Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary

COMP718: Ontologies and Knowledge Bases Lecture 4: OWL 2 and Reasoning

Maria Keet email: keet@ukzn.ac.za home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

Feb 28/29, 2012

・ロト ・聞ト ・ヨト ・ヨト

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Outline				

- OWL 2
 OWL 2 DL
- 3 OWL 2 profiles
 - OWL 2 EL
 - OWL 2 QL
 - OWL 2 RL

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Outline				

- 2 OWL 2• OWL 2 DL
- 3 OWL 2 profiles
 OWL 2 EL
 OWL 2 QL
 - OWL 2 RL

4 Reasoning

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Expressivity	limitations			

- Qualified cardinality restrictions (e.g., no Bicycle $\sqsubseteq \geq$ 2 hasComponent.Wheel)
- Relational properties (no reflexivity, irreflexivity)
- Data types, missing
 - restrictions to a subset of datatype values (ranges)
 - relationships between values of data properties on one object.
 - relationships between values of data properties on different objects
 - aggregation functions
- Other things like annotations, imports, versioning, species validation (see p315 of the paper)

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
Expressivity	limitations			

- Qualified cardinality restrictions (e.g., no Bicycle $\sqsubseteq \geq$ 2 hasComponent.Wheel)
- Relational properties (no reflexivity, irreflexivity)
- Data types, missing
 - restrictions to a subset of datatype values (ranges)
 - relationships between values of data properties on one object
 - relationships between values of data properties on different objects
 - aggregation functions
- Other things like annotations, imports, versioning, species validation (see p315 of the paper)

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Expressivity	limitations			

- Qualified cardinality restrictions (e.g., no Bicycle $\sqsubseteq \geq$ 2 hasComponent.Wheel)
- Relational properties (no reflexivity, irreflexivity)
- Data types, missing
 - restrictions to a subset of datatype values (ranges)
 - relationships between values of data properties on one object
 - relationships between values of data properties on different objects
 - aggregation functions
- Other things like annotations, imports, versioning, species validation (see p315 of the paper)

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Syntax probl	lems			

- Having both frame-based legacy (Abstract syntax) and axioms (DL) was deemed confusing
- Type of ontology entity. e.g., Class(A partial
 - restriction(hasB someValuesFrom(C))
 - hasB is data property and C a datatype?
 - hasB an object property and C a class?

OWL-DL has a strict separation of the vocabulary, but the specification does not precisely specify how to enforce this separation at the syntactic level

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
More syntax	problems			

- RDF's triple notation, difficult to read and process
- OWL 1 provides mapping from the Abstract Syntax into OWL RDF, but not the converse:
 - an RDF graph *G* is an OWL-DL ontology if there exists an ontology *O* in Abstract Syntax s.t. the result of the normative transformation of *O* into triples is precisely *G*, which makes checking whether *G* is an OWL-DL ontology very hard in practice:
 - examine all 'relevant' ontologies O in abstract syntax, check whether the normative transformation of O into RDF yields precisely G.

Limitations	OWL 2 0000000	OWL 2 profiles	Reasoning	Summary
More syntax	problems			

- RDF's triple notation, difficult to read and process
- OWL 1 provides mapping from the Abstract Syntax into OWL RDF, but not the converse:
 - an RDF graph *G* is an OWL-DL ontology if there exists an ontology *O* in Abstract Syntax s.t. the result of the normative transformation of *O* into triples is precisely *G*, which makes checking whether *G* is an OWL-DL ontology very hard in practice:
 - examine all 'relevant' ontologies O in abstract syntax, check whether the normative transformation of O into RDF yields precisely G.

Limitations	OWL 2 0000000	OWL 2 profiles	Reasoning	Summary
More syntax	problems			

- RDF's triple notation, difficult to read and process
- OWL 1 provides mapping from the Abstract Syntax into OWL RDF, but not the converse:
 - an RDF graph *G* is an OWL-DL ontology if there exists an ontology \mathcal{O} in Abstract Syntax s.t. the result of the normative transformation of \mathcal{O} into triples is precisely *G*, which makes checking whether *G* is an OWL-DL ontology very hard in practice:
 - examine all 'relevant' ontologies \mathcal{O} in abstract syntax, check whether the normative transformation of \mathcal{O} into RDF yields precisely G.

