
OBDA Options Some technical details Summary

COMP718: Ontologies and Knowledge Bases
Lecture 9: Ontology/Conceptual Model based Data Access

Maria Keet
email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal, South Africa

10 April 2012

1/35

OBDA Options Some technical details Summary

Outline

1 OBDA Options

2 Some technical details
Introduction
The ontology language
The mapping layer

‘Impedance’ mismatch
Mapping assertions

Query answering

2/35

OBDA Options Some technical details Summary

An ontology with a very large ABox (intro last week)

Scaling up to realistic size knowledge base handling large
amounts of data

To realise this, we need

A language of relatively low computational complexity
A way to store large amounts of data
Some mechanism to link up the previous two ingredients
Query (and reason over) the combination of the previous three

Use the “Ontology-Based Data Access” (OBDA) approach

with the “ontology” in OBDA just a DL knowledge base
Most examples and use cases: the ‘ontology’ is a
DL-formalised conceptual data model

Example application with the WONDER system

3/35

OBDA Options Some technical details Summary

An ontology with a very large ABox (this week)

⇒ What are the options to link an ontology to large amounts of
data?

Two principal options (in KR view): query rewriting and data
completion
Several implementation infrastructures; ‘external ABox’ most
popular (realised with RDBMS or RDF Triple store)

⇒ What is there behind the scenes for the non-graphical
OBDA-part in WONDER and the OBDA systems you set up
in the lab?

4/35

keet@ukzn.ac.za
http://www.meteck.org


OBDA Options Some technical details Summary

OBDA options

KR perspective (with OWA): query rewriting vs data
completion

DB perspective (with CWA): we probably won’t cover this in
the lecture

See slides obda-slides2012TomanCOMP718ukzn.pdf

6/35

OBDA Options Some technical details Summary

Introduction

Linking ontologies to relational data1

Ontology-Based Data Access systems (static components)

An ontology language
A mapping language
The data

Query answering in Ontology-Based Data Access systems

Reasoning over the TBox
Query rewriting
Query unfolding
Relational database technology

These slides are based on Calvanese’s MOSS’09 slides, which also will be made available

1
More precisely: “Option I, v1.0” mentioned in David Toman’s slides.

8/35

OBDA Options Some technical details Summary

Introduction

An OBDA system

Definition (Ontology-Based Data Access system)

An OBDA system is a triple O = 〈T ,M,D〉, where

T is a TBox

D is a relational database

M is a set of mapping assertions between T and D

Note: this is for the current system, but one could conceive of a
system that has an RDF triple store as D

9/35

OBDA Options Some technical details Summary

Introduction

D as ABox

In the traditional DL setting, it is assumed that the data is
maintained in the ABox of the ontology, meaning:

The ABox is perfectly compatible with the TBox:

The vocabulary of concepts, roles, and attributes is the one
used in the TBox
The ABox stores abstract objects, and these objects and their
properties are those returned by queries over the ontology

Other ways to manage the ABox from an implementation
point of view:

Description Logics reasoners maintain the ABox is
main-memory data structures (recollect the 4 GB HGT-DB)
Hence, when an ABox becomes large, managing it in
secondary storage may be required,

but this is again handled directly by the reasoner

10/35



OBDA Options Some technical details Summary

Introduction

D = Relational database as ABox

In addition to ABox scalability, there are other reasons to
realise the ABox with D:

When we have no direct control over the data since it belongs
to some external organization, which controls the access to it
When multiple data sources need to be accessed, such as in
Information Integration

Deal with such a situation by keeping the data in the external
(relational) storage, and performing query answering by
leveraging the capabilities of the relational engine

New problems:

The so-called impedance mismatch between values in the
relational database and the objects that the ABox expects
How to link the TBox to the “ABox” that is realised as a D?

11/35

OBDA Options Some technical details Summary

The ontology language

The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases
Query answering can be delegated to a relational DB engine
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice
computational properties

Introduction of DL-LiteR, a member of the DL-Lite family,
essentially corresponds to OWL2 QL2

2
Actually, the current OBDA implementation can handle DL-LiteA, and all DL-Lite languages adhere to the

UNA

12/35

OBDA Options Some technical details Summary

The ontology language

DL-LiteR (compacter DL notation of OWL 2 QL)

13/35

OBDA Options Some technical details Summary

The ontology language

DL-LiteR (compacter DL notation of OWL 2 QL)

14/35



OBDA Options Some technical details Summary

The ontology language

DL-LiteR (compacter DL notation of OWL 2 QL)

15/35

OBDA Options Some technical details Summary

The mapping layer

Relational database as ABox

Sources store data, which is constituted by values taken from
concrete domains, such as strings, integers, codes, ...

Instances of concepts and relations in an ontology are
(abstract) objects

Solution:

Specify how to construct from the data values in the relational
sources the (abstract) objects that populate the ABox of the
ontology
Embed this specification in the mappings between the data
sources and the ontology

Use a virtual ABox, where the objects are not materialized

16/35

OBDA Options Some technical details Summary

The mapping layer

Solution to the impedance mismatch

Define a mapping language that allows for specifying how to
transform data into abstract objects, where

Each mapping assertion maps a query that retrieves values
from a data source to a set of atoms specified over the
ontology

Basic idea: use Skolem functions in the atoms over the
ontology to “generate” the objects from the data values

Semantics of mappings:

Objects are denoted by terms (of exactly one level of nesting)
Different terms denote different objects (i.e., we make the
unique name assumption on terms)

17/35

OBDA Options Some technical details Summary

The mapping layer

Example

18/35



OBDA Options Some technical details Summary

The mapping layer

Associate objects in the ontology to data in the tables

Introduce an alphabet Λ of function symbols, each with an
associated arity

Use value constants from an alphabet ΓV to denote values

Use object terms instead of object constants to denote
objects: and object term has the form f (d1, . . . , dn) with
f ∈ Λ, and each di is a value constant in ΓV

Example

If a person is identified by her SSN, we can introduce a
function symbol pers/1. If NRM18JUL18 is a SSN, then
pers(NRM18JUL18) denotes a person.

