| RDBMSs | and | other | 'legacy | KR' |
|--------|-----|-------|---------|-----|
|        |     |       |         |     |

Natural language

COMP718: Ontologies and Knowledge Bases Lecture 7: Bottom-up Ontology Development

> Maria Keet email: keet@ukzn.ac.za home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

20 March 2012

ヘロト 人間ト 人団ト 人団ト

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Outline                      |                    |                  |         |

#### RDBMSs and other 'legacy KR'

• Example: manual and automated extractions

# 2 Thesauri

- SKOS
- Thesauri

### 3 Natural language

- Introduction
- Ontology learning
- Ontology population

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Bottom-up                    |                    |                  |         |

- From *some* seemingly suitable legacy representation to an OWL ontology
  - Database reverse engineering
  - Conceptual model (ER, UML)
  - Frame-based system
  - OBO format
  - Thesauri
  - Formalizing biological models
  - Excel sheets
  - Text mining, machine learning, clustering
  - etc...

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| A few languages              |                    |                  |         |

| ad hoc<br>Hierarchies<br>(Yahoo!) | structured<br>Glossaries               | XML<br>Schema | Des                                  | cription Logics<br>(OWL)   |
|-----------------------------------|----------------------------------------|---------------|--------------------------------------|----------------------------|
| Terms<br>The                      | XML :<br>sauri                         | DTDs Ta       | axonomies                            |                            |
| 'ordinary'<br>Glossaries          | Principled,<br>informal<br>hierarchies |               | nceptual Data<br>Models<br>(UML, ER) | >                          |
| Data<br>Dictiona<br>(EDI)         |                                        | DB<br>Schema  | Frame                                | General<br>s Logic         |
| Glossaries &<br>Data Dictionarie  | Thesauri,<br><b>s</b> Taxonomies       |               |                                      | mal Ontologies<br>nference |

### Levels of ontological precision



<u>precision</u>: the ability to catch all and only the intended meaning (for a logical theory, to be satisfied by intended models)

(from Gangemi, 2004)

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Outline                      |                    |                  |         |

#### RDBMSs and other 'legacy KR'

• Example: manual and automated extractions

#### Thesauri

- SKOS
- Thesauri

#### 3 Natural language

- Introduction
- Ontology learning
- Ontology population

# Examples: OBO

#### OBO in OWL 2 DL

- OBO is a Directed Acyclic Graph (with is\_a, part\_of, etc. relationships)
- with some extras (a.o., date, saved by, remark)
- and 'work-arounds' (not-necessary and inverse-necessary) and non-mappable things (antisymmetry)
- There are several OBO-in-OWL mappings, some more comprehensive than others
- Most OBO ontology now also have an OWL version (consult OBO Foundry, BioPortal)

(ロト (聞) (注) (注) 三国

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- 'impedance mismatch' DB values and ABox objects
- ⇒
  values-but-actually-concepts-that-should-become-OWL-classes
  and values-that-should-become-OWL-instances

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- 'impedance mismatch' DB values and ABox objects
  - values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- 'impedance mismatch' DB values and ABox objects
  - values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances

#### General considerations for RDBMSs

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- 'impedance mismatch' DB values and ABox objects
- $\Rightarrow$

 $values-but-actually-concepts-that-should-become-OWL-classes \\ and values-that-should-become-OWL-instances \\$ 

| RDBMSs | and | other | 'legacy | KR' |
|--------|-----|-------|---------|-----|
|        |     |       |         |     |

Natural language



9/37

Natural language

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But,
  - Assumes there was a fully normalised conceptual data model,
    Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
  - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the 'ontology' into an ontology?
- Establish some mechanism to keep a 'link' between the terms in the ontology and the source in the database?

Natural language

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But,
  - Assumes there was a fully normalised conceptual data model,
  - Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
  - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the 'ontology' into an ontology?
- Establish some mechanism to keep a 'link' between the terms in the ontology and the source in the database?

