COMP718: Ontologies and Knowledge Bases

Lecture 7: Bottom-up Ontology Development

Maria Keet
email: keet@ukzn.ac.za
home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal, South Africa

20 March 2012
Outline

1 RDBMSs and other ‘legacy KR’
 - Example: manual and automated extractions

2 Thesauri
 - SKOS
 - Thesauri

3 Natural language
 - Introduction
 - Ontology learning
 - Ontology population
Bottom-up

- From *some* seemingly suitable legacy representation to an OWL ontology
 - Database reverse engineering
 - Conceptual model (ER, UML)
 - Frame-based system
 - OBO format
 - Thesauri
 - Formalizing biological models
 - Excel sheets
 - Text mining, machine learning, clustering
 - etc...
A few languages

- RDBMSs and other ‘legacy KR’
- Thesauri
- Natural language

Summary

A few languages

ad hoc Hierarchies (Yahoo!)

Terms

‘ordinary’ Glossaries

Data Dictionaries (EDI)

Glossaries & Data Dictionaries

Thesauri, Taxonomies

MetaData, XML Schemas, & Data Models

Formal Ontologies & Inference

Description Logics (OWL)

formal Taxonomies

Structured Glossaries

XML Schema

XML DTDs

Principled, informal hierarchies

Conceptual Data Models (UML, ER)

Frames

General Logic

DB Schema
Levels of ontological precision

precision: the ability to catch all and only the intended meaning (for a logical theory, to be satisfied by intended models)

(from Gangemi, 2004)
Outline

1 RDBMSs and other ‘legacy KR’
 - Example: manual and automated extractions

2 Thesauri
 - SKOS
 - Thesauri

3 Natural language
 - Introduction
 - Ontology learning
 - Ontology population
Examples: OBO

- OBO in OWL 2 DL
 - OBO is a Directed Acyclic Graph (with is_a, part_of, etc. relationships)
 - with some extras (a.o., date, saved by, remark)
 - and ‘work-arounds’ (not-necessary and inverse-necessary) and non-mappable things (antisymmetry)
 - There are several OBO-in-OWL mappings, some more comprehensive than others
 - Most OBO ontology now also have an OWL version (consult OBO Foundry, BioPortal)
General considerations for RDBMSs

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- ‘impedance mismatch’ DB values and ABox objects
 ⇒ values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances
General considerations for RDBMSs

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models

- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes

- ‘impedance mismatch’ DB values and ABox objects

- \[\Rightarrow\]
 - values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances
General considerations for RDBMSs

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- ‘impedance mismatch’ DB values and ABox objects
 ⇒ values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances
General considerations for RDBMSs

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models

- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes

- ‘impedance mismatch’ DB values and ABox objects

 ⇒ values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances
General considerations for RDBMSs

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)

But,

- Assumes there was a fully normalised conceptual data model,
- Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
- Minimal (if at all) automated reasoning with it

- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the ‘ontology’ into an ontology?
- Establish some mechanism to keep a ‘link’ between the terms in the ontology and the source in the database?
General considerations for RDBMSs

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But,
 - Assumes there was a fully normalised conceptual data model,
 - Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
 - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the ‘ontology’ into an ontology?
- Establish some mechanism to keep a ‘link’ between the terms in the ontology and the source in the database?
General considerations for RDBMSs

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But,
 - Assumes there was a fully normalised conceptual data model,
 - Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
 - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the ‘ontology’ into an ontology?
- Establish some mechanism to keep a ‘link’ between the terms in the ontology and the source in the database?
Manual Extraction

- Most database are not neat as assumed in the ‘Automatic Extraction of Ontologies’ (e.g., denormalised)
- Then what?
 - Reverse engineer the database to a conceptual data model
 - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)
Manual Extraction

