
A use case: the WONDER system Some technical details Summary

COMP718: Ontologies and Knowledge Bases
Lecture 9: Ontology/Conceptual Model based Data Access

Maria Keet
email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal, South Africa

10 April 2012

1/62

keet@ukzn.ac.za
http://www.meteck.org

A use case: the WONDER system Some technical details Summary

Outline

1 A use case: the WONDER system
Proposed solution
Realisation of the solution
Summary

2 Some technical details
Introduction
The ontology language
The mapping layer

‘Impedance’ mismatch
Mapping assertions

Query answering

2/62

A use case: the WONDER system Some technical details Summary

An ontology with a very large ABox

Thus far, we’ve seen mostly small ontologies with lots of
features, but with little data, and mostly theory

This and next lecture:

Scale up to realistic size knowledge base handling large
amounts of data
Set up an ontology-driven information system

To realise this, we need

A language of relatively low computational complexity
A way to store large amounts of data
Some mechanism to link up the previous two ingredients
Query (and reason over) the combination of the previous three

Use the “Ontology-Based Data Access” approach

3/62

A use case: the WONDER system Some technical details Summary

An ontology with a very large ABox

Thus far, we’ve seen mostly small ontologies with lots of
features, but with little data, and mostly theory

This and next lecture:

Scale up to realistic size knowledge base handling large
amounts of data
Set up an ontology-driven information system

To realise this, we need

A language of relatively low computational complexity
A way to store large amounts of data
Some mechanism to link up the previous two ingredients
Query (and reason over) the combination of the previous three

Use the “Ontology-Based Data Access” approach

3/62

A use case: the WONDER system Some technical details Summary

An ontology with a very large ABox

Thus far, we’ve seen mostly small ontologies with lots of
features, but with little data, and mostly theory

This and next lecture:

Scale up to realistic size knowledge base handling large
amounts of data
Set up an ontology-driven information system

To realise this, we need

A language of relatively low computational complexity
A way to store large amounts of data
Some mechanism to link up the previous two ingredients
Query (and reason over) the combination of the previous three

Use the “Ontology-Based Data Access” approach

3/62

A use case: the WONDER system Some technical details Summary

Access to relational databases

“Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)
Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

“End-user interface”

Canned queries and pre-computed queries
Inflexible for data analysis
Burden on sysadmin for application layer updates to meet
whims of the user

Database integration

4/62

A use case: the WONDER system Some technical details Summary

Access to relational databases

“Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)
Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

“End-user interface”

Canned queries and pre-computed queries
Inflexible for data analysis
Burden on sysadmin for application layer updates to meet
whims of the user

Database integration

4/62

A use case: the WONDER system Some technical details Summary

Access to relational databases

“Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)
Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

“End-user interface”

Canned queries and pre-computed queries
Inflexible for data analysis
Burden on sysadmin for application layer updates to meet
whims of the user

Database integration

4/62

A use case: the WONDER system Some technical details Summary

Access to relational databases

“Sysadmin interface” for developers and users:

SQL or any of its close variants (e.g., StruQL)
Need to know how the data is stored in the database
Writing large queries is still time-consuming even for experts
One-off queries or some manual query management for
recurring queries

“End-user interface”

Canned queries and pre-computed queries
Inflexible for data analysis
Burden on sysadmin for application layer updates to meet
whims of the user

Database integration

4/62

A use case: the WONDER system Some technical details Summary

Outline

1 A use case: the WONDER system
Proposed solution
Realisation of the solution
Summary

2 Some technical details
Introduction
The ontology language
The mapping layer

‘Impedance’ mismatch
Mapping assertions

Query answering

5/62

A use case: the WONDER system Some technical details Summary

Web-accessible databases

6/62

A use case: the WONDER system Some technical details Summary

Web-accessible databases

7/62

A use case: the WONDER system Some technical details Summary

Web-accessible databases

8/62

A use case: the WONDER system Some technical details Summary

Case study and problem: the Horizontal Gene Transfer DB

Lots of data made available on the Web by the Life Science
field

HGT-DB is a web-accessible genomics database about
prokaryotic organisms

Web interface with pre-computed queries or restricted SQL
queries

Contains 477 organisms and 1,445,840 genes

4GB genomics database

Tables with 16-46 columns

9/62

A use case: the WONDER system Some technical details Summary

Case study and problem

Sample Information Request:
Retrieve all genes of the organisms Neisseria for which
horizontal gene transfer is predicted or have a GC3 value > 80