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But,
  - Assumes there was a fully normalised conceptual data model,
  - Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
  - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the 'ontology' into an ontology?
- Establish some mechanism to keep a 'link' between the terms in the ontology and the source in the database?

| RDBMSs and other 'legacy KR'<br>●○○○      | Thesauri<br>000000 | Natural language | Summary |
|-------------------------------------------|--------------------|------------------|---------|
| Example: manual and automated extractions |                    |                  |         |
| Manual Extraction                         |                    |                  |         |

- Most database are not neat as assumed in the 'Automatic Extraction of Ontologies' (e.g., denormalised)
- Then what?
  - Reverse engineer the database to a conceptual data model
  - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)

| RDBMSs and other 'legacy KR'<br>●○○○      | Thesauri<br>000000 | Natural language | Summary |
|-------------------------------------------|--------------------|------------------|---------|
| Example: manual and automated extractions |                    |                  |         |
| Manual Extraction                         |                    |                  |         |

- Most database are not neat as assumed in the 'Automatic Extraction of Ontologies' (e.g., denormalised)
- Then what?
  - Reverse engineer the database to a conceptual data model
  - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)

| RDBMSs and other 'legacy KR'<br>●○○○      | Thesauri<br>000000 | Natural language | Summary |
|-------------------------------------------|--------------------|------------------|---------|
| Example: manual and automated extractions |                    |                  |         |
| Manual Extraction                         |                    |                  |         |

- Most database are not neat as assumed in the 'Automatic Extraction of Ontologies' (e.g., denormalised)
- Then what?
  - Reverse engineer the database to a conceptual data model
  - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)

RDBMSs and other 'legacy KR' ○●○○ Thesauri

Natural language

12/37

Example: manual and automated extractions

### Section of the HGT conceptual data model (in ORM 2)



RDBMSs and other 'legacy KR' ○○●○ Thesauri

Natural language

Example: manual and automated extractions

# Manual mapping to $DL-Lite_A$

- Basic statistics:
  - 38 classes
  - 34 object properties of which 17 functional
  - 55 data properties of which 47 functional
  - 102 subclass axioms
- Subsequently used for Ontology-Based Data Access

RDBMSs and other 'legacy KR' ○○○● Thesauri

Natural language

Summary

Example: manual and automated extractions

### Automatic Extraction of Ontologies

- Examples
  - Lina Lubyte & Sergio Tessaris's presentation of the DEXA'09 paper
  - Reverse engineering from DB to ORM model with, e.g., VisioModeler v3.1 or NORMA

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
| Outline                      |          |                  |         |

### **1** RDBMSs and other 'legacy KR'

• Example: manual and automated extractions

2 Thesauri• SKOS• Thesauri

#### 3 Natural language

- Introduction
- Ontology learning
- Ontology population

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
|                              | 00000    |                  |         |
| SKOS                         |          |                  |         |

• See slides SKOS.pdf

| RDBMSs and other 'legacy KR' | Thesauri<br>○●○○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Overview                     |                    |                  |         |

• Thesauri galore in medicine, education, agriculture, ...

- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
  - BT ability
  - RT reading
  - RT perception
- E.g. AGROVOC of the FAO:
  - milk
    - NT cow milk
    - NT milk fat
- How to go from this to an ontology?

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>○●○○○○ | Natural language | Summary |
|--------------------------------------|--------------------|------------------|---------|
| Thesauri                             |                    |                  |         |
| Overview                             |                    |                  |         |

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
  - BT ability
  - RT reading
  - RT perception
- E.g. AGROVOC of the FAO:
  - milk
    - NT cow milk
    - NT milk fat
- How to go from this to an ontology?

| RDBMSs and other 'legacy KR' | Thesauri<br>○●○○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Overview                     |                    |                  |         |

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
  - BT ability
  - RT reading
  - RT perception
- E.g. AGROVOC of the FAO:
  - milk
    - NT cow milk
    - NT milk fat
- How to go from this to an ontology?

| RDBMSs and other 'legacy KR' | Thesauri<br>○●○○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Overview                     |                    |                  |         |

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
  - BT ability
  - RT reading
  - RT perception
- E.g. AGROVOC of the FAO:
  - milk
    - NT cow milk
    - NT milk fat

• How to go from this to an ontology?

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>○●○○○○ | Natural language | Summary |
|--------------------------------------|--------------------|------------------|---------|
| Thesauri                             |                    |                  |         |
| Overview                             |                    |                  |         |

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
  - BT ability
  - RT reading
  - RT perception
- E.g. AGROVOC of the FAO:

milk

- NT cow milk
- NT milk fat
- How to go from this to an ontology?

