COMP718: Ontologies and Knowledge Bases Lecture 7: Bottom-up Ontology Development

Thesauri

Maria Keet email: keet@ukzn.ac.za home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

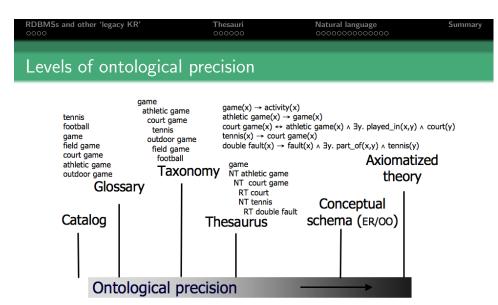
20 March 2012

1 RDBMSs and other 'legacy KR'

- Example: manual and automated extractions
- 2 Thesauri
 - SKOS
 - Thesauri

3 Natural language

- Introduction
- Ontology learning
- Ontology population


2/37

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language	Summary
Bottom-up			

RDBMSs and other 'legacy KR'	Thesauri	Natural language	Summary
A few languages			

- From *some* seemingly suitable legacy representation to an OWL ontology
 - Database reverse engineering
 - Conceptual model (ER, UML)
 - Frame-based system
 - OBO format
 - Thesauri
 - Formalizing biological models
 - Excel sheets
 - Text mining, machine learning, clustering
 - etc...

ad hoc Hierarchies (Yahoo!)	structured Glossaries	XML Schema	formal		ption Logics OWL)
Terms	XML D	TDs	Taxonomi	es	
'ordinary' Glossaries	Principled, informal hierarchies		Conceptual Da Models (UML, ER)	ta	\longrightarrow
Data Dictionaries (EDI)		DB Schema	Fi	rames	General Logic
Glossaries & Data Dictionaries	Thesauri, Taxonomies	ХМІ	aData, L Schemas, ata Models	Formal & Infere	Ontologies ence

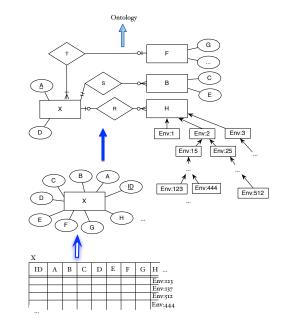
precision: the ability to catch all and only the intended meaning (for a logical theory, to be satisfied by intended models)

(from Gangemi, 2004)

5/37

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language	Summary
General consideratio	ns for RDBMS) S	

- Set aside of data duplication, violations of integrity constraints, hacks, outdated imports from other databases, outdated conceptual data models
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- 'impedance mismatch' DB values and ABox objects
- $\bullet \Rightarrow$


values-but-actually-concepts-that-should-become-OWL-classes and values-that-should-become-OWL-instances

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language	Summary
Examples: OBO			

- OBO in OWL 2 DL
 - OBO is a Directed Acyclic Graph (with is_a, part_of, etc. relationships)
 - with some extras (a.o., date, saved by, remark)
 - and 'work-arounds' (not-necessary and inverse-necessary) and non-mappable things (antisymmetry)
 - There are several OBO-in-OWL mappings, some more comprehensive than others
 - Most OBO ontology now also have an OWL version (consult OBO Foundry, BioPortal)

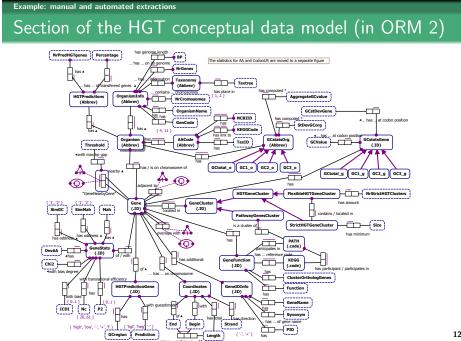
RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language	Summary

General considerations for RDBMSs

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But.

RDBMSs and other 'legacy KR

0000


- Assumes there was a fully normalised conceptual data model,
- Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
- Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the 'ontology' into an ontology?

