COMP718: Ontologies and Knowledge Bases
Lecture 9: Ontology/Conceptual Model based Data Access

Maria Keet
email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal, South Africa

10 April 2012

1/62

keet@ukzn.ac.za
http://www.meteck.org

Outline

@ A use case: the WONDER system
@ Proposed solution
o Realisation of the solution
o Summary

© Some technical details
@ Introduction
@ The ontology language
@ The mapping layer

@ ‘Impedance’ mismatch
@ Mapping assertions

o Query answering

2/62

An ontology with a very large ABox

@ Thus far, we've seen mostly small ontologies with lots of
features, but with little data, and mostly theory
o This and next lecture:

o Scale up to realistic size knowledge base handling large
amounts of data
o Set up an ontology-driven information system

3/62

An ontology with a very large ABox

@ Thus far, we've seen mostly small ontologies with lots of
features, but with little data, and mostly theory
o This and next lecture:

o Scale up to realistic size knowledge base handling large
amounts of data
o Set up an ontology-driven information system
@ To realise this, we need
A language of relatively low computational complexity
A way to store large amounts of data

Some mechanism to link up the previous two ingredients
Query (and reason over) the combination of the previous three

3/62

An ontology with a very large ABox

@ Thus far, we've seen mostly small ontologies with lots of
features, but with little data, and mostly theory
o This and next lecture:

o Scale up to realistic size knowledge base handling large
amounts of data
o Set up an ontology-driven information system
@ To realise this, we need
A language of relatively low computational complexity
A way to store large amounts of data

Some mechanism to link up the previous two ingredients
Query (and reason over) the combination of the previous three

@ Use the “Ontology-Based Data Access” approach

3/62

Access to relational databases

o "Sysadmin interface” for developers and users:

o “End-user interface”

4/62

Access to relational databases

o "Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)

Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

o “End-user interface”

4/62

Access to relational databases

o "Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)

Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

o “End-user interface”
o Canned queries and pre-computed queries
o Inflexible for data analysis
o Burden on sysadmin for application layer updates to meet
whims of the user

4/62

Access to relational databases

o "Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)

Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

o “End-user interface”

o Canned queries and pre-computed queries

o Inflexible for data analysis

o Burden on sysadmin for application layer updates to meet
whims of the user

o Database integration

4/62

A use case: the WONDER system

Outline

@ A use case: the WONDER system
@ Proposed solution
o Realisation of the solution
o Summary

@ ‘Impedance’ mismatch
@ Mapping assertions

5/62

A use case: the WONDER system

Web-accessible databases

Web-accessible
Ul

6/62

A use case: the WONDER system

Web-accessible databases

Domain Interface for
User writing full SQL

= Fail to meet the usability requirement

+ Maximal query expressiveness

7/62

A use case: the WONDER system

Web-accessible databases

Domain Simpler interface
User (Canned queries)

+Meets the usability requirement

= Not all queries can be expressed

8/62

A use case: the WONDER system

Case study and problem: the Horizontal Gene Transfer DB

o Lots of data made available on the Web by the Life Science
field

o HGT-DB is a web-accessible genomics database about
prokaryotic organisms

@ Web interface with pre-computed queries or restricted SQL
queries

(4]

Contains 477 organisms and 1,445,840 genes

(]

4GB genomics database
o Tables with 16-46 columns

9/62

A use case: the WONDER system

Case study and problem

@ Sample Information Request:
Retrieve all genes of the organisms Neisseria for which
horizontal gene transfer is predicted or have a GC3 value > 80

10/62

A use case: the WONDER system

Case study and problem

@ Sample Information Request:
Retrieve all genes of the organisms Neisseria for which
horizontal gene transfer is predicted or have a GC3 value > 80
o Simple HTML interface for posing canned queries and to
retrieve text-files of pre-computed queries
o Substantial limitations on expressiveness of queries: Domain
users cannot extract all the information contained in the
database!