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| RDBMSs and other 'legacy KR' | Thesauri<br>○○●○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Problems                     |                    |                  |         |

#### • Lexicalisation of a conceptualisation

- Low ontological precision
- BT/NT is not the same as *is\_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○●○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Problems                     |                    |                  |         |

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as *is\_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○●○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Problems                     |                    |                  |         |

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as *is\_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○●○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Problems                     |                    |                  |         |

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as *is\_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○●○○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| Problems                     |                    |                  |         |

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as *is\_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○○●○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |

# Simple Knowledge Organisation System(s): SKOS

- W3C standard intended for converting Thesauri, Classification Schemes, Taxonomies, Subject Headings etc into one interoperable syntax
  - Concept-based search instead of text-based search
  - Reuse each others concept definitions
  - Search across (institution) boundaries
  - Standard software
- Limitations:
  - 'unusual' concept schemes do not fit into SKOS (original structure too complex)
  - skos:Concept without clear properties (like in OWL) and still much subject domain semantics in the natural language text
  - 'semantic relations' have little semantics (skos:narrower does not guarantee it is *is\_a* or *part\_of*)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○○●○○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |

# Simple Knowledge Organisation System(s): SKOS

- W3C standard intended for converting Thesauri, Classification Schemes, Taxonomies, Subject Headings etc into one interoperable syntax
  - Concept-based search instead of text-based search
  - Reuse each others concept definitions
  - Search across (institution) boundaries
  - Standard software
- Limitations:
  - 'unusual' concept schemes do not fit into SKOS (original structure too complex)
  - skos:Concept without clear properties (like in OWL) and still much subject domain semantics in the natural language text
  - 'semantic relations' have little semantics (skos:narrower does not guarantee it is *is\_a* or *part\_of*)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○○○●○ | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
| A rules-as-you-go approach   |                    |                  |         |

#### • A possible re-engineering procedure:

- Define the ontology structure (top-level hierarchy/backbone)
- Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
- Edit manually using an ontology editor:
  - make existing information more precise
  - add new information
  - automation of discovered patterns (rules-as-you-go)

イロト 不得 ト イヨト イヨト 二日

20/37

see (Soergel et al, 2004)

| RDBMSs and other 'legacy KR' | Thesauri<br>○○○○○● | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Thesauri                     |                    |                  |         |
|                              |                    |                  |         |

# A rules-as-you-go approach

- A possible re-engineering procedure:
  - Define the ontology structure (top-level hierarchy/backbone)
  - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
  - Edit manually using an ontology editor:
    - make existing information more precise
    - add new information
    - automation of discovered patterns (rules-as-you-go); e.g.
      - observation: cow NT cow milk should become cow

<hasComponent> cow milk

- pattern: animal <hasComponent> milk (or, more generally animal <hasComponent> body part)

— derive automatically: goat NT goat milk should become goat <hasComponent> goat milk

other pattern examples, e.g., *plant* <*growsln*> *soil type* and *geographical entity* <*spatiallyIncludedIn*> *geographical entity* 

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Outline                      |                    |                  |         |

# RDBMSs and other 'legacy KR'

• Example: manual and automated extractions

2 Thesauri• SKOS• Thesauri

• Thesauri

3 Natural language

- Introduction
- Ontology learning
- Ontology population

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today, rel-Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

## Using ontologies to improve NLP

#### • To enhance precision and recall of queries

- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)

## • Using NLP to develop ontologies (TBox)

- Searching for candidate terms and relations: Ontology learning (today, ref Alexapoulou et al. 2006)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today, rel Alexapoulou et al. 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today: ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today, rel-Alexapoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today: ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today, ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies.
  - Biomedical text mining (today, ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today: ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

## • Using ontologies to improve NLP

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)

## • Using NLP to populate ontologies (ABox)

- Document retrieval enhanced by lexicalised ontologies
- Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language

# Natural language and ontologies

## • Using ontologies to improve NLP

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today; ref Witte et al, 2007)

• Natural language generation from a formal language

# Natural language and ontologies

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
  - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
  - Document retrieval enhanced by lexicalised ontologies
  - Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○●○○○○○○○○○○ | Summary |
|------------------------------|--------------------|----------------------------------|---------|
| Introduction                 |                    |                                  |         |

# Ontologies in practice: Semantic Tagging—Classes, Terms



 $\label{eq:http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf (Control of the second second$ 

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○●○○○○○○○○○○○ | Summary |
|------------------------------|----------|------------------------------------|---------|
| Introduction                 |          |                                    |         |

# Ontologies in practice: Semantic Tagging—Lexicalized Ontologies



http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○ | Summary |
|--------------------------------------|--------------------|-----------------------------------|---------|
| Introduction                         |                    |                                   |         |
| Examples (out of m                   | anv)               |                                   |         |

