COMP718: Ontologies and Knowledge Bases Lecture 2: FOL Recap and Description Logics

> Maria Keet email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

14 February 2012

ヘロト 人間ト 人造ト 人造ト

2/35

・ロト ・聞ト ・ヨト ・ヨト

Outline

1 FOL Recap

- Syntax
- Semantics
- First Order Structures

2 Description logics

- Introduction
- Basic DL: \mathcal{ALC}
- Reasoning services

Outline

1 FOL Recap

- Syntax
- Semantics
- First Order Structures

2 Description logics

- Introduction
- Basic DL: ALC
- Reasoning services

From data to ORM2 or text and then to FOL—or v.v.

From data to ORM2 or text and then to FOL—or v.v.

Student **is an entity type**. DegreeProgramme **is an entity type**. Student attends DegreeProgramme.

Each Student attends exactly one DegreeProgramme.

It is possible that more than one Student attends the same DegreeProgramme. *OR, in the negative:*

For each Student, it is impossible that that Student attends more than one DegreeProgramme.

It is impossible that any Student attends no DegreeProgramme.

How to formalise it?

- Note: logic is not the study of truth, but of the relationship between the truth of one statement and that of another
- Syntax
 - Alphabet
 - Languages constructs
 - Sentences to assert knowledge
- Semantics
 - Formal meaning

How to formalise it?

- Note: logic is not the study of truth, but of the relationship between the truth of one statement and that of another
- Syntax
 - Alphabet
 - Languages constructs
 - Sentences to assert knowledge
- Semantics
 - Formal meaning

First order logic

The lexicon of a first order language contains:

- Connectives & Parentheses: \neg , \rightarrow , \leftrightarrow , \land , \lor , (and);
- Quantifiers: \forall (universal) and \exists (existential);
- Variables: x, y, z, ... ranging over particulars;
- Constants: *a*, *b*, *c*, ... representing a specific element;
- Functions: f, g, h, ..., with arguments listed as $f(x_1, ...x_n)$;
- Relations: R, S, ... with an associated arity.

- Each animal is an organism All animals are organisms If it is an animal then it is an organism ∀x(Animal(x) → Organism(x))
- Each student must be registered for a degree programme ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
- Aliens exist 3x Alien(x)
- There are books that are beavy $\exists x (Book(x)) \land heavy(x)$

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
 - $\forall x(registered_for(x, y) \rightarrow Student(x) \land DegreeProgramme(y))$ $<math>\forall x(student(x) \rightarrow \exists y registered_for(x, y))$
- Aliens exist
 Alien(x)
- There are books that are beau $\exists x (Book(x) \land heavy(x))$

- Each animal is an organism All animals are organisms If it is an animal then it is an organism ∀x(Animal(x) → Organism(x))
- Each student must be registered for a degree programme
 ∀×(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y)
 ∀×(Student(x) → ∃y registered_for(x, y))
- Aliens exist
 ∃x Alien(x)
- There are books that are beau $\exists x (Book(x)) \land beau y(x))$

- Each animal is an organism All animals are organisms If it is an animal then it is an organism ∀x(Animal(x) → Organism(x))
- Each student must be registered for a degree programme
 ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
 - Aliens exist
- There are books that are beavy $\exists x (Book(x) \land beavy(x))$

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student must be registered for a degree programme
 ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
- Aliens exist
 - $\exists x \ Alien(x)$
- There are books that are heavy Bx(Book(x) A heavy(x))

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student must be registered for a degree programme
 ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
- Aliens exist
 ∃x Alien(x)
- There are books that are heavy ∃x(Book(x) ∧ heavy(x))

- Each animal is an organism All animals are organisms If it is an animal then it is an organism $\forall x (Animal(x) \rightarrow Organism(x))$
- Each student must be registered for a degree programme
 ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
- Aliens exist
 ∃x Alien(x)
- There are books that are heavy ∃x(Book(x) ∧ heavy(x))

Example: From Natural Language to First order logic (or vv.)