	Reasoning	Summary
Problems with the semantics		

- RDF's blank nodes, but unnamed individuals not directly available in $\mathcal{SHOIN}(D)$
- Frames and axioms

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
Outline				

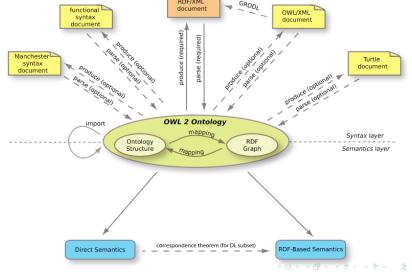
- OWL 2
 OWL 2 DL
- OWL 2 profiles
 OWL 2 EL
 OWL 2 QL
 - OWL 2 RL

Reasoning

<ロト < 部 > < 注 > < 注 > 注 の Q () 8/38

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
Aims				

- Address as much as possible of the identified problems (previous slides and "the next steps for OWL 2" paper)
- Task: compare this with the possible "future extensions" of the "the making of an ontology language" paper


Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
Aims				

- Address as much as possible of the identified problems (previous slides and "the next steps for OWL 2" paper)
- Task: compare this with the possible "future extensions" of the "the making of an ontology language" paper

Limitations	OWL 2 • • • • • • • • • • • • • • • • • • •	OWL 2 profiles	Reasoning	Summary
Overview				
Some ger	neral points			

- OWL 2 a W3C recommendation since 27-10-'09
- Any OWL 2 ontology can also be viewed as an RDF graph (The relationship between these two views is specified by the Mapping to RDF Graphs document)
- Direct, i.e. model-theoretic, semantics (\Rightarrow OWL 2 DL) and an RDF-based semantics (\Rightarrow OWL 2 full)
- Primary exchange syntax for OWL 2 is RDF/XML, others are optional
- Three profiles, which are sub-languages of OWL 2 (syntactic restrictions)

Limitations	OWL 2 ○●○○○○○○	OWL 2 profiles	Reasoning	Summary
Overview				
The Struc	ture of OWL	2		
		RDF/XML GPD		

11/38

Limitations	OWL 2 ○○●○○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
Overview				

• Based on SROIQ(D), which is 2NExpTime-complete

- More expressive than OWL-DL
- Fancier metamodelling and annotations
- Improved ontology publishing, imports and versioning control
- Variety of syntaxes, RDF serialization (but no RDF-style semantics)

Limitations	OWL 2 ○○●○○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
Overview				

• Based on SROIQ(D), which is 2NExpTime-complete

More expressive than OWL-DL

- Fancier metamodelling and annotations
- Improved ontology publishing, imports and versioning control
- Variety of syntaxes, RDF serialization (but no RDF-style semantics)

Limitations	OWL 2 ○○●○○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
Overview				

- Based on SROIQ(D), which is 2NExpTime-complete
- More expressive than OWL-DL
- Fancier metamodelling and annotations
- Improved ontology publishing, imports and versioning control
- Variety of syntaxes, RDF serialization (but no RDF-style semantics)

Limitations	OWL 2 ○○●○○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
Overview				

- Based on SROIQ(D), which is 2NExpTime-complete
- More expressive than OWL-DL
- Fancier metamodelling and annotations
- Improved ontology publishing, imports and versioning control
- Variety of syntaxes, RDF serialization (but no RDF-style semantics)

Limitations	OWL 2 ○○●○○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
Overview				

- Based on SROIQ(D), which is 2NExpTime-complete
- More expressive than OWL-DL
- Fancier metamodelling and annotations
- Improved ontology publishing, imports and versioning control
- Variety of syntaxes, RDF serialization (but no RDF-style semantics)

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langua	ge: propert	ies of properties	5	

- property chains (DbjectPropertyChain), e.g.: SubObjectPropertyOf(ObjectPropertyChain(a:hasMother a:hasSister) a:hasAunt) with having Grace as the mother of Stewie, and Carol a sister of Grace, the ontology entails that Stewie has Carol as aunt or, e.g.,: contains ○ hasPart ⊑ contains
- ObjectMinCardinality, ObjectMaxCardinality, ObjectExactCardinality, ObjectHasSelf, FunctionalObjectProperty, InverseFunctionalObjectProperty, IrreflexiveObjectProperty, AsymmetricObjectProperty, and DisjointObjectProperties only on simple object properties (i.e., has no direct or indirect subproperties that are either transitive or are defined by means of property chains)

