COMP718: Ontologies and Knowledge Bases
Lecture 9: Ontology/Conceptual Model based Data Access

Maria Keet
email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal, South Africa

10 April 2012

1/35

keet@ukzn.ac.za
http://www.meteck.org

Outline

€ OBDA Options

© Some technical details
@ Introduction
@ The ontology language
o The mapping layer

@ ‘Impedance’ mismatch
@ Mapping assertions

o Query answering

2/35

An ontology with a very large ABox (intro last week)

@ Scaling up to realistic size knowledge base handling large
amounts of data
@ To realise this, we need

o A language of relatively low computational complexity

o A way to store large amounts of data

o Some mechanism to link up the previous two ingredients

o Query (and reason over) the combination of the previous three

o Use the “Ontology-Based Data Access” (OBDA) approach

o with the “ontology” in OBDA just a DL knowledge base
o Most examples and use cases: the ‘ontology’ is a
DL-formalised conceptual data model

o Example application with the WONDER system

3/35

An ontology with a very large ABox (this week)

= What are the options to link an ontology to large amounts of
data?
o Two principal options (in KR view): query rewriting and data
completion

o Several implementation infrastructures; ‘external ABox' most
popular (realised with RDBMS or RDF Triple store)

= What is there behind the scenes for the non-graphical
OBDA-part in WONDER and the OBDA systems you set up
in the lab?

4/35

OBDA Options

Outline

@ OBDA Options

@ ‘Impedance’ mismatch
@ Mapping assertions

5/35

OBDA Options

OBDA options

o KR perspective (with OWA): query rewriting vs data
completion

o DB perspective (with CWA): we probably won't cover this in
the lecture

@ See slides obda-slides2012TomanCOMP718ukzn . pdf

6/35

Some technical details

Outline

© Some technical details
o Introduction
@ The ontology language
o The mapping layer
@ ‘Impedance’ mismatch
@ Mapping assertions

o Query answering

7/35

Some technical details
€000

Introduction

Linking ontologies to relational data®

@ Ontology-Based Data Access systems (static components)
o An ontology language
o A mapping language
o The data
@ Query answering in Ontology-Based Data Access systems
o Reasoning over the TBox
o Query rewriting
o Query unfolding
o Relational database technology

These slides are based on Calvanese’s MOSS’09 slides, which also will be made available

1More precisely: “Option |, v1.0” mentioned in David Toman's slides.
8/35

Some technical details
0000

Introduction

An OBDA system

Definition (Ontology-Based Data Access system)
An OBDA system is a triple O = (T, M, D), where
o T is a TBox

@ D is a relational database

@ M is a set of mapping assertions between 7 and D

Note: this is for the current system, but one could conceive of a
system that has an RDF triple store as D

9/35

Some technical details
00®0

Introduction

D as ABox

In the traditional DL setting, it is assumed that the data is
maintained in the ABox of the ontology, meaning:
o The ABox is perfectly compatible with the TBox:

o The vocabulary of concepts, roles, and attributes is the one
used in the TBox

o The ABox stores abstract objects, and these objects and their
properties are those returned by queries over the ontology

10/35

Some technical details
00®0

Introduction

D as ABox

In the traditional DL setting, it is assumed that the data is
maintained in the ABox of the ontology, meaning:

o The ABox is perfectly compatible with the TBox:
o The vocabulary of concepts, roles, and attributes is the one

used in the TBox

o The ABox stores abstract objects, and these objects and their
properties are those returned by queries over the ontology

@ Other ways to manage the ABox from an implementation
point of view:

o Description Logics reasoners maintain the ABox is
main-memory data structures (recollect the 4 GB HGT-DB)

o Hence, when an ABox becomes large, managing it in

secondary storage may be required,
but this is again handled directly by the reasoner

10/35

Some technical details
oooe

Introduction

D = Relational database as ABox

@ In addition to ABox scalability, there are other reasons to
realise the ABox with D:
o When we have no direct control over the data since it belongs
to some external organization, which controls the access to it
o When multiple data sources need to be accessed, such as in
Information Integration

11/35

Some technical details
oooe

Introduction

D = Relational database as ABox

@ In addition to ABox scalability, there are other reasons to
realise the ABox with D:

o When we have no direct control over the data since it belongs
to some external organization, which controls the access to it
o When multiple data sources need to be accessed, such as in
Information Integration
@ Deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by
leveraging the capabilities of the relational engine

11/35

Some technical details
oooe

Introduction

D = Relational database as ABox

@ In addition to ABox scalability, there are other reasons to
realise the ABox with D:

o When we have no direct control over the data since it belongs
to some external organization, which controls the access to it
o When multiple data sources need to be accessed, such as in
Information Integration
@ Deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by
leveraging the capabilities of the relational engine
o New problems:
o The so-called impedance mismatch between values in the

relational database and the objects that the ABox expects
o How to link the TBox to the “ABox" that is realised as a D?