• Generic tools: see http://www.deri.ie/fileadmin/documents/ teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list

J )

- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains Add ontology to an open domain QA system, using AGROVOC and WordNet
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○ | Summary |
|--------------------------------------|--------------------|-----------------------------------|---------|
| Introduction                         |                    |                                   |         |
| Examples (out of m                   | 2011               |                                   |         |

- Examples (out of many)
  - Generic tools: see http://www.deri.ie/fileadmin/documents/ teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list
  - GoPubMed (Dietze et al, 2009)
    - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
    - Results of the PubMed query are sorted according to terms in the ontology
  - Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
    - Question assignment task too difficult for specialised domains. Add ontology to an open domain QA system, using AGROVOC and WordNet
  - Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○ | Summary |
|------------------------------|--------------------|-----------------------------------|---------|
| Introduction                 |                    |                                   |         |
| Examples (out of m           | any)               |                                   |         |

- Generic tools: see <a href="http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf">http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf</a> for a long list
- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes  $\pm$  19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains.
    Add ontology to an open domain QA system, using A CDD r0C = 1.11 = 01.1
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○○●○○○○○○○○○○ | Summary |
|------------------------------|----------|------------------------------------|---------|
| Introduction                 |          |                                    |         |
| Examples (out of m           |          |                                    |         |

- Generic tools: see <a href="http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf">http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf</a> for a long list
- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes  $\pm$  19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains
  - Add ontology to an open domain QA system, using AGREN/QC and Microbiol
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○○ | Summary |
|------------------------------|--------------------|------------------------------------|---------|
| Introduction                 |                    |                                    |         |
| Examples (out of m           | anv)               |                                    |         |

- Generic tools: see http://www.deri.ie/fileadmin/documents/ teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list
- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes  $\pm$  19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains
  - Add ontology to an open domain QA system, using AGROVOC and WordNet
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○○ | Summary |
|--------------------------------------|--------------------|------------------------------------|---------|
| Introduction                         |                    |                                    |         |
| Examples (out of m                   | anv)               |                                    |         |

- Generic tools: see http://www.deri.ie/fileadmin/documents/ teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list
- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes  $\pm$  19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains
  - Add ontology to an open domain QA system, using AGROVOC and WordNet
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○○ | Summary |
|--------------------------------------|--------------------|------------------------------------|---------|
| Introduction                         |                    |                                    |         |
| Examples (out of m                   | anv)               |                                    |         |

- Generic tools: see <a href="http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf">http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf</a> for a long list
- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes  $\pm$  19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains
  - Add ontology to an open domain QA system, using AGROVOC and WordNet

 Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR'<br>0000 | Thesauri<br>000000 | Natural language<br>○○○●○○○○○○○○○○ | Summary |
|--------------------------------------|--------------------|------------------------------------|---------|
| Introduction                         |                    |                                    |         |
| Examples (out of m                   | anv)               |                                    |         |

- Generic tools: see http://www.deri.ie/fileadmin/documents/ teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list
- GoPubMed (Dietze et al, 2009)
  - Layer over PubMed, which indexes  $\pm$  19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
  - Results of the PubMed query are sorted according to terms in the ontology
- Question answer system AliQAn for agriculture (Vila and Ferrández, 2009)
  - Question assignment task too difficult for specialised domains
  - Add ontology to an open domain QA system, using AGROVOC and WordNet
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○●○○○○○○○○ | Summary |
|------------------------------|--------------------|-----------------------------------|---------|
| Ontology learning            |                    |                                   |         |
| Background                   |                    |                                   |         |

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
  - We take a closer look at ontology learning limited to finding terms for a domain ontology

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○●○○○○○○○○ | Summary |
|------------------------------|--------------------|-----------------------------------|---------|
| Ontology learning            |                    |                                   |         |
| Background                   |                    |                                   |         |

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
  - We take a closer look at ontology learning limited to finding terms for a domain ontology

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○●○○○○○○○○ | Summary |
|------------------------------|--------------------|-----------------------------------|---------|
| Ontology learning            |                    |                                   |         |
| Background                   |                    |                                   |         |

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
  - We take a closer look at ontology learning limited to finding terms for a domain ontology

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○●○○○○○○○ | Summary |
|------------------------------|--------------------|-----------------------------------|---------|
| Ontology learning            |                    |                                   |         |

