leftarrow \exists y. MANAGES(x, y) \land MANAGES(z, y)$

IDEA:

1 Incorporate the background knowledge (i.e., T) into the query.

2 Use the *rewritten query* against the ABox A

 \Rightarrow and use a relational system to do this *efficiently*.

Example $\mathcal{T} = \{ EMP \sqsubseteq \exists MANAGES, \exists MANAGES^{-} \sqsubseteq BOSS, BOSS \sqsubseteq EMP \}$ $\mathcal{A} = \{ BOSS(Bob), EMP(Sue) \}$ $Q(x, z) \leftarrow \exists y.MANAGES(x, y) \land MANAGES(z, y)$ $Q(x, z) \leftarrow \exists y.MANAGES(x, y) \land MANAGES(z, y)$

IDEA:

1 Incorporate the background knowledge (i.e., T) into the query.

2 Use the *rewritten query* against the ABox A

 \Rightarrow and use a relational system to do this *efficiently*.

Example

 $\mathcal{T} = \{\textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP}\}$

$$\mathcal{A} = \{ BOSS(Bob), EMP(Sue) \}$$

 $\begin{array}{l} Q(x,z) \leftarrow \exists y.MANAGES(x,y) \land MANAGES(z,y) \\ Q(x,x) \leftarrow \exists y.MANAGES(x,y) \end{array} (factor) \end{array}$

IDEA:

1 Incorporate the background knowledge (i.e., T) into the query.

2 Use the *rewritten query* against the ABox A

 \Rightarrow and use a relational system to do this *efficiently*.

Example

 $\mathcal{T} = \{\textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP}\}$

 $\mathcal{A} = \{\textit{BOSS(Bob)}, \textit{EMP(Sue)}\}$

 $\begin{array}{ll} Q(x,z) \leftarrow \exists y.MANAGES(x,y) \land MANAGES(z,y) \\ Q(x,x) \leftarrow \exists y.MANAGES(x,y) & (factor) \\ Q(x,x) \leftarrow EMP(x) & \mathcal{T}(1) \\ Q(x,x) \leftarrow BOSS(x) & \mathcal{T}(3) \end{array}$

IDEA:

1 Incorporate the background knowledge (i.e., T) into the data.

 \Rightarrow make implicit knowledge explicit (data completion).

2 Use the *data completion* (only) to answer queries

 \Rightarrow and use a relational system to do this *efficiently*.

Issues:

How to complete the data?

Naive *unfolding* of \mathcal{T} : large/infinite (due to existentials) \Rightarrow we define a *canonical interpretation* $\mathcal{I}_{\mathcal{K}}$ (representatives)

② Can we then use the original Conjunctive Query?

Not directly: $Q(\mathcal{I}_{\mathcal{K}})$ can produce "spurious matches" \Rightarrow we eliminate the spurious matches by rewriting the query (independently of \mathcal{T} and \mathcal{A})

IDEA:

1 Incorporate the background knowledge (i.e., T) into the data.

 \Rightarrow make implicit knowledge explicit (data completion).

2 Use the *data completion* (only) to answer queries

 \Rightarrow and use a relational system to do this *efficiently*.

Example $\mathcal{T} = \{BOSS \sqsubseteq EMP\}, \ \mathcal{A} = \{BOSS(Bob)\}, \ Q \equiv EMP(x)$ 1 $\mathcal{I}_{\mathcal{K}} = \{BOSS(Bob), EMP(Bob)\}$ (data completion)2 $Q(\mathcal{I}_{\mathcal{K}}) = \{Bob\}$ (relational query)

3

IDEA:

1 Incorporate the background knowledge (i.e., T) into the data.

 \Rightarrow make implicit knowledge explicit (data completion).

2 Use the *data completion* (only) to answer queries

 \Rightarrow and use a relational system to do this *efficiently*.