- Most database are not neat as assumed in the ‘Automatic Extraction of Ontologies’ (e.g., denormalised)
- Then what?
 - Reverse engineer the database to a conceptual data model
 - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)
Most database are not neat as assumed in the ‘Automatic Extraction of Ontologies’ (e.g., denormalised)

Then what?
- Reverse engineer the database to a conceptual data model
- Choose an ontology language for your purpose

Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)
Section of the HGT conceptual data model (in ORM 2)
<table>
<thead>
<tr>
<th>Basic statistics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 classes</td>
</tr>
<tr>
<td>34 object properties of which 17 functional</td>
</tr>
<tr>
<td>55 data properties of which 47 functional</td>
</tr>
<tr>
<td>102 subclass axioms</td>
</tr>
</tbody>
</table>

Subsequently used for Ontology-Based Data Access
Automatic Extraction of Ontologies

Examples

- Lina Lubyte & Sergio Tessaris’s presentation of the DEXA’09 paper
- Reverse engineering from DB to ORM model with, e.g., VisioModeler v3.1 or NORMA
Outline

1. RDBMSs and other ‘legacy KR’
 • Example: manual and automated extractions

2. Thesauri
 • SKOS
 • Thesauri

3. Natural language
 • Introduction
 • Ontology learning
 • Ontology population
- See slides SKOS.pdf
Thesauri galore in medicine, education, agriculture, ...

- Core notions of **BT** broader term, **NT** narrower term, and **RT** related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus:
 - reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk
 - NT cow milk
 - NT milk fat

How to go from this to an ontology?
Overview

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of **BT** broader term, **NT** narrower term, and **RT** related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus:
 - reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk
 - NT cow milk
 - NT milk fat
- *How to go from this to an ontology?*
Overview

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of **BT** broader term, **NT** narrower term, and **RT** related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus:
 - reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk
 - NT cow milk
 - NT milk fat
- *How to go from this to an ontology?*
Overview

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of **BT** broader term, **NT** narrower term, and **RT** related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus:
 - reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk
 - NT cow milk
 - NT milk fat

How to go from this to an ontology?
Thesauri galore in medicine, education, agriculture, ...

Core notions of **BT** broader term, **NT** narrower term, and **RT** related term (and auxiliary ones UF/USE)

E.g. the Educational Resources Information Center thesaurus:
- reading ability
 - BT ability
 - RT reading
 - RT perception

E.g. AGROVOC of the FAO:
- milk
 - NT cow milk
 - NT milk fat

How to go from this to an ontology?
Lexicalisation of a conceptualisation

- Low ontological precision
- BT/NT is not the same as is_a, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)
Lexicalisation of a conceptualisation

Low ontological precision

BT/NT is not the same as is-a, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics

Those relationships are used inconsistently

Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)
Problems

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as is_a, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)
Problems

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as is_a, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)
Lexicalisation of a conceptualisation

Low ontological precision

BT/NT is not the same as \textit{is_a}, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics

Those relationships are used inconsistently

Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)
Simple Knowledge Organisation System(s): SKOS

- W3C standard intended for converting Thesauri, Classification Schemes, Taxonomies, Subject Headings etc into one interoperable syntax
 - Concept-based search instead of text-based search
 - Reuse each others concept definitions
 - Search across (institution) boundaries
 - Standard software

- Limitations:
 - ‘unusual’ concept schemes do not fit into SKOS (original structure too complex)
 - skos:Concept without clear properties (like in OWL) and still much subject domain semantics in the natural language text
 - ‘semantic relations’ have little semantics (skos:narrower does not guarantee it is is_a or part_of)
Simple Knowledge Organisation System(s): SKOS

- W3C standard intended for converting Thesauri, Classification Schemes, Taxonomies, Subject Headings etc into one interoperable syntax
 - Concept-based search instead of text-based search
 - Reuse each others concept definitions
 - Search across (institution) boundaries
 - Standard software