10/62

A use case: the WONDER system

Case study and problem

@ Sample Information Request:
Retrieve all genes of the organisms Neisseria for which
horizontal gene transfer is predicted or have a GC3 value > 80

o Simple HTML interface for posing canned queries and to
retrieve text-files of pre-computed queries
o Substantial limitations on expressiveness of queries: Domain
users cannot extract all the information contained in the
database!
o Problem: Users (geneticists) need to know what is in the
database, how the data is stored, and need to know SQL or
use the pre-computed queries, which is what limits their data

analysis

10/62

A use case: the WONDER system
©0000000

Proposed solution

A solution

@ Solution: add a semantic layer to the database, let the users
construct queries graphically, and generate the
SQL/SPARQL/EQL query automatically from the graphics

11/62

A use case: the WONDER system
©0000000

Proposed solution

A solution

@ Solution: add a semantic layer to the database, let the users
construct queries graphically, and generate the
SQL/SPARQL/EQL query automatically from the graphics

o Constraints: any solution needs to be scalable, usable, and
web-based

11/62

A use case: the WONDER system
©0000000

Proposed solution

A solution

@ Solution: add a semantic layer to the database, let the users
construct queries graphically, and generate the
SQL/SPARQL/EQL query automatically from the graphics

o Constraints: any solution needs to be scalable, usable, and
web-based

o Realisation: graphical, web-based '‘Ontology’-Based Data
Access (COnceptual MOdel-based Data Access — COMODA)

11/62

A use case: the WONDER system
0@000000

Proposed solution

Approach

Semantic Layer

User
Queries DL-Lite

Ontology

OWL2 QL

Data Layer

12/62

A use case: the WONDER system
[e]e] Yelelelele)

Proposed solution

Architecture

Semantic Layer

Data Layer

User

3

Ontology

OBDA-Enabled Query
Reasoner Unfolder

13/62

A use case: the WONDER system
000@0000

Proposed solution

Architecture

Semantic Layer

Data Layer

Ontology

User

b

WONDER
Server Sld Jma'-
OBDA-Enabled Query
y
Q
Client Side | —— Reasoner Unfolder
T

Web-ONtology baseD Extraction of Relational data (WONDER)

14/62

A use case: the WONDER system
[e]eJeYe] Yelole)

Proposed solution

Components of this particular system

o Developed in collaboration at “La Sapienza” University in
Rome and Free University of Bozen-Bolzano

o Formal languages: DL-Lite family, OWL 2 QL

o This context: ontology = Description Logics Knowledge Base

o OBDA-enabled reasoner: QUONTO

o RDBMS: Oracle, PostgreSQL, DB2, ...

o Developer interface: OWL ontology development tool, OBDA
plugin to manage the mappings and data access

o End-user interface: OBDA plugin for Protégé for SPARQL
queries and results, and the WONDER system for graphical
querying

15/62

A use case: the WONDER system
00000800

Proposed solution

Why graphical querying?

@ Querying in the basic OBDAs uses (unions of) conjunctive
queries:

16/62

A use case: the WONDER system
00000800

Proposed solution

Why graphical querying?

@ Querying in the basic OBDAs uses (unions of) conjunctive
queries:

o A conjunctive query is the formal counterpart of an SQL (or
relational algebra) select-project-join (SPJ) query:
4(x) < 3y.conj(%, ¥)

o conj(X,y) is a conjunction of atoms and equalities over the
free variables X and the existentially quantified variables y

o The variables in X are the distinguished variables (i.e.. appear
in the head) and in ¥ are the non-distinguished variables

o A union of CQs (UCQ) is a disjunction of CQs, corresponding
to a union of SPJ queries

16/62

A use case: the WONDER system
00000800

Proposed solution

Why graphical querying?

@ Querying in the basic OBDAs uses (unions of) conjunctive
queries:

o A conjunctive query is the formal counterpart of an SQL (or
relational algebra) select-project-join (SPJ) query:
4(x) < 3y.conj(%, ¥)

o conj(X,y) is a conjunction of atoms and equalities over the
free variables X and the existentially quantified variables y

o The variables in X are the distinguished variables (i.e.. appear
in the head) and in ¥ are the non-distinguished variables

o A union of CQs (UCQ) is a disjunction of CQs, corresponding
to a union of SPJ queries

e (U)CQs (in SPARQL notation) embedded into ordinary SQL
code is more compact, but still user-unfriendly

16/62

A use case: the WONDER system
00000080

Proposed solution

Sample query

SELECT stbl.gene
FROM sparqltable
(SELECT $gene $orgName $gcVal $predVal
WHERE {$gene :GeneHasOrganism $org.
$org :0rganismHasOrganisminfo $info.
$info :0rganismName $orgName.
$gene :GeneHasHGTPredictionGene $pred.
$pred :Prediction $predVal.
$gene :GeneHasGCstatsGene $gcstats.
$gcstats :GC3 $gcVal}) stbl
WHERE stbl.orgName LIKE '%Neisseria%’ AND
(stbl.predVal = 'hgt’ OR stbl.gcVal > ’80")