Issues:

1 How to complete the data?

Naive *unfolding* of \mathcal{T} : large/infinite (due to existentials) \Rightarrow we define a *canonical interpretation* $\mathcal{I}_{\mathcal{K}}$ (representatives)

2 Can we then use the original Conjunctive Query?

Not directly: $Q(\mathcal{I}_{\mathcal{K}})$ can produce "spurious matches" \Rightarrow we eliminate the spurious matches by rewriting the query (independently of \mathcal{T} and \mathcal{A})

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$\begin{split} A^{\mathcal{I}_{\mathcal{K}}} &= \{ a \in \mathsf{Ind}(\mathcal{A}) \mid \mathcal{K} \models A(a) \} \cup \{ \overset{\mathbf{C}_{\mathbf{P}}}{\leftarrow} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists \mathbf{R}^{-} \sqsubseteq A \}, \\ P^{\mathcal{I}_{\mathcal{K}}} &= \{ (a,b) \in \mathsf{Ind}(\mathcal{A}) \times \mathsf{Ind}(\mathcal{A}) \mid P(a,b) \in \mathcal{A} \} \cup \\ \{ (d, \overset{\mathbf{C}_{\mathbf{P}}}{\leftarrow}) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \mid d \rightsquigarrow \overset{\mathbf{C}_{\mathbf{P}}}{\leftarrow} \} \cup \{ (\overset{\mathbf{C}_{\mathbf{P}^{-}}}{\leftarrow}, d) \in \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \rightsquigarrow \overset{\mathbf{C}_{\mathbf{P}^{-}}}{\leftarrow} \} \end{split}$$

... *c_R*'s only used "when necessary" (for *generating* roles)

Lemma

There are queries

•
$$q_A^T$$
 s.t. ans $(q_A^T, A) = A^{\mathcal{I}_{\mathcal{K}}}$, and

•
$$q_P^T$$
 s.t. ans $(q_P^T, \mathcal{A}) = P^{\mathcal{I}_{\mathcal{K}}}$

for every KB (T, A) and primitive concept A and role P.

・ロト ・ 四ト ・ ヨト ・ ヨト

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

 $\dots C_R$'s only used "when necessary" (for generating roles)

Lemma

There are queries

•
$$q_A^T$$
 s.t. ans $(q_A^T, A) = A^{I_K}$, and

•
$$q_P^T$$
 s.t. ans $(q_P^T, \mathcal{A}) = P^{\mathcal{I}_{\mathcal{K}}}$

for every KB (T, A) and primitive concept A and role P.

イロト イポト イヨト イヨト

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$\begin{split} & \mathcal{A}^{\mathcal{I}_{\mathcal{K}}} = \{ a \in \mathsf{Ind}(\mathcal{A}) \mid \mathcal{K} \models \mathcal{A}(a) \} \cup \{ \textit{C}_{\textit{R}} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists \textit{R}^{-} \sqsubseteq \textit{A} \}, \\ & \mathcal{P}^{\mathcal{I}_{\mathcal{K}}} = \{ (a,b) \in \mathsf{Ind}(\mathcal{A}) \times \mathsf{Ind}(\mathcal{A}) \mid \textit{P}(a,b) \in \mathcal{A} \} \cup \\ & \{ (d,\textit{C}_{\textit{P}}) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \mid \textit{d} \rightsquigarrow \textit{C}_{\textit{P}} \} \cup \{ (\textit{C}_{\textit{P}^{-}},\textit{d}) \in \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \textit{d} \rightsquigarrow \textit{C}_{\textit{P}} \} \end{split}$$

... *c_R*'s only used "when necessary" (for *generating* roles)