Limitations	OWL 2 ○○○●○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	age: propert	ies of propertie	es	

- property chains (DbjectPropertyChain), e.g.: SubObjectPropertyOf(ObjectPropertyChain(a:hasMother a:hasSister) a:hasAunt) with having Grace as the mother of Stewie, and Carol a sister of Grace, the ontology entails that Stewie has Carol as aunt or, e.g.,: contains \circ hasPart \subscript contains
- ObjectMinCardinality, ObjectMaxCardinality, ObjectExactCardinality, ObjectHasSelf, FunctionalObjectProperty, InverseFunctionalObjectProperty, IrreflexiveObjectProperty, AsymmetricObjectProperty, and DisjointObjectProperties only on simple object properties (i.e., has no direct or indirect subproperties that are either transitive or are defined by means of property chains)

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	uage: other e	xtensions		

• qualified cardinality restrictions

- The Haskey 'key' that are **not** keys like in conceptual models and databases
 - Alike inverse functional only (i.e., merely 1:n instead of 1:1) but applicable only to individuals that are explicitly named in an ontology
 - No unique name assumption, hence inferences are different: from that expected of keys in databases
 - "relevant mainly for query answering" [Cuenca: Grau et al., 2008, p316], which does not go well with OWL 2 DL in non-toy applications anyway.
- Richer datatypes, data ranges; e.g., DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

Limitations	OWL 2 ○○○○●○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	age: other e	xtensions		

- qualified cardinality restrictions
- The Haskey 'key' that are **not** keys like in conceptual models and databases
 - Alike inverse functional only (i.e., merely 1:n instead of 1:1) but applicable only to individuals that are explicitly named in an ontology
 - No unique name assumption, hence inferences are different from that expected of keys in databases
 - "relevant mainly for query answering" [Cuenca Grau et al, 2008, p316], which does not go well with OWL 2 DL in non-toy applications anyway
- Richer datatypes, data ranges; e.g., DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

Limitations	OWL 2 ○○○○●○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	age: other e	xtensions		

- qualified cardinality restrictions
- The Haskey 'key' that are **not** keys like in conceptual models and databases
 - Alike inverse functional only (i.e., merely 1:n instead of 1:1) but applicable only to individuals that are explicitly named in an ontology
 - No unique name assumption, hence inferences are different from that expected of keys in databases
 - "relevant mainly for query answering" [Cuenca Grau et al, 2008, p316], which does not go well with OWL 2 DL in non-toy applications anyway
- Richer datatypes, data ranges; e.g., DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

Limitations	OWL 2 ○○○○●○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	age: other e	xtensions		

- qualified cardinality restrictions
- The Haskey 'key' that are **not** keys like in conceptual models and databases
 - Alike inverse functional only (i.e., merely 1:n instead of 1:1) but applicable only to individuals that are explicitly named in an ontology
 - No unique name assumption, hence inferences are different from that expected of keys in databases
 - "relevant mainly for query answering" [Cuenca Grau et al, 2008, p316], which does not go well with OWL 2 DL in non-toy applications anyway
- Richer datatypes, data ranges; e.g., DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

Limitations	OWL 2 ○○○○●○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	age: other e	xtensions		

- qualified cardinality restrictions
- The Haskey 'key' that are **not** keys like in conceptual models and databases
 - Alike inverse functional only (i.e., merely 1:n instead of 1:1) but applicable only to individuals that are explicitly named in an ontology
 - No unique name assumption, hence inferences are different from that expected of keys in databases
 - "relevant mainly for query answering" [Cuenca Grau et al, 2008, p316], which does not go well with OWL 2 DL in non-toy applications anyway
- Richer datatypes, data ranges; e.g., DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

(日) (間) (目) (目) (目)

Limitations	OWL 2 ○○○○●○○○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
The langu	age: other e	xtensions		