- Each animal is an organism All animals are organisms If it is an animal then it is an organism ∀x(Animal(x) → Organism(x))
- Each student must be registered for a degree programme
 ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
- Aliens exist
 ∃x Alien(x)
- There are books that are heavy $\exists x(Book(x) \land heavy(x))$

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First order logic

- (countably infinite) Supply of **symbols** (signature): Variables, Functions , Constants, and Relations
- Terms: A term is inductively defined by two rules, being:
 - $1\;$ Every variable and constant is a term.
 - 2 if f is a m-ary function and t_1, \ldots, t_m are terms, then $f(t_1, \ldots, t_m)$ is also a term.

Definition (atomic formula)

An atomic formula is a formula that has the form $t_1 = t_2$ or $R(t_1, ..., t_n)$ where R is an *n*-ary relation and $t_1, ..., t_n$ are terms.

R1. If ϕ is a formula then so is $\neg \phi$. R2. If ϕ and ψ are formulas then so is $\phi \land \psi$. R3. If ϕ is a formula then so is $\exists x \phi$ for any variable x.

イロン イヨン イヨン イヨン 三日

First order logic

- (countably infinite) Supply of **symbols** (signature): Variables, Functions , Constants, and Relations
- Terms: A term is inductively defined by two rules, being:
 - $1\;$ Every variable and constant is a term.
 - 2 if f is a m-ary function and t_1, \ldots, t_m are terms, then $f(t_1, \ldots, t_m)$ is also a term.

Definition (atomic formula)

An *atomic formula* is a formula that has the form $t_1 = t_2$ or $R(t_1, ..., t_n)$ where R is an *n*-ary relation and $t_1, ..., t_n$ are terms.

R1. If ϕ is a formula then so is $\neg \phi$. R2. If ϕ and ψ are formulas then so is $\phi \land \psi$. R3. If ϕ is a formula then so is $\exists x \phi$ for any variable x.

イロト イポト イヨト イヨト 三日

First order logic

- (countably infinite) Supply of **symbols** (signature): Variables, Functions , Constants, and Relations
- Terms: A term is inductively defined by two rules, being:
 - $1\;$ Every variable and constant is a term.
 - 2 if f is a m-ary function and t_1, \ldots, t_m are terms, then $f(t_1, \ldots, t_m)$ is also a term.

Definition (atomic formula)

An *atomic formula* is a formula that has the form $t_1 = t_2$ or $R(t_1, ..., t_n)$ where R is an *n*-ary relation and $t_1, ..., t_n$ are terms.

- R1. If ϕ is a formula then so is $\neg \phi$.
- R2. If ϕ and ψ are formulas then so is $\phi \wedge \psi$.
- R3. If ϕ is a formula then so is $\exists x \phi$ for any variable x.

(日) (間) (目) (目) (目)

FOL Cont.

Definition (formula)

A string of symbols is a *formula* of FOL if and only if it is constructed from atomic formulas by repeated applications of rules R1, R2, and R3.

A *free variable* of a formula ϕ is that variable occurring in ϕ that is not quantified. We then can introduce the definition of *sentence*.

Definition (sentence)

A sentence of FOL is a formula having no free variables.

FOL Cont.

Definition (formula)

A string of symbols is a *formula* of FOL if and only if it is constructed from atomic formulas by repeated applications of rules R1, R2, and R3.

A *free variable* of a formula ϕ is that variable occurring in ϕ that is not quantified. We then can introduce the definition of *sentence*.

Definition (sentence)

A sentence of FOL is a formula having no free variables.

FOL Cont.: toward semantics

- Whether a sentence is true or not depends on the underlying set and the interpretation of the function, constant, and relation symbols.
- A *structure* consists of an *underlying set* together with an *interpretation* of functions, constants, and relations.
- Given a sentence ϕ and a structure *M*, *M* models ϕ means that the sentence ϕ is true with respect to *M*. More precisely,

Definition (vocabulary)

A vocabulary \mathcal{V} is a set of function, relation, and constant symbols.

FOL Cont.: toward semantics

- Whether a sentence is true or not depends on the underlying set and the interpretation of the function, constant, and relation symbols.
- A *structure* consists of an *underlying set* together with an *interpretation* of functions, constants, and relations.
- Given a sentence ϕ and a structure *M*, *M* models ϕ means that the sentence ϕ is true with respect to *M*. More precisely,

Definition (vocabulary)

A vocabulary \mathcal{V} is a set of function, relation, and constant symbols.