Example

 $\mathcal{T} = \{\textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP}\}$

 $\mathcal{A} = \{ \text{BOSS(Bob)}, \text{EMP(Sue)} \}$

Lemma

ł

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$\begin{aligned} \mathcal{A}^{\mathcal{I}_{\mathcal{K}}} &= \{ a \in \mathsf{Ind}(\mathcal{A}) \mid \mathcal{K} \models \mathcal{A}(a) \} \cup \{ \mathcal{C}_{\mathcal{R}} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists \mathcal{R}^{-} \sqsubseteq \mathcal{A} \}, \\ \mathcal{P}^{\mathcal{I}_{\mathcal{K}}} &= \{ (a,b) \in \mathsf{Ind}(\mathcal{A}) \times \mathsf{Ind}(\mathcal{A}) \mid \mathcal{P}(a,b) \in \mathcal{A} \} \cup \\ \{ (d,\mathcal{C}_{\mathcal{P}}) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \mid d \rightsquigarrow \mathcal{C}_{\mathcal{P}} \} \cup \{ (\mathcal{C}_{\mathcal{P}^{-}}, d) \in \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \rightsquigarrow \mathcal{C}_{\mathcal{P}^{-}} \\ & \dots \mathcal{C}_{\mathcal{R}} \text{'s only used "when necessary" (for generating roles)' \\ \end{aligned}$$

Lemma

There are queries

•
$$q_A^T$$
 s.t. ans $(q_A^T, A) = A^{\mathcal{I}_{\mathcal{K}}}$, and

•
$$q_P^T$$
 s.t. ans $(q_P^T, \mathcal{A}) = P^{\mathcal{I}_{\mathcal{K}}}$

for every KB $(\mathcal{T}, \mathcal{A})$ and primitive concept A and role P.

free consistency test: $m{q}_{+}^{\prime}\left(\mathcal{A} ight)=\emptyset_{-}$

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$\begin{aligned} \mathcal{A}^{\mathcal{I}_{\mathcal{K}}} &= \{ a \in \mathsf{Ind}(\mathcal{A}) \mid \mathcal{K} \models \mathcal{A}(a) \} \cup \{ \mathcal{C}_{\mathcal{R}} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists \mathcal{R}^{-} \sqsubseteq \mathcal{A} \}, \\ \mathcal{P}^{\mathcal{I}_{\mathcal{K}}} &= \{ (a, b) \in \mathsf{Ind}(\mathcal{A}) \times \mathsf{Ind}(\mathcal{A}) \mid \mathcal{P}(a, b) \in \mathcal{A} \} \cup \\ \{ (d, \mathcal{C}_{\mathcal{P}}) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \mid d \rightsquigarrow \mathcal{C}_{\mathcal{P}} \} \cup \{ (\mathcal{C}_{\mathcal{P}^{-}}, d) \in \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid d \rightsquigarrow \mathcal{C}_{\mathcal{P}^{-}} \\ \mathcal{C}_{\mathcal{P}} \text{'s only used "when necessary" (for generating roles) } \end{aligned}$$

Lemma

There are queries

•
$$q_A^T$$
 s.t. ans $(q_A^T, A) = A^{\mathcal{I}_{\mathcal{K}}}$, and

•
$$q_P^T$$
 s.t. ans $(q_P^T, A) = P^{\mathcal{I}_{\mathcal{K}}}$

for every KB (T, A) and primitive concept A and role P.

free consistency test: $q_{\perp}^{\mathcal{T}}(\mathcal{A}) = \emptyset$

A D b 4 A b

Example

 $\mathcal{T} = \{ \textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP} \}$

 $\mathcal{A} = \{\textit{EMP(Bob)}, \textit{EMP(Sue)}\}$

Queries:

- $\exists v. MANAGES(v, v)$
- 2 $\exists y.MANAGES(x, y) \land MANAGES(z, y)$

Query Rewriting

 $\exists \overline{u}.\varphi \quad \mapsto \quad \exists \overline{u}.\varphi \land \varphi_1 \land \varphi_2 \land \varphi_3$

where φ_1 eliminates answers containing c_R 's; φ_2 eliminates problem (1) above; and φ_3 eliminates problem (2) above.