If a person is identified by her name and dateOfBirth, we can
introduce a function symbol pers/2. Then pers(Mandela,
18/07/18) denotes a person.

19/35

OBDA Options Some technical details Summary

The mapping layer

Mapping assertions, formally

Mapping assertions are used to extract the data from the DB
to populate the ontology

Use of variable terms, which are like object terms, but with
variables instead of values as arguments of the functions

Definition (Mapping assertion between a database and a TBox)

A mapping assertion between a database D and a TBox T has the
form

Φ Ψ

where

Φ is an arbitrary SQL query of arity n > 0 over D;

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables, possibly involving variable terms.

20/35

OBDA Options Some technical details Summary

The mapping layer

Example

21/35

OBDA Options Some technical details Summary

The mapping layer

Mapping assertions inM

Definition (Mapping assertion in M in an OBDA system)

A mapping assertion between a database D and a TBox T in M
has the form

Φ(~x) Ψ(~t, ~y)

where

Φ is an arbitrary SQL query of arity n > 0 over D;

Ψ is a conjunctive query over T of arity n′ > 0 without
non-distinguished variables;

~x , ~y are variables with ~y ⊆ ~x ;

~t are variable terms of the form f (~z), with f ∈ Λ and ~z ⊆ ~x .

22/35



OBDA Options Some technical details Summary

The mapping layer

Semantics of mappings

Intuitively: I satisfies Φ Ψ with respect to D if all facts
obtained by evaluating Φ over D and then propagating answers to
Ψ, hold in I.

Definition (Satisfaction of a mapping assertion with respect to a
database)

An interpretation I satisfies a mapping assertion Φ(~x) Ψ(~t, ~y)
in M with respect to a database D, if for each tuple of values
~v ∈ Eval(Φ,D), and for each ground atom in Ψ[~x/~v ], we have
that:

If the ground atom is A(s), then sI ∈ AI ;

If the ground atom is P(s1, s2), then (sI1 , sI2 ) ∈ PI .

Eval(Φ,D) denotes the result of evaluating Φ over D, Ψ[~x/~v ] denotes Ψ where each xi is substituted with vi

23/35

OBDA Options Some technical details Summary

The mapping layer

Semantics of an OBDA system

Definition (Model of an OBDA system)

An interpretation I is a model of O = 〈T ,M,D〉 if:

I is a model of T ;

I satisfies M with respect to D, i.e., every assertion in M
w.r.t. D.

An OBDA system O is satisfiable if it admits at least one model

24/35

OBDA Options Some technical details Summary

Query answering

Two approaches for query answering over O

Bottom-up approach:

Explicitly construct an ABox AM,D using D and M, and
compute the certain answers over 〈T ,AM,D〉
Conceptually simpler, but less efficient (PTime in the data).

Top-down approach

Unfold the query w.r.t. M and generate a query over D.
Is more sophisticated, but also more efficient

OBDA with QuOnto/Quest uses the top-down approach

25/35

OBDA Options Some technical details Summary

Query answering

Top-down approach to query answering, intuition

26/35



OBDA Options Some technical details Summary

Query answering

Top-down approach to query answering, intuition

27/35

OBDA Options Some technical details Summary

Query answering

Top-down approach to query answering

Reformulation: compute the perfect reformulation (rewriting),
qpr = PerfectRef (q, TP), of the original query q using the
inclusion assertions of the TBox T so that we have a UCQ.

Unfolding: compute a new query qunf from qpr by using the
(split version of) the mappings in M

Each atom in qpr that unifies with an atom in Ψ is substituted
with the corresponding query Φ over the database
The unfolded query is such that
Eval(qunf ,D) = Eval(qpr ,AM,D)

Evaluation: delegate the evaluation of qunf to the relational
DBMS managing D

More examples, rewriting rules and algorithm are described on pp290-297 of the MOSS’09 slides, and more details

on unfolding are on pp248-251 of the MOSS’09 slides.

28/35

OBDA Options Some technical details Summary

Query answering

Example

29/35

OBDA Options Some technical details Summary

Query answering

Example

30/35



OBDA Options Some technical details Summary

Query answering

Example

31/35

OBDA Options Some technical details Summary

Query answering

Query unfolding, intuition

32/35

OBDA Options Some technical details Summary

Query answering

Example

33/35

OBDA Options Some technical details Summary

Query answering

Implementation of top-down approach to query answering

To generate an SQL query, one can follow different strategies:

Substitute each view predicate in the unfolded queries with
the corresponding SQL query over the source:

+ joins are performed on the DB attributes
+ does not generate doubly nested queries
– the number of unfolded queries may be exponential

Construct for each atom in the original query a new view.
This view takes the union of all SQL queries corresponding to
the view predicates, and constructs also the Skolem terms

+ avoids exponential blow-up of the resulting query, since the
union (of the queries coming from multiple mappings) is done
before the joins

– joins are performed on Skolem terms
– generates doubly nested queries

Which method is better, depends on various parameters

34/35



OBDA Options Some technical details Summary

Summary

1 OBDA Options

2 Some technical details
Introduction
The ontology language
The mapping layer

‘Impedance’ mismatch
Mapping assertions

Query answering

35/35


	lecture 9
	OBDA Options
	Some technical details
	Introduction
	The ontology language
	The mapping layer
	Query answering