Retrieve all genes of the orglanisms Neisseria for which horizontal gene
transfer is predicted or have a GC3 value > 80

17/62

A use case: the WONDER system
0000000e

Proposed solution

Approach to graphical querying

@ Accessing information comprises three activities:
e Browsing the ontology, to understand the structure of the
information;
o Formulating a query, to express an information request; and
o Retrieving data that answers the query
@ The WONDER Web interface consists of a separate component
for each of these activities.

18/62

A use case: the WONDER system
©00000000000

Realisation of the solution

Procedure to realise the solution

@ Reverse engineer the database into an ORM conceptual data
model with the domain experts, cleaning and refining it

o Transform it into a DL-lite 4 ontology, and put it in Protégé

o Declare the mappings (matching OWL classes and properties
to SQL queries over the database)

o Develop the web-based front-end for browsing, query
formulation, and displaying the results, using QUONTO for
the automated reasoning at the back-end

19/62

A use case: the WONDER system
0®0000000000

Realisation of the solution

Section ORM 2 diagram (in NORMA

Taxonomy
(Abbrev)

™ has computed *,

{_ AsgregateGCvalue

{ Gstoeveene + 17
has compute X ... has . at codon position
CI1} StDevGCorg

Organism Jha:

175 .; 3t codon positiq
(Abbrev)

‘ ot ! m

{ Threshold }

awith max{bp gap
-

LT Thas / is on chromosome of

- Ye—{ o
has amount.
[Sencctuser \
\ucatﬂd in -

earby &

PathwayGenesCluster | contains / located in

- is a dluster of| StrictHGTGeneCluster { Size
. s it LT L2
has odgess & overlaps yith &

X4 (1]
has oddne as s N s
Genestats @

1D)

| [Jhas additional

has minimum

has participant / participates in
ClusterOrthologGenes

on dwgmosome.

Functlon

20/62

A use case: the WONDER system
00®000000000

Realisation of the solution

Example: Diagram — DL-lite4 correspondence

[Abbrev

GeneHasGeneFunctj GeneFunction

) ~ r
\ Organism H Gene -~ ~ e) ~
- -‘ - - > HGTPredictionGene p===(Prediction)
GenelsOnChromosomeOfOrganism \) A S
GeneHasHGTPredictionGene : e

d(Abbrev) C Organism An abbreviation is for an organism

p(Abbrev) C xsd:string An abbreviation is of type string

Organism C §(Abbrev) Each organism has an abbreviation

(funct Abbrev) Each individual has a single abbreviation

JGenelsOnChromosomeOfOrganism C Gene Domain of object property

IGenelsOnChr OfOr ism~ C O i Range of object property

Gene T 3GenelsOnChromosomeOfOrganism Each gene belongs to some organism

Organism T 3GenelsOnChromosomeOfOrganism™ Each organism has some gene

(funct GenelsOnChrOfOrganism) Each gene belongs to at most one organism

Figure 2: Section of the HGT application ontology.

21/62

A use case: the WONDER system
000®00000000

Realisation of the solution

Note: semantics of the icons

Class | (o C ET

Object Property ~(2) HH;D_EE%

@ I4EC
Data Property p(A)ETd
SuhClass Relationship ﬂ C E D

22/62

A use case: the WONDER system
000080000000

Realisation of the solution

Example: mapping concepts & relations of the Ontology to
SQL query over the relational database

SELECT id, abbrewv ~» OrganismHasGene(
FROM organism gene(id),

JOIN genes organism(abbrev))

ON abbrev = idorganism

SELECT id, kegg ~» GeneHasGeneFunction(
FROM genes gene(id), function(id))

KEGG (function(id), kegg)

Figure 3: Extract of the mapping from the HGT-DB database
to the DL-Lite4 application ontology.