Semantics

Definition (\mathcal{V} -structure)

A \mathcal{V} -structure consists of a non-empty underlying set Δ along with an interpretation of \mathcal{V} . An interpretation of \mathcal{V} assigns an element of Δ to each constant in \mathcal{V} , a function from Δ^n to Δ to each *n*-ary function in \mathcal{V} , and a subset of Δ^n to each *n*-ary relation in \mathcal{V} . We say M is a structure if it is a \mathcal{V} -structure of some vocabulary \mathcal{V} .

Definition (\mathcal{V} -formula)

Let \mathcal{V} be a vocabulary. A \mathcal{V} -formula is a formula in which every function, relation, and constant is in \mathcal{V} . A \mathcal{V} -sentence is a \mathcal{V} -formula that is a sentence.

FOL Cont.

Definition (\mathcal{V} -structure)

A \mathcal{V} -structure consists of a non-empty underlying set Δ along with an interpretation of \mathcal{V} . An interpretation of \mathcal{V} assigns an element of Δ to each constant in \mathcal{V} , a function from Δ^n to Δ to each *n*-ary function in \mathcal{V} , and a subset of Δ^n to each *n*-ary relation in \mathcal{V} . We say M is a structure if it is a \mathcal{V} -structure of some vocabulary \mathcal{V} .

Definition (\mathcal{V} -formula)

Let \mathcal{V} be a vocabulary. A \mathcal{V} -formula is a formula in which every function, relation, and constant is in \mathcal{V} . A \mathcal{V} -sentence is a \mathcal{V} -formula that is a sentence.

FOL Recap	Description logics
000000000000000000000000000000000000000	0000000000
Semantics	

- When we say that *M* models φ, denoted with *M* ⊨ φ, this is with respect to *M* being a *V*-structure and *V*-sentence φ is true in *M*.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any \mathcal{V} -structure M, the *theory of* M, denoted with $\mathcal{T}(M)$, is the set of all \mathcal{V} -sentences ϕ such that $M \models \phi$.

Definition (model)

For any set of \mathcal{V} -sentences, a *model* of Γ is a \mathcal{V} -structure that models each sentence in Γ . The class of all models of Γ is denoted by $\mathcal{M}(\Gamma)$.

Summary

FOL Recap	Description logics	
Semantics		

- When we say that *M* models φ, denoted with *M* ⊨ φ, this is with respect to *M* being a *V*-structure and *V*-sentence φ is true in *M*.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any \mathcal{V} -structure M, the *theory of* M, denoted with $\mathcal{T}(M)$, is the set of all \mathcal{V} -sentences ϕ such that $M \models \phi$.

Definition (model)

For any set of \mathcal{V} -sentences, a *model* of Γ is a \mathcal{V} -structure that models each sentence in Γ . The class of all models of Γ is denoted by $\mathcal{M}(\Gamma)$.

Summary

FOL Recap	Description logics
000000000000000000000000000000000000000	
Somantica	

- When we say that *M* models φ, denoted with *M* ⊨ φ, this is with respect to *M* being a *V*-structure and *V*-sentence φ is true in *M*.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any \mathcal{V} -structure M, the *theory of* M, denoted with $\mathcal{T}(M)$, is the set of all \mathcal{V} -sentences ϕ such that $M \models \phi$.

Definition (model)

For any set of \mathcal{V} -sentences, a *model* of Γ is a \mathcal{V} -structure that models each sentence in Γ . The class of all models of Γ is denoted by $\mathcal{M}(\Gamma)$.

Summary

Theory in the context of logic

Definition (complete V-theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

• It can then be shown that for any \mathcal{V} -structure M, $\mathcal{T}(M)$ is a complete \mathcal{V} -theory (for proof, see *e.g.* [Hedman04, p90])

Definition

A set of sentences Γ is said to be *consistent* if no contradiction can be derived from $\Gamma.$

Definition (theory)

A theory is a consistent set of sentences.

