ヘロト 人間ト 人造ト 人造ト

1/62

COMP718: Ontologies and Knowledge Bases Lecture 9: Ontology/Conceptual Model based Data Access

Maria Keet

email: keet@ukzn.ac.za home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

10 April 2012

Outline

1 A use case: the WONDER system

- Proposed solution
- Realisation of the solution
- Summary

2 Some technical details

- Introduction
- The ontology language
- The mapping layer
 - 'Impedance' mismatch
 - Mapping assertions
- Query answering

An ontology with a very large ABox

- Thus far, we've seen mostly small ontologies with lots of features, but with little data, and mostly theory
- This and next lecture:
 - Scale up to realistic size knowledge base handling large amounts of data
 - Set up an ontology-driven information system
- To realise this, we need
 - A language of relatively low computational complexity
 - A way to store large amounts of data
 - Some mechanism to link up the previous two ingredients
 - Query (and reason over) the combination of the previous three
- Use the "Ontology-Based Data Access" approach

An ontology with a very large ABox

- Thus far, we've seen mostly small ontologies with lots of features, but with little data, and mostly theory
- This and next lecture:
 - Scale up to realistic size knowledge base handling large amounts of data
 - Set up an ontology-driven information system
- To realise this, we need
 - A language of relatively low computational complexity
 - A way to store large amounts of data
 - Some mechanism to link up the previous two ingredients
 - Query (and reason over) the combination of the previous three

• Use the "Ontology-Based Data Access" approach

An ontology with a very large ABox

- Thus far, we've seen mostly small ontologies with lots of features, but with little data, and mostly theory
- This and next lecture:
 - Scale up to realistic size knowledge base handling large amounts of data
 - Set up an ontology-driven information system
- To realise this, we need
 - A language of relatively low computational complexity
 - A way to store large amounts of data
 - Some mechanism to link up the previous two ingredients
 - Query (and reason over) the combination of the previous three
- Use the "Ontology-Based Data Access" approach

• "Sysadmin interface" for developers and users:

- SQL or any of its close variants (e.g., StruQL)
- Need to know how the data is stored in the database
- Writing large queries is still time-consuming even for experts
- One-off queries or some manual query management for recurring queries

"End-user interface"

- Canned queries and pre-computed queries
- Inflexible for data analysis
- Burden on sysadmin for application layer updates to meet whims of the user
- Database integration

• "Sysadmin interface" for developers and users:

- SQL or any of its close variants (e.g., StruQL)
- Need to know how the data is stored in the database
- Writing large queries is still time-consuming even for experts
- One-off queries or some manual query management for recurring queries

"End-user interface"

- Canned queries and pre-computed queries
- Inflexible for data analysis
- Burden on sysadmin for application layer updates to meet whims of the user
- Database integration

- "Sysadmin interface" for developers and users:
 - SQL or any of its close variants (e.g., StruQL)
 - Need to know how the data is stored in the database
 - Writing large queries is still time-consuming even for experts
 - One-off queries or some manual query management for recurring queries
- "End-user interface"
 - Canned queries and pre-computed queries
 - Inflexible for data analysis
 - Burden on sysadmin for application layer updates to meet whims of the user
- Database integration

- "Sysadmin interface" for developers and users:
 - SQL or any of its close variants (e.g., StruQL)
 - Need to know how the data is stored in the database
 - Writing large queries is still time-consuming even for experts
 - One-off queries or some manual query management for recurring queries
- "End-user interface"
 - Canned queries and pre-computed queries
 - Inflexible for data analysis
 - Burden on sysadmin for application layer updates to meet whims of the user
- Database integration

Outline

1 A use case: the WONDER system

- Proposed solution
- Realisation of the solution
- Summary

2 Some technical details

- Introduction
- The ontology language
- The mapping layer
 - 'Impedance' mismatch
 - Mapping assertions
- Query answering

Web-accessible databases

Web-accessible databases

Web-accessible databases

Case study and problem: the Horizontal Gene Transfer DB

- Lots of data made available on the Web by the Life Science field
- HGT-DB is a web-accessible genomics database about prokaryotic organisms
- Web interface with pre-computed queries or restricted SQL queries
- Contains 477 organisms and 1,445,840 genes
- 4GB genomics database
- Tables with 16-46 columns

Case study and problem

- Sample Information Request:
 - Retrieve all genes of the organisms Neisseria for which horizontal gene transfer is predicted or have a GC3 value > 80
 - Simple HTML interface for posing canned queries and to retrieve text-files of pre-computed queries
 - Substantial limitations on expressiveness of queries: Domain users cannot extract all the information contained in the database!
- Problem: Users (geneticists) need to know *what* is in the database, *how* the data is stored, and need to know SQL or use the pre-computed queries, which is what limits their data analysis