23/62

A use case: the WONDER system
00000@000000

Realisation of the solution

Mappings between o

Nel 480 wd &9

| @ Metadata (Ontology1222766179.0w) | | OWLClasses | WM Properties

TASOURCE BROWSI DATASOURCE MANAGER

<metégé

individuals | = Forms | BR Datasource Manager | st ABox Queries |

Forproject: @ hgtapp.. || Mappings || SQLqueries | SQL Schema Inspector |
Datssources | [wm [[=]
v " TTEA— U MECTUS TETC T TS UeTTe =
‘... [HET =
~M:0
Q PromiscuousBacterium(getPromBact(Sabbrev,$ccount,Spercentage))
SELECT organisme.abbrev, ccount, organisme.percentage
FROM (SELECT idorganisme, COUNT(distinct cstart) as ccount
. FROM COMCLUSTG2 GROUP BY idorganisme
a) flexcount, organisme
WHERE organisme.abbrev = flexcount.idorganisme AND
For datasource =] organisme.percentage > 10 AND flexcount.ccount > 5
HGT .
Type ~M:1
RDBMS - Q PromBactPrime(getPromBactPrime($abbrev,$ccount, $percentage,$hgt))
Mapping Type: . .
E’B‘D‘;M;um‘ws :. SELECT organisme.abbrev, ccount, organisme.percentage,
Source ID: organisme.hgt
com/Ontolagy12227 FROM (SELECT idorganisme, COUN?[distipct cstart) as ccount
JDBC URL. FROM COMCLUSTGZ2 GROUP BY idorganisme
E I 0 A
thin-@obdalin.inf.unit) flexcount, organisme
Database Name: WHERE organisme.abbrev = flexcount.idorganisme AND I
obda.obdalin organisme.percentage > 10 AND flexcount.ccount > 10 AND
Database Username: || organisme.hgt > 150
e 7l = . —t

24/62

A use case: the WONDER system
000000800000

Realisation of the solution

Example: Browsing & selecting

Ontology Query Results
Browser Pane

Click Here to change page: [page1 [#) Log in/Register

P . — S
(_ Name) Tadp \KEGGCode

p _— N
Organisminfo R

AltCode

NCBID)

Orgnis Hos Alcode

” Abbrev —
___/ (Percentage
RT—
(HGTPredictions
(" NePred
Oxpri s Ty (
Gene -
« »
3
- @) (Next |_previous) (o rignightail) (] Mateh case

25/62

A use case: the WONDER system
0000000@0000

Realisation of the solution

Example: Query pane icons

Class node | o] C(z),D(x)

Object Property link - n C(:E),P(:C,y),D(y)

Data Property node and o O(T) A(.xj y)

link

26/62

A use case: the WONDER system
000000008000

Realisation of the solution

Example: Adding a constraint

Ontology Query Results
Browser Pane

Add a Constraint for GCValue

Log in/Register

Attribute .

GCValue

GCValueFirmicutes Ledit)
constrained (edit)

Relational Constraint
covalue (5 18) ;
Selected?
Delete

IN Constraint SELECT q1.b, a1.cd, aL.cf, a1.dg
FROM sparg table (SELECT $bf $cd
$ef $dg Wi sc rdf:type
Gevalue = or. L AV 4 ‘GenelDInfo" . $df rdf:typ
“Taxonomy' . $ca rdf:type
‘GCstatsGene' . $ea rdfitype
*GCtotal_g' - $ci rdfstype 'Gane .
$dl rdf:type 'Organism’ . $ci
GenelsOnChromosome CfOrganisf
v 4dl . $ci :GeneHasGCstatsGene $cd
- $ai :GeneHasGenelDInfo $cc . S|
:OrganismHasTaxanomy $df . $ca
iGCValue $bf . $ci 11D $cd . $cc
m GeneName $cf . $df :Classificationf
$dg }) a1 WHERE (q1.dg LIKE
“YFirmicute%')
[Const

o .