- qualified cardinality restrictions
- The Haskey 'key' that are **not** keys like in conceptual models and databases
 - Alike inverse functional only (i.e., merely 1:n instead of 1:1) but applicable only to individuals that are explicitly named in an ontology
 - No unique name assumption, hence inferences are different from that expected of keys in databases
 - "relevant mainly for query answering" [Cuenca Grau et al, 2008, p316], which does not go well with OWL 2 DL in non-toy applications anyway
- Richer datatypes, data ranges; e.g., DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer xsd:maxExclusive "10"^^xsd:integer)

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
OWL 2 D	L and DLs			
• qua ser		e of OWL-DL/SH restrictions, $\geq nR$. $ \sharp \{y \mid (x, y) \in R^{I} \mid \\ \sharp \{y \mid (x, y) \in R^{I} \mid \}$	$C \text{ and } \leq nR.C,$ $\forall y \in C^{\mathcal{I}} \} \geq n \}$	

• Properties of roles

- Reflexive: Ref(R), with semantics: $\forall x : x \in \Delta^{\mathcal{I}}$ implies $(x, x) \in (R)^{\mathcal{I}}$
- Irreflexive: Irr(R), with semantics: $\forall x : x \in \Delta^{\mathcal{I}}$ implies $(x, x) \notin (R)^{\mathcal{I}}$
- Asymmetric: Asym(R), with semantics: $\forall x \ y \ (x \ y) \in (R)^{\mathcal{I}}$ implies $(y \ x) \notin (R)$
- Limited role chaining: R ∘ S ⊑ R, with semantics: ∀y₁,..., y₄ : (y₁, y₂) ∈ (R)^T and (y₃, y₄) ∈ (S)^T imply (y₁, y₄) ∈ (R)^T, and regularity restriction (strict linear order < on the properties)

Limitations	OWL 2 ○○○○○●○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
OWL 2 D	DL and DLs			

- (In addition to those of OWL-DL/ \mathcal{SHOIN})
- qualified cardinality restrictions,

 nR.C and
 nR.C, semantics:
 - $(\geq nR.C)^{\mathcal{I}} = \{x \mid \sharp\{y \mid (x,y) \in R^{\mathcal{I}} \cap y \in C^{\mathcal{I}}\} \geq n\}$
 - $(\leq nR.C)^{\mathcal{I}} = \{x \mid \sharp\{y \mid (x,y) \in R^{\mathcal{I}} \cap y \in C^{\mathcal{I}}\} \leq n\}$
- Properties of roles:
 - Reflexive: Ref(R), with semantics: $\forall x : x \in \Delta^{\mathcal{I}}$ implies $(x, x) \in (R)^{\mathcal{I}}$
 - Irreflexive: Irr(R), with semantics: $\forall x : x \in \Delta^{\mathcal{I}} \text{ implies } (x, x) \notin (R)^{\mathcal{I}}$
 - Asymmetric: Asym(R), with semantics: $\forall x, y : (x, y) \in (R)^{\mathcal{I}}$ implies $(y, x) \notin (R)^{\mathcal{I}}$
- Limited role chaining: $R \circ S \sqsubseteq R$, with semantics: $\forall y_1, \dots, y_4 : (y_1, y_2) \in (R)^{\mathcal{I}}$ and $(y_3, y_4) \in (S)^{\mathcal{I}}$ imply $(y_1, y_4) \in (R)^{\mathcal{I}}$, and regularity restriction (strict linear order <on the properties)

Limitations	OWL 2 ○○○○○●○○	OWL 2 profiles	Reasoning	Summary
OWL 2 DL				
OWL 2 D	L and DLs			