11/35

Some technical details
@000

The ontology language

The DL-Lite family

o A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data

o Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

o The same complexity as relational databases

o Query answering can be delegated to a relational DB engine

o The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice
computational properties

@ Introduction of DL-Liter, a member of the DL-Lite family,
essentially corresponds to OWL2 QL2

2Actua|ly, the current OBDA implementation can handle DL-Lite4, and all DL-Lite languages adhere to the
UNA
12/35

Some technical details
0®00
The ontology language

DL-Litegr (compacter DL notation of OWL 2 QL)

TBox assertions:

e Concept inclusion assertions: CI T Cr, with:

a — A|3Q

Cr—)AlHQl—!Al_'HQ
Q — P | P

@ Property inclusion assertions: @ C R, with:

R — Q| -Q

ABox assertions: A(c), P(ec1,ca), with ¢1, co constants

Note: DL-Liter can be straightforwardly adapted to distinguish also
between object and data properties (attributes).

13/35

The ontology language

Some technical details
0000

DL-Litegr (compacter DL notation of OWL 2 QL)

Construct ‘ Syntax ‘ Example Semantics
atomic conc. A Doctor AT c AT
exist. restr. 3Q Schild ™~ {d] Je.(d,e) € @7}
at. conc. neg.| —A —Doctor AT\ AT
conc. neg. —=3Q —3child AT\ 3Q)*
atomic role P child PTc AT x AT
inverse role P child~ {(0,0") | (¢/,0) € P}
role negation -Q —manages (AT x AT)\ Q*F
conc. incl. CclC Cr Father C Ichild crr c ot

role incl. Q C R |hasFather C child™ Qf c R
mem. asser. Ale) Father(bob) & e At

mem. asser. | P(ci,c2) | child(bob,ann) (cF,c) e P*

14/35

Some technical details
oooe

The ontology language

DL-Litegr (compacter DL notation of OWL 2 QL)

ISA between classes A C A,
Disjointness between classes A C A,
Domain and range of properties dPC A, dP - C A,

Mandatory participation (min card =1) | Ay C 3P A, C 3P~

ISA between properties Q1 CEQy

Disjointness between properties Q1 C Q2

Note: DL-Liter cannot capture completeness of a hierarchy. This would
require disjunction (i.e., OR).

Note2: DL-Liter cannot capture functionality on roles (max card = I)

15/35

Some technical details
©00000000

The mapping layer

Relational database as ABox

@ Sources store data, which is constituted by values taken from
concrete domains, such as strings, integers, codes, ...

@ Instances of concepts and relations in an ontology are
(abstract) objects

16/35

Some technical details
©00000000

The mapping layer

Relational database as ABox

@ Sources store data, which is constituted by values taken from
concrete domains, such as strings, integers, codes, ...

@ Instances of concepts and relations in an ontology are
(abstract) objects
@ Solution:

o Specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the
ontology

o Embed this specification in the mappings between the data
sources and the ontology

16/35

Some technical details
©00000000

The mapping layer

Relational database as ABox

@ Sources store data, which is constituted by values taken from
concrete domains, such as strings, integers, codes, ...

@ Instances of concepts and relations in an ontology are
(abstract) objects
@ Solution:

o Specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the
ontology

o Embed this specification in the mappings between the data
sources and the ontology

o Use a virtual ABox, where the objects are not materialized

16/35

Some technical details
0@0000000

The mapping layer

Solution to the impedance mismatch

o Define a mapping language that allows for specifying how to
transform data into abstract objects, where
o Each mapping assertion maps a query that retrieves values
from a data source to a set of atoms specified over the
ontology
o Basic idea: use Skolem functions in the atoms over the
ontology to “generate” the objects from the data values
@ Semantics of mappings:
o Objects are denoted by terms (of exactly one level of nesting)

o Different terms denote different objects (i.e., we make the
unique name assumption on terms)

17/35

The mapping layer

Example

Some technical details
00@000000

Employee
empCode: Integer
salary: Integer

F

worksFor
v

1.7

Project
projectName: String

Intuitively:

Actual data is stored in a DB:
— An employee is identified by her SSN.
— A project is identified by its name.