Theory in the context of logic

Definition (complete V-theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

It can then be shown that for any V-structure M, T(M) is a complete V-theory (for proof, see e.g. [Hedman04, p90])

Definition

A set of sentences Γ is said to be *consistent* if no contradiction can be derived from $\Gamma.$

Definition (theory)

A *theory* is a consistent set of sentences.

Theory in the context of logic

Definition (complete V-theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

It can then be shown that for any V-structure M, T(M) is a complete V-theory (for proof, see e.g. [Hedman04, p90])

Definition

A set of sentences Γ is said to be *consistent* if no contradiction can be derived from $\Gamma.$

Definition (theory)

A theory is a consistent set of sentences.

Some definitions

- A formula is valid if it holds under every assignment. ⊨ φ to denote this. A valid formula is called a tautology.
- A formula is satisfiable if it holds under some assignment.
- A formula is unsatisfiable if it holds under *no* assignment. An unsatisafiable formula is called a contradiction.

16/35

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semantics

- Is this a theory? $\forall x (Woman(x) \rightarrow Female(x)))$ $\forall x (Mother(x) \rightarrow Woman(x)))$ $\forall x (Man(x) \leftrightarrow \neg Woman(x)))$ $\forall x (Mother(x) \rightarrow \exists y (partnerOf(x, y) \land Spouse(y)))$ $\forall x (Spouse(x) \rightarrow Man(x) \lor Woman(x)))$ $\forall x, y (Mother(x) \land partnerOf(x, y) \rightarrow Father(y))$
- Is it still a theory if we add:
 ∀x(Hermaphrodite(x) → Man(x) ∧ Woman(x))

16/35

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semantics

- Is this a theory? $\forall x (Woman(x) \rightarrow Female(x)))$ $\forall x (Mother(x) \rightarrow Woman(x)))$ $\forall x (Man(x) \leftrightarrow \neg Woman(x)))$ $\forall x (Mother(x) \rightarrow \exists y (partnerOf(x, y) \land Spouse(y)))$ $\forall x (Spouse(x) \rightarrow Man(x) \lor Woman(x)))$ $\forall x, y (Mother(x) \land partnerOf(x, y) \rightarrow Father(y))$
- Is it still a theory if we add:
 ∀x(Hermaphrodite(x) → Man(x) ∧ Woman(x))

First Order Structures

Examples of first-order structures (exercise)

- Graphs are mathematical structures.
- A graph is a set of points, called **vertices**, and lines, called **edges** between them. For instance:

- Figures A and B are different depictions, but have the same descriptions w.r.t. the vertices and edges. Check this.
- Graph C has a property that A and B do not have. Represent this in a first-order sentence.
- Find a suitable first-order language for A (/B), and formulate at least two properties of the graph using quantifiers.

First Order Structures

Examples of first-order structures (exercise)

- Graphs are mathematical structures.
- A graph is a set of points, called **vertices**, and lines, called **edges** between them. For instance:

- Figures A and B are different depictions, but have the same descriptions w.r.t. the vertices and edges. Check this.
- Graph C has a property that A and B do not have. Represent this in a first-order sentence.
- Find a suitable first-order language for A (/B), and formulate at least two properties of the graph using quantifiers.

Examples of first-order structures (exercise)

- Graphs are mathematical structures.
- A graph is a set of points, called **vertices**, and lines, called **edges** between them. For instance:

- Figures A and B are different depictions, but have the same descriptions w.r.t. the vertices and edges. Check this.
- Graph C has a property that A and B do not have. Represent this in a first-order sentence.
- Find a suitable first-order language for A (/B), and formulate at least two properties of the graph using quantifiers.

More graphs (exercise)

Consider the following graph, and first-order language $\mathcal{L} = \langle R \rangle$, with R being a binary relation symbol (edge).

- Formalise the following properties of the graph as *L*-sentences: (i) (a, a) and (b, b) are edges of the graph; (ii) (a, b) is an edge of the graph; (iii) (b, a) is not an edge of the graph. Let *T* stand for the resulting set of sentences.
- 2. Prove that $T \cup \{ \forall x \forall y R(x, y) \}$ is unsatisfiable using tableaux calculus.