Thesauri

• Establish some mechanism to keep a 'link' between the terms in the ontology and the source in the database?

Natural language

10/37

RDBMSs and other 'legacy KR' ●○○○	Thesauri	Natural la
Example: manual and automated extractions		
Manual Extraction		

- Most database are not neat as assumed in the 'Automatic Extraction of Ontologies' (e.g., denormalised)
- Then what?

- Reverse engineer the database to a conceptual data model
- Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)

RDBMSs and other 'legacy KR' ○○●○	Thesauri 000000	Natural language	Summary
Example: manual and automated extraction	15		
Manual mapping to	DL-Lite ₄		

- Basic statistics:
 - 38 classes
 - 34 object properties of which 17 functional
 - 55 data properties of which 47 functional
 - 102 subclass axioms
- Subsequently used for Ontology-Based Data Access

RDBMSs and other 'legacy KR' 000●	Thesauri 000000	Natural language
Example: manual and automated extractions		

Automatic Extraction of Ontologies

RDBMSs and other 'legacy KR' 0000	Thesauri ●○○○○○	Natural language	Summary
SKOS			

• Examples

- Lina Lubyte & Sergio Tessaris's presentation of the DEXA'09 paper
- $\bullet\,$ Reverse engineering from DB to ORM model with, e.g., VisioModeler v3.1 or NORMA

• See slides SKOS.pdf

14/37

RDBMSs and other 'legacy KR' 0000	Thesauri ○●○○○○	Natural language	Summary
Thesauri			
Overview			

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of **BT** broader term, **NT** narrower term, and **RT** related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk
 - NT cow milk
 - NT milk fat
- How to go from this to an ontology?

RDBMSs and other 'legacy KR' 0000	Thesauri ○○●○○○	Natural language	Summary
Thesauri			
Problems			

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as *is_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

W3C standard intended for converting Thesauri, Classification Schemes, Taxonomies, Subject Headings etc into one interoperable syntax

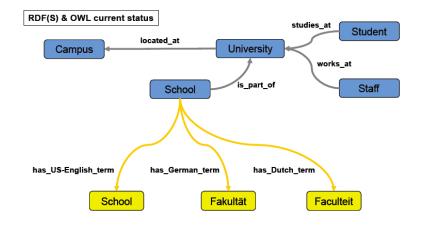
- Concept-based search instead of text-based search
- Reuse each others concept definitions
- Search across (institution) boundaries
- Standard software
- Limitations:
 - 'unusual' concept schemes do not fit into SKOS (original structure too complex)
 - skos:Concept without clear properties (like in OWL) and still much subject domain semantics in the natural language text
 - 'semantic relations' have little semantics (skos:narrower does not guarantee it is *is_a* or *part_of*)

19/37

RDBMSs and other 'legacy KR' 0000	Thesauri ○○○○○●	Natural language	Summary
Thesauri			
A rules-as-you-go ap	oproach		

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go); e.g.
 - observation: cow NT cow milk should become cow
 - <hasComponent> cow milk
 - pattern: animal < hasComponent> milk (or, more generally animal < hasComponent> body part)
 - derive automatically: goat NT goat milk should become goat <hasComponent> goat milk

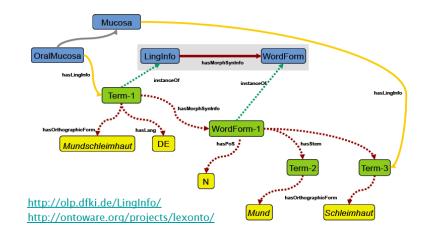
other pattern examples, e.g., plant <growsln> soil type and geographical entity <spatiallyIncludedIn> geographical entity


- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go)

see (Soergel et al, 2004)

RDBMSs and other 'legacy KR' 0000	Thesauri	Natural language ●000000000000000000000000000000000000	Summary
Introduction			
Natural language an	d ontologies		