- (In addition to those of OWL-DL/ \mathcal{SHOIN})
- qualified cardinality restrictions,

 nR.C and
 nR.C, semantics:
 - $(\geq nR.C)^{\mathcal{I}} = \{x \mid \sharp\{y \mid (x,y) \in R^{\mathcal{I}} \cap y \in C^{\mathcal{I}}\} \geq n\}$
 - $(\leq nR.C)^{\mathcal{I}} = \{x \mid \sharp\{y \mid (x,y) \in R^{\mathcal{I}} \cap y \in C^{\mathcal{I}}\} \leq n\}$
- Properties of roles:
 - Reflexive: Ref(R), with semantics: $\forall x : x \in \Delta^{\mathcal{I}}$ implies $(x, x) \in (R)^{\mathcal{I}}$
 - Irreflexive: Irr(R), with semantics: $\forall x : x \in \Delta^{\mathcal{I}} \text{ implies } (x, x) \notin (R)^{\mathcal{I}}$
 - Asymmetric: Asym(R), with semantics: $\forall x, y : (x, y) \in (R)^{\mathcal{I}}$ implies $(y, x) \notin (R)^{\mathcal{I}}$
- Limited role chaining: $R \circ S \sqsubseteq R$, with semantics: $\forall y_1, \dots, y_4 : (y_1, y_2) \in (R)^{\mathcal{I}}$ and $(y_3, y_4) \in (S)^{\mathcal{I}}$ imply $(y_1, y_4) \in (R)^{\mathcal{I}}$, and regularity restriction (strict linear order < on the properties)

OWL 2 ○○○○○○●○ OWL 2 profiles

OWL 2 DL

Definition ((Regular) Role Inclusion Axioms (HorrocksEtAl06))

Let \prec be a regular order on roles. A **role inclusion axiom** (RIA for short) is an expression of the form $w \sqsubseteq R$, where w is a finite string of roles not including the universal role U, and $R \neq U$ is a role name. A **role hierarchy** \mathcal{R}_h is a finite set of RIAs. An interpretation \mathcal{I} **satisfies** a role inclusion axiom $w \sqsubseteq R$, written $\mathcal{I} \models w \sqsubseteq R$, if $w^{\mathcal{I}} \subseteq R^{\mathcal{I}}$. An interpretation is a **model** of a role hierarchy \mathcal{R}_h if it satisfies all RIAs in \mathcal{R}_h , written $\mathcal{I} \models \mathcal{R}_h$. A RIA $w \sqsubseteq R$ is \prec -**regular** if R is a role name, and

- $w = R^{-}$, or
- $w = S_1...S_n$ and $S_i \prec R$, for all $1 \ge i \ge n$, or
- $w = RS_1...S_n$ and $S_i \prec R$, for all $1 \ge i \ge n$, or

• $w = S_1...S_nR$ and $S_i \prec R$, for all $1 \ge i \ge n$.

Finally, a role hierarchy \mathcal{R}_h is **regular** if there exists a regular order \prec such that each RIA in \mathcal{R}_h is \prec -regular.

Limitations	OWL 2 ○○○○○○○●	OWL 2 profiles	Reasoning	Summary

Partial table of features

\Box Language \Rightarrow	OW	L 1	OWL 2	OW	L 2 Pro	files
Feature ↓	Lite	DL	DL	EL	QL	RL
Role hierarchy	+	+	+		+	
N-ary roles (where $n \ge 2$)	-	-	-		?	
Role chaining	-	-	+		-	
Role acyclicity	-	-	-		-	
Symmetry	+	+	+		+	
Role values	-	-	-		-	
Qualified number restrictions	-	-	+		-	
One-of, enumerated classes	?	+	+		-	
Functional dependency	+	+	+		?	
Covering constraint over concepts	?	+	+		-	
Complement of concepts	?	+	+		+	
Complement of roles	-	-	+		+	
Concept identification	-	-	-		-	
Range typing	-	+	+		+	
Reflexivity	-	-	+		-	
Antisymmetry	-	-	-		-	
Transitivity	+	+	+		-	
Asymmetry	?	?	+	-	+	+
Irreflexivity	-	-	+		-	
	.	· ·		.		