Simple HTML interface for posing canned queries and to
retrieve text-files of pre-computed queries
Substantial limitations on expressiveness of queries: Domain
users cannot extract all the information contained in the
database!

Problem: Users (geneticists) need to know what is in the
database, how the data is stored, and need to know SQL or
use the pre-computed queries, which is what limits their data
analysis

10/62

A use case: the WONDER system Some technical details Summary

Case study and problem

Sample Information Request:
Retrieve all genes of the organisms Neisseria for which
horizontal gene transfer is predicted or have a GC3 value > 80

Simple HTML interface for posing canned queries and to
retrieve text-files of pre-computed queries
Substantial limitations on expressiveness of queries: Domain
users cannot extract all the information contained in the
database!

Problem: Users (geneticists) need to know what is in the
database, how the data is stored, and need to know SQL or
use the pre-computed queries, which is what limits their data
analysis

10/62

A use case: the WONDER system Some technical details Summary

Case study and problem

Sample Information Request:
Retrieve all genes of the organisms Neisseria for which
horizontal gene transfer is predicted or have a GC3 value > 80

Simple HTML interface for posing canned queries and to
retrieve text-files of pre-computed queries
Substantial limitations on expressiveness of queries: Domain
users cannot extract all the information contained in the
database!

Problem: Users (geneticists) need to know what is in the
database, how the data is stored, and need to know SQL or
use the pre-computed queries, which is what limits their data
analysis

10/62

A use case: the WONDER system Some technical details Summary

Proposed solution

A solution

Solution: add a semantic layer to the database, let the users
construct queries graphically, and generate the
SQL/SPARQL/EQL query automatically from the graphics

Constraints: any solution needs to be scalable, usable, and
web-based

Realisation: graphical, web-based ‘Ontology’-Based Data
Access (COnceptual MOdel-based Data Access – comoda)

11/62

A use case: the WONDER system Some technical details Summary

Proposed solution

A solution

Solution: add a semantic layer to the database, let the users
construct queries graphically, and generate the
SQL/SPARQL/EQL query automatically from the graphics

Constraints: any solution needs to be scalable, usable, and
web-based

Realisation: graphical, web-based ‘Ontology’-Based Data
Access (COnceptual MOdel-based Data Access – comoda)

11/62

A use case: the WONDER system Some technical details Summary

Proposed solution

A solution

Solution: add a semantic layer to the database, let the users
construct queries graphically, and generate the
SQL/SPARQL/EQL query automatically from the graphics

Constraints: any solution needs to be scalable, usable, and
web-based

Realisation: graphical, web-based ‘Ontology’-Based Data
Access (COnceptual MOdel-based Data Access – comoda)

11/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Approach

12/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Architecture

13/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Architecture

Web-ONtology baseD Extraction of Relational data (WONDER)

14/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Components of this particular system

Developed in collaboration at “La Sapienza” University in
Rome and Free University of Bozen-Bolzano

Formal languages: DL-Lite family, OWL 2 QL

This context: ontology ≡ Description Logics Knowledge Base

OBDA-enabled reasoner: QuOnto

RDBMS: Oracle, PostgreSQL, DB2, ...

Developer interface: OWL ontology development tool, OBDA
plugin to manage the mappings and data access

End-user interface: OBDA plugin for Protégé for SPARQL
queries and results, and the wonder system for graphical
querying

15/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Why graphical querying?