- Using ontologies to improve NLP
 - To enhance precision and recall of queries
 - To enhance dialogue systems
 - To sort literature results
 - To navigate literature (linked data)
- Using NLP to develop ontologies (TBox)
 - Searching for candidate terms and relations: Ontology learning (today; ref Alexopoulou et al, 2008)
- Using NLP to populate ontologies (ABox)
 - Document retrieval enhanced by lexicalised ontologies
 - Biomedical text mining (today; ref Witte et al, 2007)
- Natural language generation from a formal language


http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf

24/37

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language ○○○●○○○○○○○○○	Summary
Introduction			
Examples (out of ma	any)		

- Generic tools: see http://www.deri.ie/fileadmin/documents/ teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list
- GoPubMed (Dietze et al, 2009)
 - Layer over PubMed, which indexes \pm 19mln articles in the bio(medical) domain; pre-processing of the abstracts (advanced semantic tagging)
 - Results of the PubMed query are sorted according to terms in the ontology
- $\bullet~Question~answer~system~AliQAn~for~agriculture~(Vila and Ferrández,$
 - 2009)
 - Question assignment task too difficult for specialised domains
 - Add ontology to an open domain QA system, using AGROVOC and WordNet
- Attempto Controlled English (ACE), rabbit, etc.; grammar engine, template-based approach

http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language ○○○○●○○○○○○○○○	Summary
Ontology learning			
Background			

- Ontology development is time consuming
- Bottom-up ontology development strategies, of which one is to use NLP
- Where, if anywhere, can NLP make life easier for ontology development, and how?
- Current results are mostly discouraging, and depend on the approach, technique, and ontological commitment
 - We take a closer look at ontology learning limited to finding terms for a domain ontology

Ontology learning

Natural language

Bottom-up ontology development with NLP

• Usual parameters, such as purpose (in casu, document retrieval), formal language (an OWL species)

Thesaur

- A standard kind of ontology (not a comprehensive lexicalised ontology)
- Additional considerations for "text-mining ontologies"
 - Level of granularity of the terms to include (hypo/hypernyms)
 - How to deal with synonyms ('LDL I' and 'large LDL')
 - Handle term variations (e.g., 'LDL-I' and 'LDL I', 'Tangiers' disease' and 'Tangier's Disease')
 - Disambiguation; e.g. w.r.t. abbreviations

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language ○○○○○○●○○○○○○	Summary
Ontology learning			
Results			

- OntoLearn excluded form analysis because it regenerated few terms
- Text2Onto only included in analysis for up to 300 abstracts (could not process all 3066)
- Precision for LMO 17-35% for top 50 terms, and 4-8% for top 1000 terms
- Precision for LMO + expert analysis of the automatically generated terms: up to 75% for top 50 terms, and up to 29% for top 1000 terms
- Termine good for the longer terms, RelFreq and TFIDF for the shorter terms

BMSs and other 'legacy KR'	Thesauri	Natural language ○○○○○●○○○○○○	
ology learning			

Method to test automated term recognition

- Compare the terms of a manually constructed ontology with the terms obtained from text mining a suitable corpus
- Build an ontology manually
 - Lipoprotein metabolism (LMO), 223 classes with 623 synonyms
- Create a corpus
 - 3066 review article abstract from PubMed, obtained with a 'lipoprotein metabolism' search
- Automatic Term Recognition (ATR) tools
 - Text2Onto: relative term frequency, TFIDF, entropy, hypernym structure of WordNet, Hearst patterns
 - Termine: statistics of candidate term, such as total frequency of occurrence, frequency of the term as part of other longer candidate terms, length of term
 - OntoLearn: linguistic processor and syntactic parser, Domain relevance and domain consensus
 - RelFreq: relative frequency of a term in a corpus
 - TFIDF: RelFreq + doc. frequency derived from all phrases in PubMed

29/37

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language ○○○○○○○●○○○○○	Summary
Ontology learning			
Results (cont'd)			

Table 3: Coverage of LMO terminology in selected document sets. The table sets the upper limit of terms that can be found with textmining: Even a large text base with 50,000 documents contains only 71% of LMO terms. TFIDF can predict up to 38% of LMO terms.