Exercise: verify the question marks in the table (tentatively all "–") and fill in the dots (any " \pm " should be qualified at to what the restriction is)

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
Outline				

- 2 OWL 2• OWL 2 DL
- 3 OWL 2 profiles
 - OWL 2 EL
 - OWL 2 QL
 - OWL 2 RL

A Reasoning

<ロト < 部ト < 言ト < 言ト = の Q @ 18/38

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Rationale				

- Computational considerations
 - Consult "OWL profiles" page *Table 10. Complexity of the Profiles*
- Robustness of implementations w.r.t. scalable applications
- Already enjoy 'substantial' user base

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 EL				
OWL 2 EL	Overview			

- Intended for large 'simple' ontologies
- Focussed on type-level knowledge (TBox)
- Better computational behaviour than OWL 2 DL (polynomial vs. exponential/open)
- Based on the DL language \mathcal{EL}^{++} (PTime complete)
- Reasoner: e.g. CEL http://code.google.com/p/cel/

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
OWL 2 EL				
Supported	class restric	tions		

- existential quantification to a class expression or a data range
- existential quantification to an individual or a literal
- self-restriction
- enumerations involving a single individual or a single literal
- intersection of classes and data ranges

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 EL				
Supported a expressions	xioms, restri	cted to allowe	d set of class	

イロト イポト イヨト イヨト

22/38

- class inclusion, equivalence, disjointness
- object property inclusion and data property inclusion
- property equivalence
- transitive object properties
- reflexive object properties
- domain and range restrictions
- assertions
- functional data properties
- keys
- In short: $\Box \exists \top \bot \sqsubseteq \Box \exists \top \bot$

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 EL				
NOT sup	ported in OW	/L 2 EL		

- universal quantification to a class expression or a data range
- cardinality restrictions
- disjunction
- class negation
- enumerations involving more than one individual
- disjoint properties
- irreflexive, symmetric, and asymmetric object properties
- inverse object properties, functional and inverse-functional object properties

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
OWL 2 QL				
OWL 2 Q	L Overview			

- Query answering over a large amount of instances with same kind of performance as relational databases (Ontology-Based Data Access)
- Expressive features cover several used features of UML Class diagrams and ER models ('COnceptual MOdel-based Data Access')
- Based on *DL-Lite_R* (more is possible with UNA and in some implementations)

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summa
		0000000000		

OWL 2 QL

Supported Axioms in OWL 2QL, restrictions

- Subclass expressions restrictions:
 - a class
 - existential quantification (ObjectSomeValuesFrom) where the class is limited to owl:Thing
 - existential quantification to a data range (DataSomeValuesFrom)
- Super expressions restrictions:
 - a class
 - intersection (ObjectIntersectionOf)
 - negation (ObjectComplementOf)
 - existential quantification to a class (ObjectSomeValuesFrom)
 - existential quantification to a data range (DataSomeValuesFrom)

arv

mi			

OWL 2 profiles

OWL 2 QL

Supported Axioms in OWL 2QL

- Restrictions on class expressions, object and data properties occurring in functionality assertions cannot be specialized
- subclass axioms
- class expression equivalence (involving subClassExpression), disjointness
- inverse object properties
- property inclusion (not involving property chains and SubDataPropertyOf)
- property equivalence
- property domain and range
- disjoint properties
- symmetric, reflexive, irreflexive, asymmetric properties
- assertions other than individual equality assertions and negative property assertions (DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion, and DataPropertyAssertion)

26/38

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
OWL 2 QL				
NOT supp	orted in OW	′L 2 QL		

- existential quantification to a class expression or a data range in the subclass position
- self-restriction
- existential quantification to an individual or a literal
- enumeration of individuals and literals
- universal quantification to a class expression or a data range
- cardinality restrictions
- disjunction
- property inclusions involving property chains
- functional and inverse-functional properties
- transitive properties
- keys
- individual equality assertions and negative property assertions

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 RL				
OWL 2 RL	Overview			

- Development motivated by: what fraction of OWL 2 DL can be expressed by rules (with equality)?
- Scalable reasoning in the context of RDF(S) application
- Rule-based technologies (forward chaining rule system, over *instances*)

・ロト ・聞ト ・ヨト ・ヨト

28/38

- Inspired by Description Logic Programs and pD*
- Reasoning in PTime

Limitations OWL 2 profiles OWL 2 profiles OWL 2 profiles OWL 2 Profiles OWL 2 REASONING Summary OWL 2 RL Supported in OWL 2 RL

- More restrictions on class expressions (see table 2, e.g. no SomeValuesFrom on the right-hand side of a subclass axiom)
- All axioms in OWL 2 RL are constrained in a way that is compliant with the restrictions in Table 2.
- Thus, OWL 2 RL supports all axioms of OWL 2 apart from disjoint unions of classes and reflexive object property axioms.