D1[SSN: String, PriName: String]
Employees and projects they work for
Do [Code: String, Salary: Int]
Employee's code with salary
Ds[Code: String, SSN: String]
Employee's Code with SSN

@ An employee should be created from her SSN: pers(55/N)

@ A project should be created from its name: proj(PriVame)

18/35

Some technical details
000@00000

The mapping layer

Associate objects in the ontology to data in the tables

@ Introduce an alphabet A of function symbols, each with an
associated arity

@ Use value constants from an alphabet 'y to denote values

@ Use object terms instead of object constants to denote
objects: and object term has the form f(dy,..., d,) with
f € A, and each d; is a value constant in 'y,

19/35

Some technical details
000@00000

The mapping layer

Associate objects in the ontology to data in the tables

@ Introduce an alphabet A of function symbols, each with an
associated arity

@ Use value constants from an alphabet 'y to denote values
@ Use object terms instead of object constants to denote

objects: and object term has the form f(dy,..., d,) with
f € A, and each d; is a value constant in 'y,

o If a person is identified by her SS/V, we can introduce a
function symbol pers/1. If NRM18JUL18 is a SSN, then
pers(NRM18JUL18) denotes a person.

o If a person is identified by her name and dateOfBirth, we can
introduce a function symbol pers/2. Then pers(Mandela,
18/07/18) denotes a person.

19/35

Some technical details
0000@0000

The mapping layer

Mapping assertions, formally

@ Mapping assertions are used to extract the data from the DB
to populate the ontology

@ Use of variable terms, which are like object terms, but with
variables instead of values as arguments of the functions

20/35

Some technical details
0000@0000

The mapping layer

Mapping assertions, formally

@ Mapping assertions are used to extract the data from the DB
to populate the ontology

@ Use of variable terms, which are like object terms, but with
variables instead of values as arguments of the functions

Definition (Mapping assertion between a database and a TBox)
A mapping assertion between a database D and a TBox T has the
form
(O
where
o & is an arbitrary SQL query of arity n > 0 over D;

e WV is a conjunctive query over T of arity n’ > 0 without
non-distinguished variables, possibly involving variable terms.

20/35

Some technical details
00000@000

The mapping layer

Example

D1 [SSN: String, PriName: String]
Employees and Projects they work for
Da[Code: String, Salary: Int]
Employee's code with salary
Ds[Code: String, SSN: String]
Employee's code with SSN

mi: SELECT SSN, PrName ~+ Employee(pers(SSN)),
FROM D Project(proj(PrName)),
projectName(proj(PriName), PriName),
worksFor(pers(SSN), proj(PrName))

mg: SELECT SSN, Salary ~+ Employee(pers(SSN)),
FROM Dy, Ds salary(pers(SSN), Salary)
WHERE Ds.Code = Dg.Code

21/35

Some technical details
000000800

The mapping layer

Mapping assertions in M

Definition (Mapping assertion in M in an OBDA system)

A mapping assertion between a database D and a TBox 7 in M
has the form
d(%) ~ V(L,7)
where
@ ® is an arbitrary SQL query of arity n > 0 over D;

@ W is a conjunctive query over T of arity n’ > 0 without
non-distinguished variables;

@ X,y are variables with y C X;

o f are variable terms of the form f(Z), with f € A and Z C X.

22/35

Some technical details
000000080

The mapping layer

Semantics of mappings

Intuitively: 7 satisfies ® ~» W with respect to D if all facts
obtained by evaluating ® over D and then propagating answers to
WV, hold in Z.

Definition (Satisfaction of a mapping assertion with respect to a

database)

An interpretation Z satisfies a mapping assertion ®(X) ~ W(t, y)
in M with respect to a database D, if for each tuple of values

v € Eval(®,D), and for each ground atom in W[X/V], we have
that:

o If the ground atom is A(s), then s € AZ;
o If the ground atom is P(s1,), then (sf,s?) € PL.

Eval(®, D) denotes the result of evaluating ® over D, W[X/V] denotes W where each x; is substituted with v;

23/35

Some technical details
000000000

The mapping layer

Semantics of an OBDA system

Definition (Model of an OBDA system)
An interpretation Z is a model of O = (T, M, D) if:
@ 7 is a model of T;

o 7 satisfies M with respect to D, i.e., every assertion in M
w.r.t. D.

24/35

Some technical details
000000000

The mapping layer

Semantics of an OBDA system

Definition (Model of an OBDA system)
An interpretation Z is a model of O = (T, M, D) if:
@ 7 is a model of T;

o 7 satisfies M with respect to D, i.e., every assertion in M
w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model

24/35

Some technical details
©000000000

Query answering

Two approaches for query answering over O

o Bottom-up approach:

o Explicitly construct an ABox A, p using D and M, and
compute the certain answers over (7, A, p)
o Conceptually simpler, but less efficient (PTime in the data).

o Top-down approach

o Unfold the query w.r.t. M and generate a query over D.
o Is more sophisticated, but also more efficient

e OBDA with QUONTO/Quest uses the top-down approach

25/35

Some technical details
0800000000

Query answering

Top-down approach to query answering, intuition

¢ —= |

T ’ i Logical inference i

A — cert(g, (T, A))
I

To be able to deal with data efficiently, we need to separate the contribution of
A from the contribution of g and 7.