	LMO terminology predicted by TFIDF		LMO terminology literall contained	
	1000	all		
300 review abstracts for "lipoprotein metabolism"	8.75%	15.35%	20.98%	
3,066 abstracts for "lipoprotein metabolism"	14.99%	38.25%	53.00%	
50,000 abstracts containing "lipoprotein"			71.22%	

from Alexopoulou et al, 2008

Ontology learning

Natural language

What went wrong with some of the terms?

• LMO terms that were not in the 50k abstracts grouped into:

Thesaur

- Rarely occurring terms: occur rarely even in the whole of PubMed
- Rarely occurring variants of terms: e.g., 'free chol' (0, instead of 2622 for 'free cholesterol')
- Very long terms; e.g, 'predominance of large low-density lipoprotein particles', which can be decomposed into smaller terms
- Combinations of terms/variants; e.g., 'increased total chol' (0, instead of 116 for 'increased total cholesterol'),
- Terms that should normally be easily found; e.g., 'diabetes type I' (126) and 'acetyl-coa c-acyltransferase', probably due to limited corpus
- \bullet Predicted terms, not in LMO: wrongly predicted ($\pm 25\%$ of the TFIDF top50) or can be added to LMO ($\pm 40\%$ of the TFIDF top50)

32/37

RDBMSs and other 'legacy KR' 0000	Thesauri 000000	Natural language	Summary
Ontology population			
Requirements for NL	P ontologies		

- Domain ontology (at least a taxonomy)
- Text model, concerns with classes such as *sentence*, *text position* and locations like *abstract*, *intorduction*
- Biological entities, i.e., contents for the ABox, often already available in biological databases on the Internet
- Lexical information for recognizing named entities; full names of entities, their synonyms, common variants and misspellings, and knowledge about naming, like *endo-* and *-ase*
- Database links to connect the lexical term to the entity represent in a particular database (the grounding step)
- Entity relations; represented in the domain ontology

Typical NLP tasks

• Named Entity recognition/semantic tagging; e.g., "... the organisms were incubated at 37°C")

Thesauri

- Entity normalization; e.g., different strings refer to the same thing (full and abbreviated name, or single letter amino acid, three-letter aminoacid and full name: W, Trp, Tryptophan)
- Coreference resolution; in addition to synonyms (lactase and β -galactosidase), there as pronominal references (it, this)
- Grounding; the text string w.r.t. external source, like UniProt, that has the representation of the entity in reality
- Relation detection; *most of the important information in contained within the relations between entities*, NLP can be enhanced by considering semantically possible relations

RDBMSs and other 'legacy KR'	Thesauri 000000	Natural language ○○○○○○○○○○○●○	Summary
Ontology population			
MutationMiner use of	ase		

- See Witte et al. book chapter for details
- Ontology in OWL, in Protégé; with class name, textual definition and example instances
- Species info from the NCBI taxonomy; note the management of central *scientific name* and its synonyms, common variants and misspellings
- Uniprot and use of its back-links to the NCBI taxonomy

RDBMSs and other 'legacy KR' 0000	Thesauri	Natural language ○○○○○○○○○○○○●	Summary
Ontology population			
Discussion			

- Significant upfront investments due to novelty and complexity of SWT
- Benefits:
 - Standardizes data exchange, consolidate disparate resources
 - Detecting inconsistencies (caused by, e.g. a pronoun with an incompatible relation to another textual entity)
- To do: Ontological NLP, enhancing standard NLP tools to take more of SWT into account

RDBMSs and other 'legacy KR'

- Example: manual and automated extractions
- 2 Thesauri
 - SKOS
 - Thesauri
- 3 Natural language
 - Introduction
 - Ontology learning
 - Ontology population