More graphs (exercise)

Consider the following graph, and first-order language $\mathcal{L} = \langle R \rangle$, with R being a binary relation symbol (edge).

- Formalise the following properties of the graph as *L*-sentences: (i) (a, a) and (b, b) are edges of the graph; (ii) (a, b) is an edge of the graph; (iii) (b, a) is not an edge of the graph. Let *T* stand for the resulting set of sentences.
- 2. Prove that $T \cup \{ \forall x \forall y R(x, y) \}$ is unsatisfiable using tableaux calculus.

• Representing the knowledge in a suitable logic is one thing, reasoning over it another. e.g.:

- How do we find out whether a formula is valid or not?
- How do we find out whether our knowledge base is satisfiable?

• Among others:

- Truth tables
- Tableaux (principal approach for DL reasoners)
- ·

19/35

First Order Structures

- Representing the knowledge in a suitable logic is one thing, reasoning over it another. e.g.:
 - How do we find out whether a formula is valid or not?
 - How do we find out whether our knowledge base is satisfiable?

・ロト ・得ト ・ヨト ・ヨト

• Among others:

- Truth tables
- Tableaux (principal approach for DL reasoners)
- ...

- Representing the knowledge in a suitable logic is one thing, reasoning over it another. e.g.:
 - How do we find out whether a formula is valid or not?
 - How do we find out whether our knowledge base is satisfiable?
- Among others:
 - Truth tables
 - Tableaux (principal approach for DL reasoners)
 - ...

20/35

イロン イヨン イヨン イヨン 三日

First Order Structures

Tableaux summary (1/2)

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample
- Decompose the formula in top-down fashion

Tableaux summary (1/2)

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample
- Decompose the formula in top-down fashion

20/35

イロト イポト イヨト イヨト 二日

First Order Structures

Tableaux summary (1/2)

- A sound and complete procedure deciding satisfiability is all we need, and the **tableaux method is a decision procedure which checks the existence of a model**
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample
- Decompose the formula in top-down fashion

Tableaux summary (2/2)

- Tableaux calculus works only if the formula has been translated into **Negation Normal Form**, *i.e.*, all the negations have been pushed inside
- Recollect the list of equivalences, apply those to arrive at NNF, if necessary.
- If a model satisfies a conjunction, then it also satisfies each of the conjuncts
- If a model satisfies a disjunction, then it also satisfies one of the disjuncts. It is a non-deterministic rule, and it generates two alternative branches.
- Apply the completion rules until either (a) an explicit contradiction due to the presence of two opposite literals in a node (a clash) is generated in each branch, or (b) there is a completed branch where no more rule is applicable.

Tableaux summary (2/2)

- Tableaux calculus works only if the formula has been translated into **Negation Normal Form**, *i.e.*, all the negations have been pushed inside
- Recollect the list of equivalences, apply those to arrive at NNF, if necessary.
- If a model satisfies a conjunction, then it also satisfies each of the conjuncts
- If a model satisfies a disjunction, then it also satisfies one of the disjuncts. It is a non-deterministic rule, and it generates two alternative branches.
- Apply the completion rules until either (a) an explicit contradiction due to the presence of two opposite literals in a node (a clash) is generated in each branch, or (b) there is a completed branch where no more rule is applicable.

Tableaux summary (2/2)

- Tableaux calculus works only if the formula has been translated into **Negation Normal Form**, *i.e.*, all the negations have been pushed inside
- Recollect the list of equivalences, apply those to arrive at NNF, if necessary.
- If a model satisfies a conjunction, then it also satisfies each of the conjuncts
- If a model satisfies a disjunction, then it also satisfies one of the disjuncts. It is a non-deterministic rule, and it generates two alternative branches.
- Apply the completion rules until either (a) an explicit contradiction due to the presence of two opposite literals in a node (a clash) is generated in each branch, or (b) there is a completed branch where no more rule is applicable.

22/35

(日)、(四)、(日)、(日)、

Outline

FOL Recap

- Syntax
- Semantics
- First Order Structures

2 Description logics

- Introduction
- Basic DL: \mathcal{ALC}
- Reasoning services

Introduction

What are DLs?

