
COMP718: Ontologies and Knowledge Bases
Lectures 9 and 10: ontology-based data access

C. Maria Keet
School of Mathematics, Statistics, and Computer Science,

University of KwaZulu-Natal, South Africa

April 17, 2012

The following slides are heavily based on David Toman’s slides of his seminar at
UKZN d.d. 29-3-2011; slides used with permission

David Toman (et al.) Ontology-Based Data Access 1 / 19

Ontology-Based Data Access: Options

David Toman

D.R. Cheriton School of Computer Science,
University of Waterloo, Canada

Joint work with:

R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev
E. Franconi and G. Weddell

David Toman (et al.) Ontology-Based Data Access 2 / 19

Queries and Ontologies

Ontology-based Data Access
Enriches query answers over explicitly represented data using

background knowledge (captured using an ontology.)

Example
• Bob is a BOSS (explicit data)
• Every BOSS is an EMPloyee (ontology)

List all EMPloyees⇒ {Bob} (query)

David Toman (et al.) Ontology-Based Data Access 3 / 19

Setup

(A, T)
Q−−−−−−−−−−−−−→A′

A “the data” set of ground tuples: BOSS(Bob)

T “the knowledge” FO† sentences: ∀x .BOSS(x)→ EMP(x)

Q “the question” a FO† formula: EMP(x)

† or an appropriate fragment of FO

What is this good for?

1 Enriches explicit data with background knowledge

2 Physical Data Independence

David Toman (et al.) Ontology-Based Data Access 4 / 19

Interpretations and Models, Data and Queries

Interpretation I:
• A Domain ∆ of objects
• An Interpretation Function (·)I that maps

constants to objects and predicates to sets of tuples of objects

Models
A model of a formula (set of formulas) is an interpretation that makes
the formula (all formulas in the set) true.

What does A = {Emp(Bob),Emp(Sue)} mean?

OWA: BobI ∈ EmpI ,SueI ∈ EmpI (KR folks)
CWA: {BobI ,SueI} = EmpI (DB folks)

David Toman (et al.) Ontology-Based Data Access 5 / 19

How do we Answer Queries: The Simple Answer

Logical Implication
A set of formulas entails (|=) another formula if every model of the
former is also model of the later.

Definition (Query Answering)

Q(A, T) = {~a | T ∪ A |= Q[~a]}

Operationally (with standard names):

Q(A, T) =
⋂

I|=T ∪A

Q(I)

↑ ↑
this is a problem but this is not

David Toman (et al.) Ontology-Based Data Access 6 / 19

Running rather Slowly, Eh?

Example
• relations: “ColNode(x , y)” and “Edge(x , y)”;

• ontology: ∀x .Node(x)→ ∃y .ColNode(x , y),
∀x , y .ColNode(x , y)→ Colour(y);

• the data: a graph (NodeI ,EdgeI), and
ColourI = {r ,g,b}.

What does the following query say?

∃x , y , z.Edge(x , y) ∧ ColNode(x , z) ∧ ColNode(y , z)

“the graph (Node,Edge) is NOT 3-colourable”

David Toman (et al.) Ontology-Based Data Access 7 / 19

How do we Answer Queries Efficiently?

Problem
The KB has TOO MANY MODELS (so we have to look at many)

1 (T ,A) have exactly one model I: then Q(A, T) = Q(I)
. . . this is how people will think about query answering anyway!

2 (T ,A) have many models, say Ij (j ∈ J):

Option I: restrict T to make it feasible: (simple) Horn theories
⇒ canonical (Herbrand) models (and small ones!)
⇒ but this works well only for positive queries!

Option II: restrict Q to make it feasible: those
for which it doesn’t matter which model is used

⇒ e.g., safe queries in Codd’s relational model

David Toman (et al.) Ontology-Based Data Access 8 / 19

Option I

Q
rewrite

��

Q′

A
complete

// A′ evaluate
// A′′

v1.0: rewrite: incorporate T into Q,
complete: an identity (A′ = A)

. . . [Calvanese et al.]

v2.0: rewrite: rewrite independently of T ∪ A,
complete: incorporate T into A

. . . [Lutz et al.]

David Toman (et al.) Ontology-Based Data Access 9 / 19

How to make T Easy?

Definition (DL-Litehorn)

roles: R ::= P | P−, concepts: C ::= ⊥ | A | ∃R.

1 An ontology (TBox) is a finite set T of concept inclusions
C1 u · · · u Cn v C;

2 The Data (ABox) is a finite set A of concept and role assertions
C(a) and R(a,b);

3 A Conjunctive Query (CQ):
an existentially quantified finite conjunction of atoms.

David Toman (et al.) Ontology-Based Data Access 10 / 19

The Master Plan (v1.0)

IDEA:
1 Incorporate the background knowledge (i.e., T) into the query.
2 Use the rewritten query against the ABox A

⇒ and use a relational system to do this efficiently.