э

Example

 $\mathcal{T} = \{ \textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP} \}$

 $\mathcal{A} = \{ \textit{EMP(Bob)}, \textit{EMP(Sue)} \}$

Queries:

 $\exists v. MANAGES(v, v)$

2 $\exists y.MANAGES(x, y) \land MANAGES(z, y)$

$$egin{aligned} & Q_1(\mathcal{I}_\mathcal{K}) = \mathsf{true} \ & Q_2(\mathcal{I}_\mathcal{K}) = \{(\mathit{Bob}, \mathit{Sue})\} \end{aligned}$$

Example

 $\mathcal{T} = \{ \mathsf{EMP} \sqsubseteq \exists \mathsf{MANAGES}, \exists \mathsf{MANAGES}^{-} \sqsubseteq \mathsf{BOSS}, \mathsf{BOSS} \sqsubseteq \mathsf{EMP} \}$

 $\mathcal{A} = \{\textit{EMP(Bob)}, \textit{EMP(Sue)}\}$

Queries:

$$\exists v. MANAGES(v, v)$$

2 $\exists y.MANAGES(x, y) \land MANAGES(z, y)$

Example

 $\mathcal{T} = \{ \mathsf{EMP} \sqsubseteq \exists \mathsf{MANAGES}, \exists \mathsf{MANAGES}^{-} \sqsubseteq \mathsf{BOSS}, \mathsf{BOSS} \sqsubseteq \mathsf{EMP} \}$

 $\mathcal{A} = \{\textit{EMP(Bob)}, \textit{EMP(Sue)}\}$

Queries:

- $\exists v. MANAGES(v, v)$
- **2** $\exists y.MANAGES(x, y) \land MANAGES(z, y)$

Query Rewriting

$$\exists \bar{u}.\varphi \quad \mapsto \quad \exists \bar{u}.\varphi \land \varphi_1 \land \varphi_2 \land \varphi_3$$

where φ_1 eliminates answers containing c_R 's; φ_2 eliminates problem (1) above; and φ_3 eliminates problem (2) above.

v1.0 vs. v2.0

	v1.0 (query rewriting)	v2.0 (data completion)
Queries	rewriting is	data only grows
	exponential in <i>Q</i>	polynomially in $ \mathcal{A} $
Updates	applies to	needs rematerialize
	original data	data completion

Э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

IDEA:

Restrict *queries* to those whose answer does NOT depend on the choice of model of $T \cup A$:

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $Q(\mathcal{I}) = Q(\mathcal{J})$

In practice—given T, Q, and *FIXED signature for* A:

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $\mathcal{Q}(\mathcal{I}) = \mathcal{Q}(\mathcal{J})$ (*)

for every choice of A over the FIXED signature.

< 日 > < 同 > < 回 > < 回 > < □ > <

Advantages: no restrictions of \mathcal{T} and Q(modulo deciding whether the condition (*) holds) Issues: how does this help us?? a FO rewriting *over* \mathcal{A} exists \Rightarrow a relational query

э

IDEA:

Restrict queries to those

whose answer does NOT depend on the choice of model of $\mathcal{T} \cup \mathcal{A}$:

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $Q(\mathcal{I}) = Q(\mathcal{J})$

In practice—given T, Q, and *FIXED signature for* A:

for all
$$\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$$
 we have $Q(\mathcal{I}) = Q(\mathcal{J})$ (*)

for every choice of A over the FIXED signature.

(a) < (a) < (b) < (b)

Advantages: no restrictions of \mathcal{T} and Q(modulo deciding whether the condition (*) holds) Issues: how does this help us?? a FO rewriting *over* \mathcal{A} exists \Rightarrow a relational query

IDEA:

Restrict queries to those

whose answer does NOT depend on the choice of model of $\mathcal{T} \cup \mathcal{A}$:

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $Q(\mathcal{I}) = Q(\mathcal{J})$

In practice—given T, Q, and *FIXED signature for A*:

for all
$$\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$$
 we have $Q(\mathcal{I}) = Q(\mathcal{J})$ (*)

for every choice of A over the FIXED signature.

(a)

Advantages: no restrictions of T and Q(modulo deciding whether the condition (*) holds)

Issues: how does this help us?? a FO rewriting over 4 exists \Rightarrow a relational query

IDEA:

Restrict queries to those

whose answer does NOT depend on the choice of model of $\mathcal{T} \cup \mathcal{A}$:

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $Q(\mathcal{I}) = Q(\mathcal{J})$

In practice—given T, Q, and *FIXED signature for* A:

for all
$$\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$$
 we have $Q(\mathcal{I}) = Q(\mathcal{J})$ (*)

for every choice of A over the FIXED signature.