# Bottom-up ontology development with NLP

- Usual parameters, such as purpose (in casu, document retrieval), formal language (an OWL species)
- A standard kind of ontology (not a comprehensive lexicalised ontology)
- Additional considerations for "text-mining ontologies"
  - Level of granularity of the terms to include (hypo/hypernyms)
  - How to deal with synonyms ('LDL I' and 'large LDL')
  - Handle term variations (e.g., 'LDL-I' and 'LDL I', 'Tangiers' disease' and 'Tangier's Disease')
  - Disambiguation; e.g. w.r.t. abbreviations

| RDBMSs and other 'legacy KR' | Thesauri | Natural language                        | Summary |
|------------------------------|----------|-----------------------------------------|---------|
|                              |          | 000000000000000000000000000000000000000 |         |
|                              |          |                                         |         |

#### Ontology learning

# Method to test automated term recognition

- Compare the terms of a manually constructed ontology with the terms obtained from text mining a suitable corpus
- Build an ontology manually
  - Lipoprotein metabolism (LMO), 223 classes with 623 synonyms
- Create a corpus
  - 3066 review article abstract from PubMed, obtained with a 'lipoprotein metabolism' search
- Automatic Term Recognition (ATR) tools
  - Text2Onto: relative term frequency, TFIDF, entropy, hypernym structure of WordNet, Hearst patterns
  - Termine: statistics of candidate term, such as total frequency of occurrence, frequency of the term as part of other longer candidate terms, length of term
  - OntoLearn: linguistic processor and syntactic parser, Domain relevance and domain consensus
  - RelFreq: relative frequency of a term in a corpus
  - TFIDF: RelFreq + doc. frequency derived from all phrases in PubMed

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Ontology learning            |                    |                  |         |
| Results                      |                    |                  |         |

- OntoLearn excluded form analysis because it regenerated few terms
- Text2Onto only included in analysis for up to 300 abstracts (could not process all 3066)
- Precision for LMO 17-35% for top 50 terms, and 4-8% for top 1000 terms
- Precision for LMO + expert analysis of the automatically generated terms: up to 75% for top 50 terms, and up to 29% for top 1000 terms
- Termine good for the longer terms, RelFreq and TFIDF for the shorter terms

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○○○●○○○○○ | Summary |
|------------------------------|--------------------|-----------------------------------|---------|
| Ontology learning            |                    |                                   |         |
| Results (cont'd)             |                    |                                   |         |

Table 3: Coverage of LMO terminology in selected document sets. The table sets the upper limit of terms that can be found with textmining: Even a large text base with 50,000 documents contains only 71% of LMO terms. TFIDF can predict up to 38% of LMO terms.

|                                                   | LMO terminology predicted by TFIDF |        | LMO terminology literally contained |
|---------------------------------------------------|------------------------------------|--------|-------------------------------------|
|                                                   | 1000                               | all    |                                     |
| 300 review abstracts for "lipoprotein metabolism" | 8.75%                              | 15.35% | 20.98%                              |
| 3,066 abstracts for "lipoprotein metabolism"      | 4.99%                              | 38.25% | 53.00%                              |
| 50,000 abstracts containing "lipoprotein"         |                                    |        | 71.22%                              |

from Alexopoulou et al, 2008

メロト メロト メヨト メヨト

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summar |
|------------------------------|----------|------------------|--------|
| 0000                         | 000000   | 0000000000000    |        |

#### Ontology learning

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language                        | Summary |
|------------------------------|----------|-----------------------------------------|---------|
|                              |          | 000000000000000000000000000000000000000 |         |
| Out - I                      |          |                                         |         |

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
|                              |          | 00000000000000   |         |
| Outology, loovelag           |          |                  |         |

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
|                              |          | 00000000000000   |         |
| Outology, loovelag           |          |                  |         |

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
|                              |          | 00000000000000   |         |
| Outology, looving            |          |                  |         |

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
|                              |          | 00000000000000   |         |
| Outology, looving            |          |                  |         |

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language | Summary |
|------------------------------|----------|------------------|---------|
|                              |          | 0000000000000    |         |
| Outology, looving            |          |                  |         |

#### What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
  - Rarely occurring terms: occur rarely even in the whole of PubMed
  - Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
  - Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
  - Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
  - Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○○○○○○○○●○○○ | Summary |
|------------------------------|----------|-----------------------------------|---------|
| Ontology population          |          |                                   |         |
| Typical NLP tasks            |          |                                   |         |