- A logical reconstruction and (claimed to be a) unifying formalism for other KR languages, such as frames-based systems, OO modelling, Semantic data models, etc.
- A structured fragment of FOL
- Representation is at the predicate level: no variables are present in the formalism
- Any (basic) Description Logic is a subset of \mathcal{L}_3 , i.e., the function-free FOL using only at most three variable names.
- Provide theories and systems for declaratively expressing structured information and for accessing and reasoning with it.
- Used for, a.o.: terminologies and ontologies, formal conceptual data modelling, information integration,

Introduction

What are DLs?

- A logical reconstruction and (claimed to be a) unifying formalism for other KR languages, such as frames-based systems, OO modelling, Semantic data models, etc.
- A structured fragment of FOL
- Representation is at the predicate level: no variables are present in the formalism
- Any (basic) Description Logic is a subset of \mathcal{L}_3 , i.e., the function-free FOL using only at most three variable names.
- Provide theories and systems for declaratively expressing structured information and for accessing and reasoning with it.
- Used for, a.o.: terminologies and ontologies, formal conceptual data modelling, information integration,

Introduction

Description Logic knowledge base

24/35

ヘロト 人間ト 人造ト 人造ト

Basic DL: \mathcal{ALC}

$$\mathcal{ALC}$$

- Concepts denoting entity types/classes/unary predicates/universals, including top ⊤ and bottom ⊥;
- Roles denoting relationships/associations/n-ary predicates/properties;
- Constructors: and $\sqcap,$ or $\sqcup,$ and not $\neg;$ quantifications forall \forall and exists \exists
- Complex concepts using constructors
 - Let C and D be concept names, R a role name, then
 - $\neg C$, $C \sqcap D$, and $C \sqcup D$ are concepts, and
 - $\forall R.C$ and $\exists R.C$ are concepts
- Individuals

Basic DL: \mathcal{ALC}

- Concepts (primitive, atomic): Book, Course
- Roles: ENROLLED, READS
- Complex concepts:
 - Student ⊑ ∃ENROLLED.(Course ⊔ DegreeProgramme) (a primitive concept)
 - Mother \sqsubseteq Woman $\sqcap \exists$ PARENTOF.Person
 - Parent ≡ (Male ⊔ Female) □ ∃PARENTOF.Mammal □ ∃CARESFOR.Mammal (a defined concept)
- Individuals: Student(Shereen), Mother(Sally), ¬Student(Sally), ENROLLED(Shereen, COMP101)
- But what does it really mean?

Basic DL: \mathcal{ALC}

- Concepts (primitive, atomic): Book, Course
- Roles: ENROLLED, READS
- Complex concepts:
 - Student ⊑ ∃ENROLLED.(Course ⊔ DegreeProgramme) (a primitive concept)
 - Mother \sqsubseteq Woman $\sqcap \exists$ PARENTOF.Person
 - Parent ≡ (Male ⊔ Female) □ ∃PARENTOF.Mammal □ ∃CARESFOR.Mammal (a defined concept)
- Individuals: Student(Shereen), Mother(Sally), ¬Student(Sally), ENROLLED(Shereen, COMP101)
- But what does it really mean?

27/35

Basic DL: \mathcal{ALC}

Semantics of \mathcal{ALC} (1/3)

- ${\, \bullet \,}$ Domain Δ is a non-empty set of objects
- \bullet Interpretation: $\cdot^{\mathcal{I}}$ is the interpretation function, domain $\Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every role name R to a subset $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every individual name *a* to elements of $\Delta^{\mathcal{I}}$: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

▲ロト ▲圖ト ▲温ト ▲温ト 三温

• Note: $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\perp^{\mathcal{I}} = \emptyset$

FOL Recap

28/35

イロト イポト イモト イモト 二日

Basic DL: \mathcal{ALC}

Semantics of $\mathcal{ALC}(2/3)$

• C and D are concepts, R a role

•
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

• $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$

•
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

- $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.R^{\mathcal{I}}(x,y) \to C^{\mathcal{I}}(y)\}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y.R^{\mathcal{I}}(x,y) \land C^{\mathcal{I}}(y)\}$