Querying in the basic OBDAs uses (unions of) conjunctive
queries:

A conjunctive query is the formal counterpart of an SQL (or
relational algebra) select-project-join (SPJ) query:
q(~x)← ∃~y .conj(~x , ~y)
conj(~x , ~y) is a conjunction of atoms and equalities over the
free variables ~x and the existentially quantified variables ~y
The variables in ~x are the distinguished variables (i.e.: appear
in the head) and in ~y are the non-distinguished variables
A union of CQs (UCQ) is a disjunction of CQs, corresponding
to a union of SPJ queries

(U)CQs (in SPARQL notation) embedded into ordinary SQL
code is more compact, but still user-unfriendly

16/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Why graphical querying?

Querying in the basic OBDAs uses (unions of) conjunctive
queries:

A conjunctive query is the formal counterpart of an SQL (or
relational algebra) select-project-join (SPJ) query:
q(~x)← ∃~y .conj(~x , ~y)
conj(~x , ~y) is a conjunction of atoms and equalities over the
free variables ~x and the existentially quantified variables ~y
The variables in ~x are the distinguished variables (i.e.: appear
in the head) and in ~y are the non-distinguished variables
A union of CQs (UCQ) is a disjunction of CQs, corresponding
to a union of SPJ queries

(U)CQs (in SPARQL notation) embedded into ordinary SQL
code is more compact, but still user-unfriendly

16/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Why graphical querying?

Querying in the basic OBDAs uses (unions of) conjunctive
queries:

A conjunctive query is the formal counterpart of an SQL (or
relational algebra) select-project-join (SPJ) query:
q(~x)← ∃~y .conj(~x , ~y)
conj(~x , ~y) is a conjunction of atoms and equalities over the
free variables ~x and the existentially quantified variables ~y
The variables in ~x are the distinguished variables (i.e.: appear
in the head) and in ~y are the non-distinguished variables
A union of CQs (UCQ) is a disjunction of CQs, corresponding
to a union of SPJ queries

(U)CQs (in SPARQL notation) embedded into ordinary SQL
code is more compact, but still user-unfriendly

16/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Sample query

17/62

A use case: the WONDER system Some technical details Summary

Proposed solution

Approach to graphical querying

Accessing information comprises three activities:

Browsing the ontology, to understand the structure of the
information;
Formulating a query, to express an information request; and
Retrieving data that answers the query

The wonder Web interface consists of a separate component
for each of these activities.

18/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Procedure to realise the solution

Reverse engineer the database into an ORM conceptual data
model with the domain experts, cleaning and refining it

Transform it into a DL-liteA ontology, and put it in Protégé

Declare the mappings (matching OWL classes and properties
to SQL queries over the database)

Develop the web-based front-end for browsing, query
formulation, and displaying the results, using QuOnto for
the automated reasoning at the back-end

19/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Section ORM 2 diagram (in NORMA)

Organism
(Abbrev)

Gene
(.ID)

has / is on chromosome of

TaxID

NCBIID

OrganismName

BP

GenCode

{ 4, 11 }

NrGenes

NrPredHGTgenes

Taxonomy
(Abbrev)

KEGGCode
has link to

… has … information

… has … on its genome

has

has genome length

has

has

has has

NrCromosomes
{ 1, 2 }

… contains … chomosomes

GCValue

StDevGCorg

has computed *

GC1_o GC2_oGCtotal_o GC3_o

Percentage

… has … of transferred genes

GeneFunction
(.ID)

Function
has

has

Synonym

Strand

{ '-', '+' }

Coordinates
(.ID)

… has … on chromosome

BeginEnd

Length

GeneName
has

… has … of gene name

with

of has total has direction

GCstatsOrg
(Abbrev)

GCstatsGene
(.ID)