- Limitations:
 - ‘unusual’ concept schemes do not fit into SKOS (original structure too complex)
 - `skos:Concept` without clear properties (like in OWL) and still much subject domain semantics in the natural language text
 - ‘semantic relations’ have little semantics (`skos:narrower` does not guarantee it is `is_a` or `part_of`)
A rules-as-you-go approach

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go)

see (Soergel et al, 2004)
A rules-as-you-go approach

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go); e.g.
 - observation: cow NT cow milk should become cow
 <hasComponent> cow milk
 - pattern: animal <hasComponent> milk (or, more generally
 animal <hasComponent> body part)
 — derive automatically: goat NT goat milk should become
 goat <hasComponent> goat milk
 other pattern examples, e.g., plant <growsIn> soil type and
 geographical entity <spatiallyIncludedIn> geographical entity
Outline

1. RDBMSs and other ‘legacy KR’
 - Example: manual and automated extractions

2. Thesauri
 - SKOS
 - Thesauri

3. Natural language
 - Introduction
 - Ontology learning
 - Ontology population
Using ontologies to improve NLP

- To enhance precision and recall of queries
- To enhance dialogue systems
- To sort literature results
- To navigate literature (linked data)

Using NLP to develop ontologies (TBox)

Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al., 2009)

Using NLP to populate ontologies (ABox)

Document retrieval enhanced by lexicalised ontologies
Biomedical text mining (today; ref Witte et al., 2007)

Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning
 (today; ref Alexopoulou et al., 2008)
- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 Biomedical text mining (today; ref Witte et al., 2007)
- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning
 (today; ref Alexopoulou et al., 2008)
- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al., 2007)
- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)

- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al., 2008)

- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al., 2007)

- Natural language generation from a formal language
Introduction

Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)

- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning
 (today; ref Alexopoulou et al, 2008)

- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 Biomedical text mining (today; ref Witte et al, 2007)

- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)

- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)

- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al, 2007)

- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)

- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning
 (today; ref Alexopoulou et al, 2008)

- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al, 2007)

- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning
 (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning (today; ref. Alexopoulou et al., 2008)
- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref. Witte et al., 2007)
- Natural language generation from a formal language
Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)

- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning
 (today; ref Alexopoulou et al, 2008)

- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al, 2007)

- Natural language generation from a formal language
Introduction

Natural language and ontologies

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)

- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)

- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al, 2007)

- Natural language generation from a formal language
Ontologies in practice: Semantic Tagging—Classes, Terms
Ontologies in practice: Semantic Tagging—Lexicalized Ontologies

http://olp.dfki.de/LingInfo/
http://ontoware.org/projects/lexonto/

Examples (out of many)

- **GoPubMed** (Dietze et al, 2009)
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology

- **Question answer system AliQAn for agriculture** (Vila and Ferrández, 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet

- **Attempto Controlled English (ACE)**, rabbit, etc.; grammar engine, template-based approach
Examples (out of many)

- **Generic tools**: see http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list

- **GoPubMed** (Dietze et al, 2009)
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology

- **Question answer system AliQAn for agriculture** (Vila and Ferrández, 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet

- **Attempto Controlled English (ACE)**, rabbit, etc.; grammar engine, template-based approach
Examples (out of many)

- **GoPubMed** *(Dietze et al, 2009)*
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging).
 - Results of the PubMed query are sorted according to terms in the ontology.

- **Question answer system AliQAn for agriculture** *(Vila and Ferrández, 2009)*
 - Question assignment task too difficult for specialised domains.
 - Add ontology to an open domain QA system, using AGROVOC and WordNet.

- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach.
Examples (out of many)

- **GoPubMed** (Dietze et al, 2009)
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology

- **Question answer system AliQAn for agriculture** (Vila and Ferrández, 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet

- **Attempto Controlled English (ACE)**, rabbit, etc.; grammar engine, template-based approach
Examples (out of many)

- **Generic tools**: see http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list

- **GoPubMed** (Dietze et al, 2009)
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology

- **Question answer system AliQAn for agriculture** (Vila and Ferrández, 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet
 - Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach
Examples (out of many)

- **GoPubMed** (Dietze et al, 2009)
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology

- **Question answer system AliQAn for agriculture** (Vila and Ferrández, 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet
 - Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach
Examples (out of many)

- **GoPubMed** (Dietze et al, 2009)
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology

- **Question answer system AliQAn for agriculture** (Vila and Ferrández, 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet

- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach
Introduction

Examples (out of many)

- **GoPubMed** *(Dietze et al, 2009)*
 - Layer over PubMed, which indexes ± 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology
- **Question answer system AliQAn for agriculture** *(Vila and Ferrández, 2009)*
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet
- **Attempto Controlled English (ACE), rabbit, etc.**; grammar engine, template-based approach
Ontology learning

Background

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
 - We take a closer look at ontology learning limited to finding terms for a domain ontology
Ontology learning

Background

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
 - We take a closer look at ontology learning limited to finding terms for a domain ontology
Ontology learning

Background

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
 - We take a closer look at ontology learning limited to finding terms for a domain ontology
Ontology learning

Bottom-up ontology development with NLP

- Usual parameters, such as purpose (in casu, document retrieval), formal language (an OWL species)
- A standard kind of ontology (not a comprehensive lexicalised ontology)
- Additional considerations for “text-mining ontologies”
 - Level of granularity of the terms to include (hypo/hypernyms)
 - How to deal with synonyms (‘LDL I’ and ‘large LDL’)
 - Handle term variations (e.g., ‘LDL-I’ and ‘LDL I’, ‘Tangiers’ disease’ and ‘Tangier’s Disease’)
 - Disambiguation; e.g. w.r.t. abbreviations
Method to test automated term recognition

- Compare the terms of a manually constructed ontology with the terms obtained from text mining a suitable corpus
- Build an ontology manually
 - Lipoprotein metabolism (LMO), 223 classes with 623 synonyms
- Create a corpus
 - 3066 review article abstract from PubMed, obtained with a ‘lipoprotein metabolism’ search
- Automatic Term Recognition (ATR) tools
 - Text2Onto: relative term frequency, TFIDF, entropy, hypernym structure of WordNet, Hearst patterns
 - Termine: statistics of candidate term, such as total frequency of occurrence, frequency of the term as part of other longer candidate terms, length of term
 - OntoLearn: linguistic processor and syntactic parser, Domain relevance and domain consensus
 - RelFreq: relative frequency of a term in a corpus
 - TFIDF: RelFreq + doc. frequency derived from all phrases in PubMed
Ontology learning

Results

- OntoLearn excluded form analysis because it regenerated few terms
- Text2Onto only included in analysis for up to 300 abstracts (could not process all 3066)
- Precision for LMO 17-35% for top 50 terms, and 4-8% for top 1000 terms
- Precision for LMO + expert analysis of the automatically generated terms: up to 75% for top 50 terms, and up to 29% for top 1000 terms
- Termine good for the longer terms, RelFreq and TFIDF for the shorter terms
Table 3: Coverage of LMO terminology in selected document sets. The table sets the upper limit of terms that can be found with text-mining: Even a large text base with 50,000 documents contains only 71% of LMO terms. TFIDF can predict up to 38% of LMO terms.

<table>
<thead>
<tr>
<th>LMO terminology predicted by TFIDF</th>
<th>LMO terminology literally contained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>all</td>
</tr>
<tr>
<td>300 review abstracts for “lipoprotein metabolism”</td>
<td>8.75%</td>
</tr>
<tr>
<td>3,066 abstracts for “lipoprotein metabolism”</td>
<td>14.99%</td>
</tr>
<tr>
<td>50,000 abstracts containing “lipoprotein”</td>
<td>20.98%</td>
</tr>
</tbody>
</table>
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus
 - Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus
 - Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus
- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus

- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus

- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
What went wrong with some of the terms?

