COMP718: Ontologies and Knowledge Bases

Lectures 9 and 10: ontology-based data access

C. Maria Keet School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, South Africa

April 17, 2012

The following slides are heavily based on David Toman's slides of his seminar at UKZN d.d. 29-3-2011; slides used with permission

Ontology-Based Data Access: Options

David Toman

D.R. Cheriton School of Computer Science, University of Waterloo, Canada

Joint work with:

R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev E. Franconi and G. Weddell

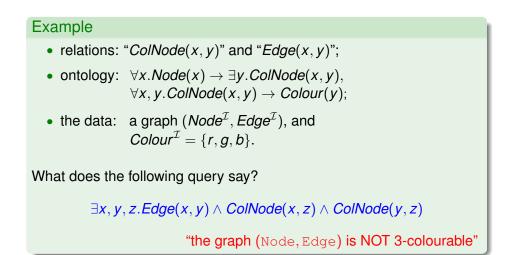
David Toman (et al.)	Ontology-Based Data Access	1 / 19	David Toman (et al.)	Ontology-Based Data Access	2/19
Queries and Ontolog	ies		Setup		
Ontology-based Data Acc Enriches query answers ov		ata using	$(\mathcal{A},$	\mathcal{T}) $\longrightarrow \mathcal{A}'$	
	nd knowledge (captured u	-	${\cal A}$ "the data" ${\cal T}$ "the knowledge"	set of <i>ground tuples</i> FO [†] sentences: $\forall x.BOSS($	$(x) \rightarrow EMP(x)$
Example			Q "the question"	a FO ⁺ for	mula: $EMP(x)$
Bob is a BOSS		(explicit data)		[†] or an appropriate	fragment of FO
 Every BOSS is an EMI 	Ployee	(ontology)	What is this good for?		
<i>List all EMPloyees</i> \Rightarrow {Bob}		(query)	What is this good for?		
			 Enriches explicit data v 	vith background knowledge	
			2 Physical Data Independent	dence	

Interpretations and Models, Data and Queries

Interpretation \mathcal{I} :

- A Domain Δ of *objects*
- An Interpretation Function (·)^T that maps constants to objects and predicates to sets of tuples of objects

Models


A *model* of a *formula (set of formulas)* is an interpretation that makes the formula (all formulas in the set) true.

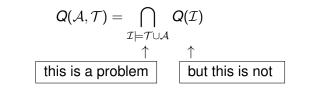
What does $A = \{ Emp(Bob), Emp(Sue) \}$ mean?	
OWA : $\textit{Bob}^{\mathcal{I}} \in \texttt{Emp}^{\mathcal{I}}, \textit{Sue}^{\mathcal{I}} \in \texttt{Emp}^{\mathcal{I}}$	(KR folks)
$CWA: \ \{ \textit{Bob}^{\mathcal{I}}, \textit{Sue}^{\mathcal{I}} \} = \mathtt{Emp}^{\mathcal{I}}$	(DB folks)

David Toman (et al.)

Ontology-Based Data Access

Running rather Slowly, Eh?

How do we Answer Queries: The Simple Answer


Logical Implication

A set of formulas entails (\models) another formula if every model of the former is also model of the later.

Definition (Query Answering)

$$Q(\mathcal{A},\mathcal{T}) = \{ \vec{a} \mid \mathcal{T} \cup \mathcal{A} \models Q[\vec{a}] \}$$

Operationally (with standard names):

David Toman (et al.)

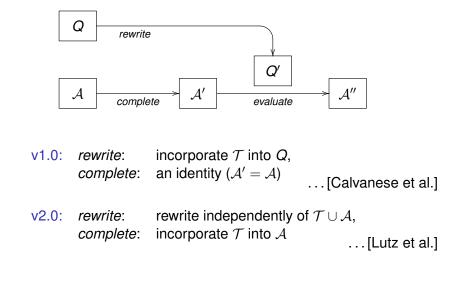
Ontology-Based Data Access

6/19

How do we Answer Queries Efficiently?