イロト イポト イヨト イヨト

Advantages: no restrictions of \mathcal{T} and Q(modulo deciding whether the condition (*) holds) Issues: how does this help us?? a FO rewriting *over* \mathcal{A} exists \Rightarrow a relational query

Beth Definability and Interpolation

```
How do we test for (*)?
```

Beth Definability

Q satisfies (*) if

 $\mathcal{T}\cup\mathcal{T}'\models \textit{Q}\rightarrow\textit{Q}'$

where $\mathcal{T}'(Q')$ is $\mathcal{T}(Q)$ in which symbols **NOT** in \mathcal{A} are primed.

... this only works under CWA!

ヘロト ヘ回ト ヘヨト ヘヨト

How do we rewrite Q?

Craig Interpolation

 $\models arphi
ightarrow \psi$ then $\models arphi
ightarrow \gamma
ightarrow \psi$

where γ only uses non-logical symbols common to arphi and ψ

Beth Definability and Interpolation

```
How do we test for (*)?
```

Beth Definability

Q satisfies (*) if

 $\mathcal{T} \cup \mathcal{T}' \models \mathcal{Q}
ightarrow \mathcal{Q}'$

where $\mathcal{T}'(Q')$ is $\mathcal{T}(Q)$ in which symbols *NOT in* \mathcal{A} are *primed*.

... this only works under CWA!

イロト イポト イヨト イヨト 二日

How do we rewrite Q?

Craig Interpolation

 $\models \varphi \rightarrow \psi \text{ then } \models \varphi \rightarrow \gamma \rightarrow \psi,$ where γ only uses non-logical symbols common to φ and ψ .

Exercise: use the above to show $\mathcal{T} \cup \mathcal{T}' \models Q \rightarrow P \rightarrow Q'$

Beth Definability and Interpolation

```
How do we test for (*)?
```

Beth Definability

Q satisfies (*) if

 $\mathcal{T}\cup\mathcal{T}'\models \textit{Q}\rightarrow\textit{Q}'$

where $\mathcal{T}'(Q')$ is $\mathcal{T}(Q)$ in which symbols *NOT in* \mathcal{A} are *primed*.

... this only works under CWA!

・ロト ・ 四ト ・ ヨト ・ ヨト …

How do we rewrite Q?

Craig Interpolation

 $\models \varphi \rightarrow \psi \text{ then } \models \varphi \rightarrow \gamma \rightarrow \psi,$ where γ only uses non-logical symbols common to φ and ψ .

Exercise: use the above to show $\mathcal{T} \cup \mathcal{T}' \models Q \rightarrow \textbf{P} \rightarrow Q'$

Observations

Either Option I+OWA or Option II+CWA(+standard names), but not both

Applications:

KR (mostly Option I and OWA)

 \Rightarrow Medical ontologies and patient records, (Bio-)sciences in general \Rightarrow Information Integration

DB (almost exclusively Option II and CWA)

- ⇒ Physical Design and Data Structures
- \Rightarrow Query Optimization, Materialized Views, etc.

Observations

• Either Option I+OWA or

Option II+CWA(+standard names), but not both

- Applications:
 - KR (mostly Option I and OWA)

 \Rightarrow Medical ontologies and patient records, (Bio-)sciences in general

- \Rightarrow Information Integration
- DB (almost exclusively Option II and CWA)
 - \Rightarrow Physical Design and Data Structures
 - \Rightarrow Query Optimization, Materialized Views, etc.

References

Option I, v1.0: D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385-429, 2007.

Option I, v2.0: C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic EL using a relational database system. In Proc. IJCAI, 2070-2075, 2009.
 R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach to query answering in DL-Lite. In Proc. KR, 2010.

Option II: D. Toman and G. Weddell. Fundamentals of Physical Design and Query Compilation. Morgan and Claypool, Synthesis lectures, *Data Management Series*. 2011.

< 日 > < 同 > < 回 > < 回 > < □ > <