- LMO terms that were not in the 50k abstracts grouped into:
 - Rarely occurring terms: occur rarely even in the whole of PubMed
 - Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead of 2622 for ‘free cholesterol’)
 - Very long terms; e.g., ‘predominance of large low-density lipoprotein particles’, which can be decomposed into smaller terms
 - Combinations of terms/variants; e.g., ‘increased total chol’ (0, instead of 116 for ‘increased total cholesterol’),
 - Terms that should normally be easily found; e.g., ‘diabetes type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due to limited corpus

- Predicted terms, not in LMO: wrongly predicted (±25% of the TFIDF top50) or can be added to LMO (±40% of the TFIDF top50)
Typical NLP tasks

- Named Entity recognition/semantic tagging; e.g., “... the organisms were incubated at 37°C”
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter amino acid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β-galactosidase), there are pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; most of the important information in contained within the relations between entities, NLP can be enhanced by considering semantically possible relations
Typical NLP tasks

- **Named Entity recognition/semantic tagging;** e.g., “… the organisms were incubated at 37°C”

- **Entity normalization;** e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)

- **Coreference resolution;** in addition to synonyms (lactase and β-galactosidase), there as pronominal references (it, this)

- **Grounding;** the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality

- **Relation detection;** most of the important information in contained within the relations between entities, NLP can be enhanced by considering semantically possible relations
Typical NLP tasks

- Named Entity recognition/semantic tagging; e.g., “... the organisms were incubated at 37°C”
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter amino acid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β-galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; most of the important information in contained within the relations between entities, NLP can be enhanced by considering semantically possible relations
Typical NLP tasks

- Named Entity recognition/semantic tagging; e.g., “... the organisms were incubated at 37°C”
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter amino acid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β-galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; most of the important information in contained within the relations between entities, NLP can be enhanced by considering semantically possible relations
Ontology population

Typical NLP tasks

- Named Entity recognition/semantic tagging; e.g., “... the organisms were incubated at 37°C”
- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β-galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; most of the important information in contained within the relations between entities, NLP can be enhanced by considering semantically possible relations
Requirements for NLP ontologies

- Domain ontology (at least a taxonomy)
 - Text model, concerns with classes such as sentence, text position and locations like abstract, introduction
 - Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
 - Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like endo- and -ase
 - Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
 - Entity relations; represented in the domain ontology
Requirements for NLP ontologies

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as sentence, text position and locations like abstract, introduction
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like endo- and -ase
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology
Requirements for NLP ontologies

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *introduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology
Requirements for NLP ontologies

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as sentence, text position and locations like abstract, introduction
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like endo- and -ase
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology
Requirements for NLP ontologies

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as sentence, text position and locations like abstract, introduction
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like endo- and -ase
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology
Requirements for NLP ontologies

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as sentence, text position and locations like abstract, introduction
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like endo- and -ase
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology
MutatinMiner use case

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central scientific name and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy
Ontology population

MutationMiner use case

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central scientific name and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy
MutationMiner use case

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central scientific name and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy
 Ontology population

MutationMiner use case

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central *scientific name* and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy
Discussion

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
 - Standardizes data exchange, consolidate disparate resources
 - Detecting inconsistencies (caused by, e.g., a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account
Discussion

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
 - Standardizes data exchange, consolidate disparate resources
 - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account
Discussion

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
 - Standardizes data exchange, consolidate disparate resources
 - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account
Discussion

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
 - Standardizes data exchange, consolidate disparate resources
 - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account
Discussion

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
 - Standardizes data exchange, consolidate disparate resources
 - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account
1 RDBMSs and other ‘legacy KR’
 • Example: manual and automated extractions

2 Thesauri
 • SKOS
 • Thesauri

3 Natural language
 • Introduction
 • Ontology learning
 • Ontology population