Problem

The KB has TOO MANY MODELS (so we have to look at many)

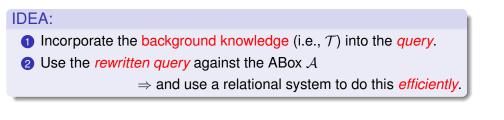

- 1 $(\mathcal{T}, \mathcal{A})$ have exactly one model \mathcal{I} : then $Q(\mathcal{A}, \mathcal{T}) = Q(\mathcal{I})$... this is how *people will think about query answering* anyway!
- **2** $(\mathcal{T}, \mathcal{A})$ have many models, say $\mathcal{I}_j \ (j \in J)$:

Option I: restrict \mathcal{T} to make it feasible: *(simple) Horn theories* \Rightarrow canonical (Herbrand) models (and small ones!) \Rightarrow but this works well *only for positive queries!* Option II: restrict Q to make it feasible: those *for which it doesn't matter which model is used*

 \Rightarrow e.g., safe queries in Codd's relational model

5/19

Option I

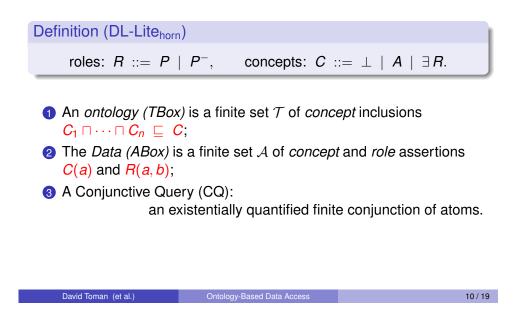


David Toman (et al.)

Ontology-Based Data Access

9 / 19

The Master Plan (v1.0)



Example

 $\mathcal{T} = \{ \textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP} \} \\ \mathcal{A} = \{ \textit{BOSS(Bob)}, \textit{EMP(Sue)} \}$

$Q(x, z) \leftarrow \exists y.MANAGES(x, y) \land MANAGES(z, y)$	
$Q(x,x) \leftarrow \exists y. MANAGES(x,y)$	(factor)
$Q(x,x) \leftarrow EMP(x)$	$\mathcal{T}(1)$
$Q(x,x) \leftarrow BOSS(x)$	$\mathcal{T}(3)$

How to make \mathcal{T} Easy?

The Master Plan (v2.0)

IDEA:

- **1** Incorporate the background knowledge (i.e., T) into the data.
 - \Rightarrow make implicit knowledge explicit (data completion).
- 2 Use the *data completion* (only) to answer queries
 - \Rightarrow and use a relational system to do this *efficiently*.

$\mathcal{T} =$	$\{BOSS \sqsubseteq EMP\}, \ \mathcal{A} = \{BOSS(Bob)\},\$	$Q \equiv EMP(x)$
1	$\mathcal{I}_\mathcal{K} = \{\textit{BOSS(Bob)},\textit{EMP(Bob)}\}$	(data completion)
2	$\mathcal{Q}(\mathcal{I}_{\mathcal{K}}) = \{ \textit{Bob} \}$	(relational query)

Canonical Interpretations

ABox completion: the Canonical Interpretation $\mathcal{I}_{\mathcal{K}}$

$$\begin{split} & \mathcal{A}^{\mathcal{I}_{\mathcal{K}}} = \{ a \in \mathsf{Ind}(\mathcal{A}) \mid \mathcal{K} \models \mathcal{A}(a) \} \cup \{ \textit{\textbf{C}}_{\textit{\textbf{R}}} \in \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \mathcal{T} \models \exists \textit{\textbf{R}}^{-} \sqsubseteq \textit{\textbf{A}} \}, \\ & \mathcal{P}^{\mathcal{I}_{\mathcal{K}}} = \{ (a,b) \in \mathsf{Ind}(\mathcal{A}) \times \mathsf{Ind}(\mathcal{A}) \mid \textit{\textbf{P}}(a,b) \in \mathcal{A} \} \cup \\ & \{ (d,\textit{\textbf{C}}_{\textit{\textbf{P}}}) \in \Delta^{\mathcal{I}_{\mathcal{K}}} \times \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \mid \textit{\textbf{d}} \rightsquigarrow \textit{\textbf{C}}_{\textit{\textbf{P}}} \} \cup \{ (\textit{\textbf{C}}_{\textit{\textbf{P}}^{-}},\textit{\textbf{d}}) \in \mathsf{N}_{\mathsf{I}}^{\mathcal{T}} \times \Delta^{\mathcal{I}_{\mathcal{K}}} \mid \textit{\textbf{d}} \rightsquigarrow \textit{\textbf{C}}_{\textit{\textbf{P}}^{-}} \} \\ & \dots \textit{\textbf{C}}_{\textit{\textbf{R}}} \text{'s only used "when necessary" (for$$
generating $roles) \end{split}$

Example

 $\mathcal{T} = \{ \textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^{-} \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP} \} \\ \mathcal{A} = \{ \textit{BOSS(Bob)}, \textit{EMP(Sue)} \}$