Case study and problem

- Sample Information Request: Retrieve all genes of the organisms Neisseria for which horizontal gene transfer is predicted or have a GC3 value > 80
 - Simple HTML interface for posing canned queries and to retrieve text-files of pre-computed queries
 - Substantial limitations on expressiveness of queries: Domain users cannot extract all the information contained in the database!
- Problem: Users (geneticists) need to know what is in the database, how the data is stored, and need to know SQL or use the pre-computed queries, which is what limits their data analysis

Case study and problem

- Sample Information Request: Retrieve all genes of the organisms Neisseria for which horizontal gene transfer is predicted or have a GC3 value > 80
 - Simple HTML interface for posing canned queries and to retrieve text-files of pre-computed queries
 - Substantial limitations on expressiveness of queries: Domain users cannot extract all the information contained in the database!
- Problem: Users (geneticists) need to know *what* is in the database, *how* the data is stored, and need to know SQL or use the pre-computed queries, which is what limits their data analysis

A solution

- Solution: add a semantic layer to the database, let the users construct queries graphically, and generate the SQL/SPARQL/EQL query automatically from the graphics
- *Constraints*: any solution needs to be scalable, usable, and web-based
- **Realisation**: graphical, web-based 'Ontology'-Based Data Access (COnceptual MOdel-based Data Access COMODA)

A solution

- Solution: add a semantic layer to the database, let the users construct queries graphically, and generate the SQL/SPARQL/EQL query automatically from the graphics
- *Constraints*: any solution needs to be scalable, usable, and web-based
- **Realisation**: graphical, web-based 'Ontology'-Based Data Access (COnceptual MOdel-based Data Access – COMODA)

A solution

- Solution: add a semantic layer to the database, let the users construct queries graphically, and generate the SQL/SPARQL/EQL query automatically from the graphics
- *Constraints*: any solution needs to be scalable, usable, and web-based
- **Realisation**: graphical, web-based 'Ontology'-Based Data Access (COnceptual MOdel-based Data Access – COMODA)

Approach

<ロト < 部 ト < E ト < E ト E の Q () 12/62

Architecture

<ロト < 部ト < 書ト < 書ト 差 う Q () 13/62

Architecture

Web-ONtology baseD Extraction of Relational data (WONDER)

14/62

э

イロト 不得 トイヨト イヨト

Components of this particular system

- Developed in collaboration at "La Sapienza" University in Rome and Free University of Bozen-Bolzano
- Formal languages: *DL-Lite* family, OWL 2 QL
 - $\bullet\,$ This context: ontology \equiv Description Logics Knowledge Base
- OBDA-enabled reasoner: QUONTO
- RDBMS: Oracle, PostgreSQL, DB2, ...
- Developer interface: OWL ontology development tool, OBDA plugin to manage the mappings and data access
- End-user interface: OBDA plugin for Protégé for SPARQL queries and results, and the WONDER system for graphical querying

Why graphical querying?

• Querying in the basic OBDAs uses (unions of) conjunctive queries:

- A conjunctive query is the formal counterpart of an SQL (or relational algebra) select-project-join (SPJ) query: $q(\vec{x}) \leftarrow \exists \vec{y}.conj(\vec{x},\vec{y})$
- conj(x, y) is a conjunction of atoms and equalities over the free variables x and the existentially quantified variables y
- The variables in \vec{x} are the *distinguished variables* (i.e.: appear in the head) and in \vec{y} are the *non-distinguished variables*
- A union of CQs (UCQ) is a disjunction of CQs, corresponding to a union of SPJ queries
- (U)CQs (in SPARQL notation) embedded into ordinary SQL code is more compact, but still user-unfriendly

Why graphical querying?

- Querying in the basic OBDAs uses (unions of) conjunctive queries:
 - A conjunctive query is the formal counterpart of an SQL (or relational algebra) select-project-join (SPJ) query: $q(\vec{x}) \leftarrow \exists \vec{y}.conj(\vec{x}, \vec{y})$
 - $conj(\vec{x}, \vec{y})$ is a conjunction of atoms and equalities over the free variables \vec{x} and the existentially quantified variables \vec{y}
 - The variables in \vec{x} are the *distinguished variables* (i.e.: appear in the head) and in \vec{y} are the *non-distinguished variables*
 - A union of CQs (UCQ) is a disjunction of CQs, corresponding to a union of SPJ queries
- (U)CQs (in SPARQL notation) embedded into ordinary SQL code is more compact, but still user-unfriendly

Why graphical querying?