GCtotal_g GC1_g GC2_g GC3_g

has

has

MahSimMah

{ '1', '2' }

SimGC

{ '1', '2' }

DevAA

Nc

{ 20..61 }

P2

{ 0..1 }

ICDI

{ 0..1 }

Chi2

has

with translational efficiency

with bias

with bias degree

GCregion

{ 'high', 'low', '-', '+', 'f' }

Prediction

{ 'hgt', 'heg', '-' }
PID

has

has

with guesstimate

PATH
(.code)

KEGG
(.code)

participates in
… has … reference code

AltCode
(Abbrev)

has

OrganismInfo
(Abbrev)

has

HGTPredictions
(Abbrev)

has

… minus … makes up … **

GeneIDInfo
(.ID)

has additional

HGTPredictionGene
(.ID)

of has participant / participates in

GeneStats
(.ID)

hashas oddness
has oddness

has of / with

… has … at codon position

The statistics for AA and CodonUS are moved to a separate figure

ClusterOrthologGenes
has

nearby

"GeneNearbyGene"

adjacent to

overlaps with

Threshold

with max bp gap

GeneCluster
(.ID)located in

StrictHGTGeneCluster

FlexibleHGTGeneCluster

contains / located in

HGTGeneCluster

PathwayGenesCluster

Size

has minimum

NrStrictHGTClusters

has amount

is a cluster of

GCstDevGene

… has … at codon position

AggregateGCvalue
has computed *

Taxtree

has place in

20/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: Diagram – DL-liteA correspondence

21/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Note: semantics of the icons

22/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: mapping concepts & relations of the Ontology to
SQL query over the relational database

23/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Mappings between ontology and data

24/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: Browsing & selecting

25/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: Query pane icons

26/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: Adding a constraint

27/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: Managing constraints

Figure: Constraint manager for getting “Give me the names of the
organisms of which the abbreviation starts with a b, but not being a
Bacillus, and the prediction and KEGG code of those organisms genes
that are putatively either horizontally transferred or highly expressed”

28/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Figure: Query to retrieve the genes of Neisseria spp. that have a GC3
content > 80 or are predicted to be horizontally transferred. The textual
version of the graphically constructed query (on the right) is generated
automatically by the wonder system.

29/62

A use case: the WONDER system Some technical details Summary

Realisation of the solution

Example: Section of the results

30/62

A use case: the WONDER system Some technical details Summary

Summary

Query and user results

Domain users have more freedom in constructing the queries
and thanks to the query loading/saving feature, the overall
service is more usable

While using the WONDER interface, domain users came up
with new queries that are interesting for their studies

The user is aided in the formulation of complex constraints
over the queries (Constraint Manager)

Syntactical correctness of the query is ensured by the formal
foundation of the interface

31/62

A use case: the WONDER system Some technical details Summary

Summary

Technological results

The overhead caused by the graphical interface is negligible
w.r.t. the standard OBDA setting

The approach is sufficiently scalable with pretty large
databases (> 4GB)

Achieved seamless integration of different (Semantic) Web
Technologies: OWL 2, AJAX, JavaScript, SVG and XSLT

32/62

A use case: the WONDER system Some technical details Summary

Summary

Summary

Builds upon the theory, technology, and implementation
developed for Ontology-Based Data Access

Graphical ontology browsing, query formulation, and query
execution in a Web browser

Rigorous formal characterisation and uses a coupling with an
OWL file, (U)CQs (in SPARQL syntax) and EQL-Lite queries
managed by the DIG-QuOnto reasoner

This WONDER system meets the scalability and usability
requirements, and allows domain experts to query through a
web browser the database without the need to learn SPARQL
or EQL-Lite

33/62

A use case: the WONDER system Some technical details Summary

Summary

1 A use case: the WONDER system
Proposed solution
Realisation of the solution
Summary

2 Some technical details
Introduction
The ontology language
The mapping layer

‘Impedance’ mismatch
Mapping assertions

Query answering

34/62

	lecture 9
	A use case: the WONDER system
	Proposed solution
	Realisation of the solution
	Summary

	Some technical details
	Introduction
	The ontology language
	The mapping layer
	Query answering