イロン イヨン イヨン イヨン 三日

29/38

 $\bullet~$ No $\forall~$ and $\neg~$ on Ihs, and $\exists~$ and $\sqcup~$ on rhs of $\sqsubseteq~$

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary
OWL 2 RL				

Another section on speculation about future extensions

- The 'leftover' from OWL 1's "Future extensions" (UNA, CWA, defaults), parthood relation (primarily: antisymmetry, restrictions on current usage of properties)
- New "future of OWL", a.o.:
 - Syntactic sugar: 'macros', 'n-aries
 - Query languages: EQL-lite and nRQL w.r.t. SPARQL
 - Integration with rules: RIF, DL-safe rules, SBVR
 - Orthogonal dimensions: temporal, fuzzy, rough, probabilistic

Limitations	OWL 2 00000000	OWL 2 profiles ○○○○○○○○●	Reasoning	Summary
OWL 2 RL				

Another section on speculation about future extensions

- The 'leftover' from OWL 1's "Future extensions" (UNA, CWA, defaults), parthood relation (primarily: antisymmetry, restrictions on current usage of properties)
- New "future of OWL", a.o.:
 - Syntactic sugar: 'macros', 'n-aries'
 - Query languages: EQL-lite and nRQL w.r.t. SPARQL
 - Integration with rules: RIF, DL-safe rules, SBVR
 - Orthogonal dimensions: temporal, fuzzy, rough, probabilistic

Limitations	OWL 2 0000000	OWL 2 profiles ○○○○○○○○●	Reasoning	Summary
OWL 2 RL				

Another section on speculation about future extensions

- The 'leftover' from OWL 1's "Future extensions" (UNA, CWA, defaults), parthood relation (primarily: antisymmetry, restrictions on current usage of properties)
- New "future of OWL", a.o.:
 - Syntactic sugar: 'macros', 'n-aries'
 - Query languages: EQL-lite and nRQL w.r.t. SPARQL
 - Integration with rules: RIF, DL-safe rules, SBVR
 - Orthogonal dimensions: temporal, fuzzy, rough, probabilistic

Limitations	OWL 2 0000000	OWL 2 profiles	Reasoning	Summary
Outline				

- Limitations
- 2 OWL 2• OWL 2 DL
- OWL 2 profiles
 OWL 2 EL
 OWL 2 QL
 - OWL 2 RL

<ロト < 部ト < 言ト < 言ト 言 のへで 31/38

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary

- OWL ontology is a first-order logical theory ⇒ verifying the formal properties of the ontology corresponds to reasoning over a first-order theory
- Main ('standard') reasoning tasks for the OWL ontologies:
 - consistency of the ontology
 - concept (and role) consistency
 - concept (and role) subsumption
 - instance checking
 - instance retrieval
 - query answering
- Non-standard reasoning services, such as explanation, repair, least common subsumer, ...
- Note: Not all OWL languages are equally suitable for all these reasoning tasks

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary

- OWL ontology is a first-order logical theory ⇒ verifying the formal properties of the ontology corresponds to reasoning over a first-order theory
- Main ('standard') reasoning tasks for the OWL ontologies:
 - consistency of the ontology
 - concept (and role) consistency
 - concept (and role) subsumption
 - instance checking
 - instance retrieval
 - query answering
- Non-standard reasoning services, such as explanation, repair, least common subsumer, ...
- Note: Not all OWL languages are equally suitable for all these reasoning tasks

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary

- OWL ontology is a first-order logical theory ⇒ verifying the formal properties of the ontology corresponds to reasoning over a first-order theory
- Main ('standard') reasoning tasks for the OWL ontologies:
 - consistency of the ontology
 - concept (and role) consistency
 - concept (and role) subsumption
 - instance checking
 - instance retrieval
 - query answering
- Non-standard reasoning services, such as explanation, repair, least common subsumer, ...
- Note: Not all OWL languages are equally suitable for all these reasoning tasks