26/35

Some technical details
00@0000000

Query answering

Top-down approach to query answering, intuition

Perfect
reformulation
T ——*= (under OWA

Query

evaluation
under CWA

cert(q, (T, A))

27/35

Some technical details
000@000000

Query answering

Top-down approach to query answering

o Reformulation: compute the perfect reformulation (rewriting),
qpr = PerfectRef (g, Tp), of the original query g using the
inclusion assertions of the TBox 7 so that we have a UCQ.

o Unfolding: compute a new query qur from gp by using the
(split version of) the mappings in M

o Each atom in gp, that unifies with an atom in W is substituted
with the corresponding query ® over the database

o The unfolded query is such that
Eval(qunf, D) = Eval(qpr, Am.p)

o Evaluation: delegate the evaluation of g,,r to the relational
DBMS managing D

More examples, rewriting rules and algorithm are described on pp290-297 of the MOSS’09 slides, and more details

on unfolding are on pp248-251 of the MOSS'09 slides.

28/35

Some technical details
0000@00000

Query answering

Example

TBox 7 (UML)
—— TBox T (DL-Liter)
= 1 Employee C SworksFor
S — JworksFor T Employee
Conlles JworksFor™ LC Project
1. Project C 3JworksFor™
Project
profeciName: Sking
T
Consider the query q(x) < worksFor(z, y)
the perfect rewriting is
rqT = ¢(xz) <« worksFor(z,y)

g(x) < Employee(z)

29/35

Some technical details
00000@0000

Query answering

Example

D1 [SSN: String, PriName: String]
Employees and Projects they work for
Da[Code: String, Salary: Int]
Employee's code with salary
Ds[Code: String, SSN: String]
Employee's code with SSN

mi: SELECT SSN, PrName ~+ Employee(pers(SSN)),
FROM D Project(proj(PrName)),
projectName(proj(PriName), PriName),
worksFor(pers(SSN), proj(PrName))

mg: SELECT SSN, Salary ~+ Employee(pers(SSN)),
FROM Dy, Ds salary(pers(SSN), Salary)
WHERE Ds.Code = Dg.Code

30/35

Some technical details
000000@000

Query answering

Example

To compute unfold(rq.1), we first split M as follows (always possible, since queries
in the right-hand side of assertions in A are without non-distinguished variables):

Mi,:: SELECT SSN, PrName ~+ Employee(pers(SSN))
FROM D,
M2 SELECT SSN, PrName ~+ Project(proj(PrName))
FROM D,
M 3: SELECT SSN, PrName ~+ projectName(proj(PriName), PriName)
FROM D,
M 4: SELECT SSN, PrName ~+ workFor(pers(SSN), proj(PrName))
FROM D,
Ms1: SELECT SSN, Salary ~+ Employee(pers(S5N))
FROM Dz, D3
WHERE D> .Code = D3.Code
Mas9: SELECT SSN, Salary ~+ salary(pers(SSN), Salary)
FROM D2, D3

WHERE D2 .Code = Dz.Code

31/35

Some technical details
0000000800

Query answering

Query unfolding, intuition

Then, we unify each atom of the query

rgr = 4q(z) <« worksFor(z,y)
g(z) <« Employee(x)

with the right-hand side of the assertion in the split mapping, and substitute
such atom with the left-hand side of the mapping

q(pers(SSN)) « SELECT SSN, PrName
FROM D,

q(pers(SSN)) «— SELECT SSN, Salary
FROM Dy, Ds
WHERE Dj.CODE = Dg.CODE

The construction of object terms can be pushed into the SQL query, by
resorting to SQL functions to manipulate strings (e.g., string concat).

32/35

Some technical details
0000000080

Query answering

Example

SELECT concat(concat(’pers (’,88N),’)’)

FROM D,
UNION

SELECT concat(concat(’pers (’,SSN),’)’)
FROM Do, Dy

WHERE Do .Code = D3.Code

33/35

Some technical details

0000000000
Query answering

Implementation of top-down approach to query answering

To generate an SQL query, one can follow different strategies:

o Substitute each view predicate in the unfolded queries with
the corresponding SQL query over the source:

+ joins are performed on the DB attributes
-+ does not generate doubly nested queries

— the number of unfolded queries may be exponential
o Construct for each atom in the original query a new view.

This view takes the union of all SQL queries corresponding to
the view predicates, and constructs also the Skolem terms

+ avoids exponential blow-up of the resulting query, since the

union (of the queries coming from multiple mappings) is done
before the joins

— joins are performed on Skolem terms
— generates doubly nested queries

Which method is better, depends on various parameters

34/35

Summary

Summary

€ OBDA Options

© Some technical details
@ Introduction
@ The ontology language
o The mapping layer

@ ‘Impedance’ mismatch
@ Mapping assertions

o Query answering

35/35

	lecture 9
	OBDA Options
	Some technical details
	Introduction
	The ontology language
	The mapping layer
	Query answering