Example
T = {EMP v ∃MANAGES,∃MANAGES− v BOSS,BOSS v EMP}
A = {BOSS(Bob),EMP(Sue)}

Q(x , z)← ∃y .MANAGES(x , y) ∧MANAGES(z, y)
Q(x , x)← ∃y .MANAGES(x , y) (factor)
Q(x , x)← EMP(x) T (1)
Q(x , x)← BOSS(x) T (3)

David Toman (et al.) Ontology-Based Data Access 11 / 19

The Master Plan (v2.0)
IDEA:

1 Incorporate the background knowledge (i.e., T) into the data.
⇒ make implicit knowledge explicit (data completion).

2 Use the data completion (only) to answer queries
⇒ and use a relational system to do this efficiently.

Example
T = {BOSS v EMP}, A = {BOSS(Bob)}, Q ≡ EMP(x)

1 IK = {BOSS(Bob),EMP(Bob)} (data completion)
2 Q(IK) = {Bob} (relational query)

Issues:

1 How to complete the data?
Naive unfolding of T : large/infinite (due to existentials)

⇒ we define a canonical interpretation IK (representatives)

2 Can we then use the original Conjunctive Query?
Not directly: Q(IK) can produce “spurious matches”
⇒ we eliminate the spurious matches by rewriting the query

(independently of T and A)

David Toman (et al.) Ontology-Based Data Access 12 / 19

Canonical Interpretations

ABox completion: the Canonical Interpretation IK
AIK = {a ∈ Ind(A) | K |= A(a)} ∪ {cR ∈ ∆IK | T |= ∃R− v A},
PIK = {(a,b) ∈ Ind(A)× Ind(A) | P(a,b) ∈ A} ∪
{(d , cP) ∈ ∆IK × NTI | d ; cP} ∪ {(cP− ,d) ∈ NTI ×∆IK | d ; cP−}

. . . cR ’s only used “when necessary” (for generating roles)

Example
T = {EMP v ∃MANAGES,∃MANAGES− v BOSS,BOSS v EMP}
A = {BOSS(Bob),EMP(Sue)}

Then EMPIK = {Bob,Sue, }, BOSSIK = {Bob, }, and
MANAGESIK = {(Bob,), (Sue,), (,)}.

Lemma
There are queries
• qTA s.t. ans(qTA ,A) = AIK , and
• qTP s.t. ans(qTP ,A) = PIK

for every KB (T ,A) and primitive concept A and role P.

free consistency test: qT⊥(A) = ∅

David Toman (et al.) Ontology-Based Data Access 13 / 19

Query Rewriting (TBox-free)

Example
T = {EMP v ∃MANAGES,∃MANAGES− v BOSS,BOSS v EMP}
A = {EMP(Bob),EMP(Sue)}

Queries:
1 ∃v .MANAGES(v , v)

2 ∃y .MANAGES(x , y) ∧MANAGES(z, y)

IK : Bob
((

oo

Sue

66
Q1(IK) = true
Q2(IK) = {(Bob,Sue)}

UK : Bob //
1

//
2

// . . .

Sue //
3

//
4

// . . .

Q1(UK) = false
Q2(UK) = {}

Query Rewriting

∃ū.ϕ 7→ ∃ū.ϕ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3

where ϕ1 eliminates answers containing cR ’s;
ϕ2 eliminates problem (1) above; and
ϕ3 eliminates problem (2) above.

 selections in SQL

David Toman (et al.) Ontology-Based Data Access 14 / 19

v1.0 vs. v2.0

David Toman (et al.) Ontology-Based Data Access 15 / 19

Option II: Exact Answers

IDEA:
Restrict queries to those

whose answer does NOT depend on the choice of model of T ∪ A:

for all I,J |= T ∪ A we have Q(I) = Q(J)

In practice—given T , Q, and FIXED signature for A:

for all I,J |= T ∪ A we have Q(I) = Q(J) (∗)

for every choice of A over the FIXED signature.

Advantages: no restrictions of T and Q
(modulo deciding whether the condition (∗) holds)

Issues: how does this help us??
a FO rewriting over A exists⇒ a relational query

David Toman (et al.) Ontology-Based Data Access 16 / 19

Beth Definability and Interpolation

How do we test for (∗)?

Beth Definability
Q satisfies (∗) if

T ∪ T ′ |= Q → Q′

where T ′ (Q′) is T (Q) in which symbols NOT in A are primed.

. . . this only works under CWA!
How do we rewrite Q?

Craig Interpolation
|= ϕ→ ψ then |= ϕ→ γ → ψ,

where γ only uses non-logical symbols common to ϕ and ψ.

Exercise: use the above to show T ∪ T ′ |= Q → P → Q′

David Toman (et al.) Ontology-Based Data Access 17 / 19

Observations

• Either Option I+OWA or
Option II+CWA(+standard names), but not both

• Applications:
KR (mostly Option I and OWA)
⇒ Medical ontologies and patient records, (Bio-)sciences in general
⇒ Information Integration

DB (almost exclusively Option II and CWA)
⇒ Physical Design and Data Structures
⇒ Query Optimization, Materialized Views, etc.

David Toman (et al.) Ontology-Based Data Access 18 / 19

References

Option I, v1.0: D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
and R. Rosati. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385-429, 2007.

Option I, v2.0: C. Lutz, D. Toman, and F. Wolter. Conjunctive query
answering in the description logic EL using a relational
database system. In Proc. IJCAI, 2070-2075, 2009.
R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M.
Zakharyaschev. The combined approach to query
answering in DL-Lite. In Proc. KR, 2010.

Option II: D. Toman and G. Weddell. Fundamentals of Physical
Design and Query Compilation. Morgan and Claypool,
Synthesis lectures, Data Management Series. 2011.

David Toman (et al.) Ontology-Based Data Access 19 / 19