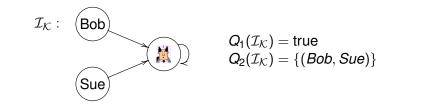
Then $EMP^{\mathcal{I}_{\mathcal{K}}} = \{Bob, Sue, \&\}, BOSS^{\mathcal{I}_{\mathcal{K}}} = \{Bob, \&\}, and MANAGES^{\mathcal{I}_{\mathcal{K}}} = \{(Bob, \&), (Sue, \&), (\&, \&)\}.$

Lemma		
David Toman (et al.)	Ontology-Based Data Access	13 / 19
• q_A^T s.t. ans $(q_A^T, A) = A^{\mathcal{I}_{\mathcal{K}}}$, and • a^T s.t. ans $(a^T, A) = P^{\mathcal{I}_{\mathcal{K}}}$		

v1.0 vs. v2.0

	v1.0 (query rewriting)	v2.0 (data completion)
Queries	rewriting is exponential in <i>Q</i>	data only grows polynomially in $ \mathcal{A} $
Updates	applies to original data	needs rematerialize data completion

Query Rewriting (TBox-free)


Example

 $\mathcal{T} = \{\textit{EMP} \sqsubseteq \exists \textit{MANAGES}, \exists \textit{MANAGES}^- \sqsubseteq \textit{BOSS}, \textit{BOSS} \sqsubseteq \textit{EMP}\}$

 $\mathcal{A} = \{\textit{EMP(Bob)}, \textit{EMP(Sue)}\}$

Queries:

- **2** $\exists y.MANAGES(x, y) \land MANAGES(z, y)$

David Toman (et al.)Ontology-Based Data Access14 / 19
$$\mathcal{U}_{\mathcal{K}}$$
: \textcircled{Bob} \swarrow \swarrow \swarrow $\mathcal{O}_{\mathcal{L}}(\mathcal{I}_{\mathcal{L}_{\mathcal{L}}})$ \frown \bigcirc $(\mathcal{I}_{\mathcal{L}_{\mathcal{L}}})$

Option II: Exact Answers

IDEA:

Restrict *queries* to those whose answer does NOT depend on the choice of model of $T \cup A$:

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $Q(\mathcal{I}) = Q(\mathcal{J})$

In practice—given \mathcal{T} , Q, and *FIXED signature for* \mathcal{A} :

for all $\mathcal{I}, \mathcal{J} \models \mathcal{T} \cup \mathcal{A}$ we have $Q(\mathcal{I}) = Q(\mathcal{J})$ (*)

for every choice of \mathcal{A} over the FIXED signature.

Advantages: no restrictions of \mathcal{T} and Q

(modulo deciding whether the condition (*) holds)

Issues: how does this help us??

a FO rewriting *over* \mathcal{A} exists \Rightarrow a relational query

Beth Definability and Interpolation

How do we test for (*)?

Beth Definability

Q satisfies (*) if

 $\mathcal{T} \cup \mathcal{T}' \models \mathcal{Q}
ightarrow \mathcal{Q}'$

where $\mathcal{T}'(Q')$ is $\mathcal{T}(Q)$ in which symbols *NOT in* \mathcal{A} are *primed*.

... this only works under CWA!

How do we rewrite Q?

Craig Interpolation $\models \varphi \rightarrow \psi$ then $\models \varphi \rightarrow \gamma \rightarrow \psi$,
where γ only uses non-logical symbols common to φ and ψ .Exercise: use the above to show $\mathcal{T} \cup \mathcal{T}' \models Q \rightarrow P \rightarrow Q'$

David Toman (et al.)

Ontology-Based Data Access

17 / 19

Observations

- Either Option I+OWA or Option II+CWA(+standard names), but not both
- Applications:
 - KR (mostly Option I and OWA)
 - \Rightarrow Medical ontologies and patient records, (Bio-)sciences in general \Rightarrow Information Integration
 - DB (almost exclusively Option II and CWA)
 - \Rightarrow Physical Design and Data Structures
 - \Rightarrow Query Optimization, Materialized Views, etc.

David Toman (et al.)	Ont

Ontology-Based Data Access

18/19

References

- Option I, v1.0: D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385-429, 2007.
- Option I, v2.0: C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic EL using a relational database system. In Proc. IJCAI, 2070-2075, 2009.
 R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach to query answering in DL-Lite. In Proc. KR, 2010.
 - Option II: D. Toman and G. Weddell. Fundamentals of Physical Design and Query Compilation. Morgan and Claypool, Synthesis lectures, *Data Management Series*. 2011.