Query

<= GCValue <=

Gene

27/62

A use case: the WONDER system
000000000800

Realisation of the solution

Example: Managing constraints

Ontology Query Results
2 .
Constraint Manager
o)
‘Axw:)mpsmws !-_ ‘
jeton " (edit
et
et
([[Prediction s sescicr, = 'hat'|[OR[Prediction s s peace, = 'heg']]
)|/ AND|Abbrev.., LIKE 'b%'|AND [nOT| B e ol
OrganismName i e LIKE 'Bacillus%'| el
 retyoe Gane
IredictionGene $h
[tasOrganisminfo $|
r ’:enngunmnn $cb
G woredction 8
i
4 —— AN 7 355 $EB TKEGG $cc }) al WHER]

Figure: Constraint manager for getting “Give me the names of the
organisms of which the abbreviation starts with a b, but not being a
Bacillus, and the prediction and KEGG code of those organisms genes
that are putatively either horizontally transferred or highly expressed”

28/62

A use case: the WONDER system

000000000080

Realisation of the solution

Type Concept
Concept OrganismInfo

- Label $3 edit
Name Selected? false (edit)

SELECT ql.cb FROM
sparqitable (SELECT $cb e
OrganismInfo $bb $bi WHERE { $c rdf:type|
"Organism’ . $d rdf:type
‘OrganismiInfo’ . $bh
rdf:type '"HGTPredictionGene!
Prediction $bf rdf:type 'GCstatsGene'
. $bf rdf:type 'GCstats' . $cb
rdf:type 'Gene' . $cb
:GeneHasOrganism $c . $c
. Query :OrganismHasOrganismInfo
HGTPredGene eles $d . $cb
GeneHasGCstatsGene $bf

$cb
:GeneHasHGTPredictionGene|

$bh . $d :OrganismName $e

GCstatsGene . $bf :GC3 $bb . $bh
Prediction $bi }) g1 WHERE
(ql.e LIKE '%Neisseria%'
AND (q1.bi = 'hgt' OR g1.bb
>'80'))

Manage Constraints

Organism

1t
»
$

R

Figure: Query to retrieve the genes of Neisseria spp. that have a GC3
content > 80 or are predicted to be horizontally transferred. The textual
version of the graphically constructed query (on the right) is generated
automatically by the WONDER system.

29/62

A use case: the WONDER system
00000000000e

Realisation of the solution

Example: Section of the results

Ontology Query Results m
Browser Pane

Download the CSV file

name of the gene | family

organisms;
superkingdom:Bacteria;
phylum:Firmicutes;
class:Bacill;
'61.900001525878906' ocer1_1574' order:Bacillales;

a cllaceae;
genus:Bacilus; species
group:Bacilus cereus.
group; species:Bacilus

ne rankiceliuiar

63.79999923706055' ocer1_3144'

group:Bacilus cereus.
group; species:Bacilus
no rankiceliuiar
organisms;
superkingdom:Bacteria;
62.79999923706055' hela_469"

species:Bacilus clausi;*
“no rank:calluiar
Find: (@) (Next | Previous) (O Highiightall) (] Match case

30/62

A use case: the WONDER system
®00

Summary

Query and user results

@ Domain users have more freedom in constructing the queries
and thanks to the query loading/saving feature, the overall
service is more usable

o While using the WONDER interface, domain users came up
with new queries that are interesting for their studies

@ The user is aided in the formulation of complex constraints
over the queries (Constraint Manager)

@ Syntactical correctness of the query is ensured by the formal
foundation of the interface

31/62

A use case: the WONDER system
(o] To)

Summary

Technological results

@ The overhead caused by the graphical interface is negligible
w.r.t. the standard OBDA setting

@ The approach is sufficiently scalable with pretty large
databases (> 4GB)

o Achieved seamless integration of different (Semantic) Web
Technologies: OWL 2, AJAX, JavaScript, SVG and XSLT

32/62

A use case: the WONDER system
ooe

Summary

Summary

@ Builds upon the theory, technology, and implementation
developed for Ontology-Based Data Access

@ Graphical ontology browsing, query formulation, and query
execution in a Web browser

o Rigorous formal characterisation and uses a coupling with an
OWL file, (U)CQs (in SPARQL syntax) and EQL-Lite queries
managed by the DIG-QUONTO reasoner

o This WONDER system meets the scalability and usability
requirements, and allows domain experts to query through a
web browser the database without the need to learn SPARQL
or EQL-Lite

33/62

Some technical details

Summary

@ A use case: the WONDER system
@ Proposed solution
o Realisation of the solution
o Summary

© Some technical details
@ Introduction
@ The ontology language
@ The mapping layer

@ ‘Impedance’ mismatch
@ Mapping assertions

o Query answering

34/62

	lecture 9
	A use case: the WONDER system
	Proposed solution
	Realisation of the solution
	Summary

	Some technical details
	Introduction
	The ontology language
	The mapping layer
	Query answering