ヘロト 人間ト 人造ト 人造ト

Limitations	OWL 2	OWL 2 profiles	Reasoning	Summary

- OWL ontology is a first-order logical theory ⇒ verifying the formal properties of the ontology corresponds to reasoning over a first-order theory
- Main ('standard') reasoning tasks for the OWL ontologies:
 - consistency of the ontology
 - concept (and role) consistency
 - concept (and role) subsumption
 - instance checking
 - instance retrieval
 - query answering
- Non-standard reasoning services, such as explanation, repair, least common subsumer, ...
- Note: Not all OWL languages are equally suitable for all these reasoning tasks

Limitations	OWL 2 00000000	OWL 2 protiles	Reasoning	Su

- Consistency of the ontology
 - Is the ontology K = (T, A) consistent (non-selfcontradictory),

mmary

33/38

- i.e., is there at least a model for K?
- Concept (and role) consistency
 - is there a model of T in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption
 - i.e., is the extension of C (resp. R) contained in the extension of D in every model of T?
- Instance checking
 - is a a member of concept C in K, i.e., is the fact C(a) satisfied by every interpretation of K?
- Instance retrieval
 - find all members of C in K, i.e., compute all individuals a s.t. C(a) is satisfied by every interpretation of K
- Query answering
 - compute all tuples of individuals t s.t. query q(t) is entailed by K, i.e., q(t) is satisfied by every interpretation of \overline{K}

OWL 2 profiles

Note: Reasoning with OWA (vs. CWA)

• Open World Assumption

- Absence of information is interpreted as unknown information
- Assumes incomplete information
- Good for describing knowledge in a way that is extensible

• Closed World Assumption

- Absence of information is interpreted as negative information
- Assumes we have complete information
- Good for constraining information and validating data in an application

OWL 2 profiles

Note: Reasoning with OWA (vs. CWA)

• Open World Assumption

- Absence of information is interpreted as unknown information
- Assumes incomplete information
- Good for describing knowledge in a way that is extensible

• Closed World Assumption

- Absence of information is interpreted as negative information
- Assumes we have complete information
- Good for constraining information and validating data in an application

OWL 2 profiles

Note: Reasoning with OWA (vs. CWA)

• Open World Assumption

- Absence of information is interpreted as unknown information
- Assumes incomplete information
- Good for describing knowledge in a way that is extensible

• Closed World Assumption

- Absence of information is interpreted as negative information
- Assumes we have complete information
- Good for constraining information and validating data in an application

<ロ><2>、42>、42>、42>、42>、2、2、34/38 34/38

OWL 2 profiles

Note: Reasoning with OWA (vs. CWA)

• Open World Assumption

- Absence of information is interpreted as unknown information
- Assumes incomplete information
- Good for describing knowledge in a way that is extensible

• Closed World Assumption

- Absence of information is interpreted as negative information
- Assumes we have complete information
- Good for constraining information and validating data in an application

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Example				

Which alumni do not have a PhD?

Alumnus	Degree Obtained
Delani	PhD in history
Sally	PhD in politics
Peter	MSc in Informatics
Dalila	PhD in politics

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Example				

Which alumni do not have a PhD?

Alumnus	Degree Obtained
Delani	PhD in history
Sally	PhD in politics
Peter	MSc in Informatics
Dalila	PhD in politics

- Query under CWA says "Peter"
- Query under OWA cannot say "Peter", because we do not know if Peter also obtained a PhD. To retrieve "Peter" we have add an axiom somehow stating that Peter does not have a PhD (e.g., by being an instance of *PhD student*, declaring the degrees to be disjoint & covering, ...).

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Automate	ed reasoning o	examples		

- Subsumption reasoning, like in the exercise
 (*T* ⊢ Vegan ⊑ Vegetarian)
- Example with Schrödinger's cat
- Example with the sampleClassification.owl
- Exercise with instance classification and KB consistency (and OWA)
- Exercise with finding the errors in a 'dirty' ontology

Limitations	OWL 2 00000000	OWL 2 profiles	Reasoning	Summary
Summary				

- OWL 2
 OWL 2 DL
- 3 OWL 2 profiles
 - OWL 2 EL
 - OWL 2 QL
 - OWL 2 RL

□ ト < @ ト < ≥ ト < ≥ ト ≥ ∽ Q ()</p>
38/38