- Querying in the basic OBDAs uses (unions of) conjunctive queries:
 - A conjunctive query is the formal counterpart of an SQL (or relational algebra) select-project-join (SPJ) query: $q(\vec{x}) \leftarrow \exists \vec{y}.conj(\vec{x}, \vec{y})$
 - $conj(\vec{x}, \vec{y})$ is a conjunction of atoms and equalities over the free variables \vec{x} and the existentially quantified variables \vec{y}
 - The variables in \vec{x} are the *distinguished variables* (i.e.: appear in the head) and in \vec{y} are the *non-distinguished variables*
 - A union of CQs (UCQ) is a disjunction of CQs, corresponding to a union of SPJ queries
- (U)CQs (in SPARQL notation) embedded into ordinary SQL code is more compact, but still user-unfriendly

SELECT stbl.gene FROM sparqltable (SELECT \$gene \$orgName \$gcVal \$predVal WHERE {\$gene :GeneHasOrganismInfo \$info. \$info :OrganismName \$orgName. \$gene :GeneHasHGTPredictionGene \$pred. \$pred :Prediction \$predVal. \$gene :GeneHasGCstatsGene \$gcstats. \$gcstats :GC3 \$gcVal}) stbl WHERE stbl.orgName LIKE '%Neisseria%' AND (stbl.predVal = 'hgt' OR stbl.gcVal > '80')

Retrieve all genes of the organisms Neisseria for which horizontal gene transfer is predicted or have a GC3 value > 80

Approach to graphical querying

- Accessing information comprises three activities:
 - Browsing the ontology, to understand the structure of the information;
 - Formulating a query, to express an information request; and
 - Retrieving data that answers the query
- The WONDER Web interface consists of a separate component for each of these activities.

Realisation of the solution

Some technical details

Procedure to realise the solution

- Reverse engineer the database into an ORM conceptual data model with the domain experts, cleaning and refining it
- \bullet Transform it into a $\textit{DL-lite}_{\mathcal{A}}$ ontology, and put it in Protégé
- Declare the mappings (matching OWL classes and properties to SQL queries over the database)
- \bullet Develop the web-based front-end for browsing, query formulation, and displaying the results, using $\rm QUONTO$ for the automated reasoning at the back-end

Realisation of the solution

Some technical details

Summary

Section ORM 2 diagram (in NORMA)

Realisation of the solution

Some technical details

Example: Diagram – DL-*lite*_A correspondence

Figure 2: Section of the HGT application ontology.

Realisation of the solution

Some technical details

Summary

Note: semantics of the icons

Construct	Graphical Element	Semantic
Class	с	$C \sqsubseteq \top$
Object Property	C P D	$ \exists P \sqsubseteq C \\ \exists P^- \sqsubseteq D $
Data Property		$\delta(A) \sqsubseteq C \ ho(A) \sqsubseteq op _d$
SubClass Relationship		$C \sqsubseteq D$

Realisation of the solution

ヘロト 人間ト 人造ト 人造ト

23/62

Example: mapping concepts & relations of the Ontology to SQL query over the relational database

SELECT id, abbrev	\rightarrow	OrganismHasGene(
FROM organism		gene(<i>id</i>),
JOIN genes		$\operatorname{organism}(abbrev))$
ON abbrev = idorganism		
SELECT id, kegg	\sim	GeneHasGeneFunction(
FROM genes		gene(id), function(id))
		KEGG(function(id), kegg)

Figure 3: Extract of the mapping from the HGT-DB database to the DL-Lite_A application ontology.

Summary

Realisation of the solution

Mappings between ontology and data

	≥ d v v P D P d D v v v v v v v v v v v v v v v v v v
🔶 Metadata (Ontology122	2766179.owl) 🔴 OWLClasses 🔳 Properties 🔶 Individuals 🚍 Forms 🔀 Datasource Manager 🍬 ABox Queries
DATASOURCE BROWSER	DATASOURCE MANAGER
For project: 🔴 hgt-app	Mappings SQL queries SQL Schema Inspector
Datasources 🛉 🗕	🕈 🗕 🖷
▼… ◆	
HGT	~ M:0
	O PromiscuousBacterium(getPromBact(\$abbrev,\$ccount,\$percentage))
For datasource:	SELECT organisme.abbrev, ccount, organisme.percentage FROM (SELECT idorganisme, COUNT(distinct cstart) as ccount FROM COMCLUSTG2 GROUP BY idorganisme) flexcount, organisme WHERE organisme.abbrev = flexcount.idorganisme AND organisme.percentage > 10 AND flexcount.ccount > 5
HGT Type:	₩M:1
RDBMS	• Q PromBactPrime(getPromBactPrime(\$abbrev,\$ccount,\$percentage,\$hgt))
Mapping Type: OBDAMappings Source ID: .com/Ontology12227 JDBC URL: thin:@obdalin.inf.unit Database Name: obda.obdalin Database Username:	SELECT organisme.abbrev, ccount, organisme.percentage, organisme.hgt FROM (SELECT idorganisme, COUNT(distinct cstart) as ccount FROM COMCLUSTG2 GROUP BY idorganisme) flexcount, organisme WHERE organisme.abbrev = flexcount.idorganisme AND organisme.percentage > 10 AND flexcount.ccount > 10 AND organisme.hgt > 150