- Named Entity recognition/semantic tagging; e.g., "... the organisms were incubated at 37°C")
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β-galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; most of the important information in contained within the relations between entities, NLP can be enhanced by considering semantically possible relations



- Named Entity recognition/semantic tagging; e.g., "... the organisms were incubated at 37°C")
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β-galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; *most of the important information in contained within the relations between entities*, NLP can be enhanced by considering semantically possible relations



- Named Entity recognition/semantic tagging; e.g., "... the organisms were incubated at 37°C")
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and  $\beta$ -galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; *most of the important information in contained within the relations between entities*, NLP can be enhanced by considering semantically possible relations



- Named Entity recognition/semantic tagging; e.g., "... the organisms were incubated at 37°C")
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and  $\beta$ -galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; *most of the important information in contained within the relations between entities*, NLP can be enhanced by considering semantically possible relations



- Named Entity recognition/semantic tagging; e.g., "... the organisms were incubated at 37°C")
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and  $\beta$ -galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; *most of the important information in contained within the relations between entities*, NLP can be enhanced by considering semantically possible relations

Thesauri

Natural language ○○○○○○○○○○○○○○○○○

**Ontology population** 

# Requirements for NLP ontologies

#### • Domain ontology (at least a taxonomy)

- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

Thesauri

Natural language ○○○○○○○○○○●○○

**Ontology population** 

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

Thesauri

Natural language ○○○○○○○○○○●○○

**Ontology population** 

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

Thesauri

Natural language ○○○○○○○○○○●○○

**Ontology population** 

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

Thesauri

Natural language ○○○○○○○○○○●○○

**Ontology population** 

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

Thesauri

Natural language

**Ontology population** 

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○○○○○○○○○○○○ | Summary |
|------------------------------|----------|-----------------------------------|---------|
| Ontology population          |          |                                   |         |
| MutationMiner use cas        | e        |                                   |         |

#### • See Witte et al. book chapter for details

- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central *scientific name* and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○○○○○○○○○○○○ | Summary |
|------------------------------|----------|-----------------------------------|---------|
| Ontology population          |          |                                   |         |
| MutationMiner use cas        | se       |                                   |         |

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central *scientific name* and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○○○○○○○○○○○○ | Summary |
|------------------------------|----------|-----------------------------------|---------|
| Ontology population          |          |                                   |         |
| MutationMiner use cas        | e        |                                   |         |

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central *scientific name* and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy

| RDBMSs and other 'legacy KR' | Thesauri | Natural language<br>○○○○○○○○○○○○○ | Summary |
|------------------------------|----------|-----------------------------------|---------|
| Ontology population          |          |                                   |         |
| MutationMiner use cas        | e        |                                   |         |

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central *scientific name* and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○○○○○○○ | Summary |
|------------------------------|--------------------|---------------------------------|---------|
| Ontology population          |                    |                                 |         |
| Discussion                   |                    |                                 |         |

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
  - Standardizes data exchange, consolidate disparate resources
    Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○○○○○○○ | Summary |
|------------------------------|--------------------|---------------------------------|---------|
| Ontology population          |                    |                                 |         |
| Discussion                   |                    |                                 |         |

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
  - Standardizes data exchange, consolidate disparate resources
  - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○○○○○○○● | Summary |
|------------------------------|--------------------|----------------------------------|---------|
| Ontology population          |                    |                                  |         |
| Discussion                   |                    |                                  |         |

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
  - Standardizes data exchange, consolidate disparate resources
  - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○○○○○○○ | Summary |
|------------------------------|--------------------|---------------------------------|---------|
| Ontology population          |                    |                                 |         |
| Discussion                   |                    |                                 |         |

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
  - Standardizes data exchange, consolidate disparate resources
  - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language<br>○○○○○○○○○○○ | Summary |
|------------------------------|--------------------|---------------------------------|---------|
| Ontology population          |                    |                                 |         |
| Discussion                   |                    |                                 |         |

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
  - Standardizes data exchange, consolidate disparate resources
  - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account

| RDBMSs and other 'legacy KR' | Thesauri<br>000000 | Natural language | Summary |
|------------------------------|--------------------|------------------|---------|
| Summary                      |                    |                  |         |

• Example: manual and automated extractions

# 2 Thesauri

- SKOS
- Thesauri

#### 3 Natural language

- Introduction
- Ontology learning
- Ontology population