Basic DL: ALC

Semantics of \mathcal{ALC} (3/3)

- C and D are concepts, R a role, a and b are individuals
- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation $\mathcal I$ satisfies the statement $C\equiv D$ if $C^{\mathcal I}=D^{\mathcal I}$
- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a,b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$
- An interpretation *I* = (Δ^{*I*}, ·^{*I*}) is a model of a knowledge base
 KB if every axiom of *KB* is satisfied by *I*
- A knowledge base KB is said to be satisfiable if it admits a model

Basic DL: ALC

Semantics of ALC (3/3)

- C and D are concepts, R a role, a and b are individuals
- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation $\mathcal I$ satisfies the statement $C\equiv D$ if $C^{\mathcal I}=D^{\mathcal I}$
- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a,b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$
- An interpretation *I* = (Δ^{*I*}, ·^{*I*}) is a model of a knowledge base
 KB if every axiom of *KB* is satisfied by *I*
- A knowledge base KB is said to be satisfiable if it admits a model

Basic DL: ALC

Semantics of ALC (3/3)

- C and D are concepts, R a role, a and b are individuals
- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation $\mathcal I$ satisfies the statement $C\equiv D$ if $C^{\mathcal I}=D^{\mathcal I}$
- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a,b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$
- An interpretation *I* = (Δ^{*I*}, ·^{*I*}) is a model of a knowledge base *KB* if every axiom of *KB* is satisfied by *I*
- A knowledge base \mathcal{KB} is said to be satisfiable if it admits a model

Logical implication

• $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ

• Example:

TBox: ∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

- $\mathcal{KB} \models \texttt{Professor}(\texttt{John})$
- What if:

TBox: ∃TEACHES.Course ⊑ Undergrad ⊔ Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

KB ⊨ Professor(John)? or perhaps
 KB ⊨ ¬Professor(John)?

Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:
 - $\mathsf{TBox:} \ \exists \mathtt{TEACHES}.\mathtt{Course} \sqsubseteq \neg \mathtt{Undergrad} \sqcup \mathtt{Professor}$
 - ABox: TEACHES(John, cs101), Course(cs101),

Undergrad(John)

- $\mathcal{KB} \models \texttt{Professor}(\texttt{John})$
- What if:

TBox: ∃TEACHES.Course ⊑ Undergrad ⊔ Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

KB ⊨ Professor(John)? or perhaps
 KB ⊨ ¬Professor(John)?

Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:
 - $\mathsf{TBox:} \ \exists \mathtt{TEACHES}.\mathtt{Course} \sqsubseteq \neg \mathtt{Undergrad} \sqcup \mathtt{Professor}$
 - ABox: TEACHES(John, cs101), Course(cs101),

Undergrad(John)

- $\mathcal{KB} \models \texttt{Professor}(\texttt{John})$
- What if:

TBox: ∃TEACHES.Course ⊑ Undergrad ⊔ Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

• $\mathcal{KB} \models \operatorname{Professor}(\operatorname{John})$? or perhaps $\mathcal{KB} \models \neg \operatorname{Professor}(\operatorname{John})$?

Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:
 - $\mathsf{TBox:} \ \exists \mathtt{TEACHES}.\mathtt{Course} \sqsubseteq \neg \mathtt{Undergrad} \sqcup \mathtt{Professor}$
 - ABox: TEACHES(John, cs101), Course(cs101),

Undergrad(John)

- $\mathcal{KB} \models \texttt{Professor}(\texttt{John})$
- What if:

TBox: ∃TEACHES.Course ⊑ Undergrad ⊔ Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

•
$$\mathcal{KB} \models \texttt{Professor(John)}$$
? or perhaps $\mathcal{KB} \models \neg\texttt{Professor(John)}$?