Realisation of the solution

Some technical details

Example: Browsing & selecting

Realisation of the solution

Some technical details

・ロト ・聞 ト ・注 ト ・注 ト

Summary

26/62

Example: Query pane icons

Construct	Graphical Element	Semantic
Class node	C, D	C(x), D(x)
Object Property link	C P D	C(x), P(x,y), D(y)
Data Property node and link	C A	C(x), A(x,y)

Some technical details

Realisation of the solution

Example: Adding a constraint

	Ontology Browser	Query Pane	Results
Add a Constraint for GCValue Relational Constraint GCValue IN Constraint GCValue GCValu	Browser Type Attribute Label	Pane Attribute GCValue GCValueFimnic Tota constrained Tota constrained SelEGT 01.56, FROM sparolita Sel Sel T 01.56, FROM sparolita ("Gctotal.g" 4, 34) dird("type") ("Gctotal.g" 4, 34) dird("type") ("Gctotal.g" 4, 34) dird("type") ("Gctotal.g" 4, 34) dird("type") ("Gctotal.g") ("Gc	teaister utes (adit) d (adit) (
Gene		:GeneName \$c	f . \$df :Classification RE (q1.dg LIKE)

Realisation of the solution

Some technical details

Example: Managing constraints

Figure: Constraint manager for getting "Give me the names of the organisms of which the abbreviation starts with a b, but not being a Bacillus, and the prediction and KEGG code of those organisms genes that are putatively either horizontally transferred or highly expressed"

Some technical details

Realisation of the solution

Figure: Query to retrieve the genes of *Neisseria* spp. that have a GC3 content > 80 or are predicted to be horizontally transferred. The textual version of the graphically constructed query (on the right) is generated automatically by the WONDER system.

Realisation of the solution

Some technical details

Example: Section of the results

			Ontology Query Browser Pane
and the CSV file			Loo in/Reg
GCValueFirmicutes	geneID	name of the gene	family
'61.900001525878906'	'boer1_1574'	v	"no rankiceilular organisms; superkingdom:Bacteria; phytum:Firmicutes; dass:Bacilis; family:Baciliaceae; grous:Baciliaceae; grous; species:Bacilius cereus;
163.799999237060557	'boer1_3144'	÷	'no rank:cellular organisms; superkingdom:Bacteria; phytum:Firmicutes; class:Bacilis; ordee:Baciliales; famihy:Baciliaseae; genus; baciliaseae; genus; baciliaseae; group; species:Bacilias orecus;
'62.79999923706055'	"bcla_469"	v	Vio rank:cellular organisms; superkingdom:Bacteria; phytum:Firmicutes; class:Bacillis; order:Bacillales; family:Bacillaceae; genis:Bacillaceae; species:Bacillaceae; Vio rank:cellular

Query and user results

- Domain users have more freedom in constructing the queries and thanks to the query loading/saving feature, the overall service is more usable
- While using the WONDER interface, domain users came up with new queries that are interesting for their studies
- The user is aided in the formulation of complex constraints over the queries (Constraint Manager)
- Syntactical correctness of the query is ensured by the formal foundation of the interface

Technological results

- The overhead caused by the graphical interface is negligible w.r.t. the standard OBDA setting
- The approach is sufficiently scalable with pretty large databases (> 4GB)
- Achieved seamless integration of different (Semantic) Web Technologies: OWL 2, AJAX, JavaScript, SVG and XSLT

Summary

- Builds upon the theory, technology, and implementation developed for Ontology-Based Data Access
- Graphical ontology browsing, query formulation, and query execution in a Web browser
- Rigorous formal characterisation and uses a coupling with an OWL file, (U)CQs (in SPARQL syntax) and EQL-Lite queries managed by the DIG-QUONTO reasoner
- This WONDER system meets the scalability and usability requirements, and allows domain experts to query through a web browser the database without the need to learn SPARQL or EQL-Lite

1 A use case: the WONDER system

- Proposed solution
- Realisation of the solution
- Summary

2 Some technical details

- Introduction
- The ontology language
- The mapping layer
 - 'Impedance' mismatch
 - Mapping assertions
- Query answering