Reasoning services for DL-based OWL ontologies

• Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$

- Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
- i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of TR
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in X35, i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of X39
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$
 - find all members of C in XCB, i.e., compute all individuals a s.t. C(a) is satisfied by every interpretation of XCB

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability (KB ⊭ C ⊑ ⊥)
 is there a model of KB in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of C (resp. S) is every model of T_{1}^{2}
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in X33, i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of X33?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$
 - find all members of C in \mathcal{KB} , i.e., compute all individuals a s.t. $\mathcal{C}(a)$ is satisfied by every interpretation of \mathcal{KB}

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is σ (resp. $\{a, b\}$) a member of concept C (resp. R) in JCB, i.e., is the fact C(a) (resp. R(a, b)) satisfied by every intermetation of FCR
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$
 - find all members of C in XCB, i.e., compute all individuals a s.t. C(a) is satisfied by every interpretation of XCB

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability $(\mathcal{KB} \nvDash C \sqsubseteq \bot)$
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a $\{resp. (a, b)\}$ a member of concept C (resp. R) in ZB, i.e., i.s. the fact, C(a) (resp. R(a, b)) isotisfied by every interconstation of EZ
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of *C* (resp. *R*) contained in the extension of *D* (resp. *S*) in every model of *T*?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - $\{a, b\}$ a member of concept L (resp. K) in ALC i.e., is the fact C(a) (resp. R(a, b)) satisfied by every
- Instance retrieval ($\{a \mid \mathcal{KB} \models C(a)\}$

- Consistency of the knowledge base ($\mathcal{KB} \nvDash \top \sqsubseteq \bot$)
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in Kl i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB,
 i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB,
 i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval ({a | KB ⊨ C(a)})
 find all members of C in KB, i.e., compute all individuals a s.t.
 C(a) is satisfied by every interpretation of KB

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB,
 i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$
 - find all members of C in KB, i.e., compute all individuals a s.t.
 C(a) is satisfied by every interpretation of KB

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \sqsubseteq \bot)$
 - Is the KB = (T, A) consistent (non-selfcontradictory), i.e., is there at least a model for KB?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubseteq \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of T?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in KB,
 i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of KB?
- Instance retrieval $(\{a \mid \mathcal{KB} \models C(a)\})$
 - find all members of *C* in \mathcal{KB} , i.e., compute all individuals *a* s.t. C(a) is satisfied by every interpretation of \mathcal{KB}

Tableau reasoning

- Most common for DL reasoners
- Like for FOL:
 - Unfold the TBox
 - Convert the result into negation normal form
 - Apply the tableau rules to generate more Aboxes
 - Stop when none of the rules are applicable
- $\mathcal{T} \vdash C \sqsubseteq D$ if all Aboxes contain clashes
- $\mathcal{T} \nvDash C \sqsubseteq D$ if some Abox does not contain a clash

Negation Normal Form

- $\bullet\,$ C and D are concepts, R a role
- $\bullet \neg$ only in front of concepts:

•
$$\neg \neg C$$
 gives C
• $\neg (C \sqcap D)$ gives $\neg C \sqcup \neg D$
• $\neg (C \sqcup D)$ gives $\neg C \sqcap \neg D$
• $\neg (\forall R.C)$ gives $\exists R.\neg C$
• $\neg (\exists R.C)$ gives $\forall R.\neg C$

Tableau rules

□-rule If $(C_1 \sqcap C_2)(a) \in S$ but S does not contain both $C_1(a)$ and $C_2(a)$, then $S = S \cup \{C_1(a), C_2(a)\}$ □-rule If $(C_1 \sqcup C_2)(a) \in S$ but S contains neither $C_1(a)$ nor $C_2(a)$,

then

$$S = S \cup \{C_1(a)\}$$

 $S = S \cup \{C_2(a)\}$

 \forall -rule If $(\forall R.C)(a) \in S$ and S contains R(a, b) but not C(b), then $S = S \cup \{C(b)\}$

 $\exists \text{-rule If } (\exists R.C)(a) \in S \text{ and there is no } b \text{ such that } C(b) \text{ and } R(a, b), \text{ then } S = S \cup \{C(b), R(a, b)\}$

35/35

・ロト ・聞ト ・ヨト ・ヨト

Summary

1 FOL Recap

- Syntax
- Semantics
- First Order Structures

2 Description logics

- Introduction
- Basic DL: \mathcal{ALC}
- Reasoning services