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From data to ORM2 or text and then to FOL—or v.v.
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From data to ORM2 or text and then to FOL—or v.v.

Student DegreeProgramme

attends

Student is an entity type. 
DegreeProgramme is an entity type. 
Student attends DegreeProgramme. 

Each Student attends exactly one DegreeProgramme. 
It is possible that more than one Student attends the same DegreeProgramme. 
OR, in the negative: 
For each Student, it is impossible that that Student attends more than one 
DegreeProgramme. 
It is impossible that any Student attends no DegreeProgramme. 
 

 
 
 
 

 
               Attends 
Student DegreeProgramme 
John Computer Science 
Mary Design 
Fabio Design 
Claudio Computer Science 
Markus Biology 
Inge Computer Science 
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How to formalise it?

Note: logic is not the study of truth, but of the relationship
between the truth of one statement and that of another

Syntax

Alphabet
Languages constructs
Sentences to assert knowledge

Semantics

Formal meaning
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Syntax

First order logic

The lexicon of a first order language contains:

Connectives & Parentheses: ¬, →, ↔, ∧, ∨, ( and );

Quantifiers: ∀ (universal) and ∃ (existential);

Variables: x , y , z , ... ranging over particulars;

Constants: a, b, c , ... representing a specific element;

Functions: f , g , h, ..., with arguments listed as f (x1, ...xn);

Relations: R, S , ... with an associated arity.
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Syntax

Example: From Natural Language to First order logic (or
vv.)

Each animal is an organism
All animals are organisms
If it is an animal then it is an organism
∀x(Animal(x)→ Organism(x))

Each student must be registered for a degree programme
∀x(registered for(x , y)→ Student(x)∧DegreeProgramme(y))
∀x(Student(x)→ ∃y registered for(x , y))

Aliens exist
∃x Alien(x)

There are books that are heavy
∃x(Book(x) ∧ heavy(x))
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Syntax

First order logic

(countably infinite) Supply of symbols (signature): Variables,
Functions , Constants, and Relations

Terms: A term is inductively defined by two rules, being:

1 Every variable and constant is a term.
2 if f is a m-ary function and t1, . . . tm are terms, then

f (t1, . . . , tm) is also a term.

Definition (atomic formula)

An atomic formula is a formula that has the form t1 = t2 or
R(t1, ..., tn) where R is an n-ary relation and t1, ..., tn are terms.

R1. If φ is a formula then so is ¬φ.
R2. If φ and ψ are formulas then so is φ ∧ ψ.
R3. If φ is a formula then so is ∃xφ for any variable x .
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Syntax

FOL Cont.

Definition (formula)

A string of symbols is a formula of FOL if and only if it is
constructed from atomic formulas by repeated applications of rules
R1, R2, and R3.

A free variable of a formula φ is that variable occurring in φ that is
not quantified. We then can introduce the definition of sentence.

Definition (sentence)

A sentence of FOL is a formula having no free variables.
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Semantics

FOL Cont.: toward semantics

Whether a sentence is true or not depends on the underlying
set and the interpretation of the function, constant, and
relation symbols.

A structure consists of an underlying set together with an
interpretation of functions, constants, and relations.

Given a sentence φ and a structure M, M models φ means
that the sentence φ is true with respect to M. More precisely,

Definition (vocabulary)

A vocabulary V is a set of function, relation, and constant symbols.
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Semantics

FOL Cont.

Definition (V-structure)

A V-structure consists of a non-empty underlying set ∆ along with
an interpretation of V. An interpretation of V assigns an element
of ∆ to each constant in V, a function from ∆n to ∆ to each n-ary
function in V, and a subset of ∆n to each n-ary relation in V. We
say M is a structure if it is a V-structure of some vocabulary V.

Definition (V-formula)

Let V be a vocabulary. A V-formula is a formula in which every
function, relation, and constant is in V. A V-sentence is a
V-formula that is a sentence.
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Semantics

FOL Cont.

When we say that M models φ, denoted with M |= φ, this is
with respect to M being a V-structure and V-sentence φ is
true in M.
Model theory: the interplay between M and a set of first-order
sentences T (M), which is called the theory of M, and its
‘inverse’ from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any V-structure M, the theory of M, denoted with T (M), is
the set of all V-sentences φ such that M |= φ.

Definition (model)

For any set of V-sentences, a model of Γ is a V-structure that
models each sentence in Γ. The class of all models of Γ is denoted
by M(Γ).
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Semantics

Theory in the context of logic

Definition (complete V-theory)

Let Γ be a set of V-sentences. Then Γ is a complete V-theory if,
for any V-sentence φ either φ or ¬φ is in Γ and it is not the case
that both φ and ¬φ are in Γ.

It can then be shown that for any V-structure M, T (M) is a
complete V-theory (for proof, see e.g. [Hedman04, p90])

Definition

A set of sentences Γ is said to be consistent if no contradiction can
be derived from Γ.

Definition (theory)

A theory is a consistent set of sentences.
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Semantics

Some definitions

A formula is valid if it holds under every assignment. |= φ to
denote this. A valid formula is called a tautology.

A formula is satisfiable if it holds under some assignment.

A formula is unsatisfiable if it holds under no assignment. An
unsatisafiable formula is called a contradiction.
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Semantics

Example

Is this a theory?
∀x(Woman(x)→ Female(x))
∀x(Mother(x)→Woman(x))
∀x(Man(x)↔ ¬Woman(x))
∀x(Mother(x)→ ∃y(partnerOf (x , y) ∧ Spouse(y))
∀x(Spouse(x)→ Man(x) ∨Woman(x))
∀x , y(Mother(x) ∧ partnerOf (x , y)→ Father(y))

Is it still a theory if we add:
∀x(Hermaphrodite(x)→ Man(x) ∧Woman(x))

16/35



FOL Recap Description logics Summary

Semantics

Example

Is this a theory?
∀x(Woman(x)→ Female(x))
∀x(Mother(x)→Woman(x))
∀x(Man(x)↔ ¬Woman(x))
∀x(Mother(x)→ ∃y(partnerOf (x , y) ∧ Spouse(y))
∀x(Spouse(x)→ Man(x) ∨Woman(x))
∀x , y(Mother(x) ∧ partnerOf (x , y)→ Father(y))

Is it still a theory if we add:
∀x(Hermaphrodite(x)→ Man(x) ∧Woman(x))

16/35



FOL Recap Description logics Summary

First Order Structures

Examples of first-order structures (exercise)

Graphs are mathematical structures.

A graph is a set of points, called vertices, and lines, called
edges between them. For instance:

A B C

Figures A and B are different depictions, but have the same
descriptions w.r.t. the vertices and edges. Check this.

Graph C has a property that A and B do not have. Represent
this in a first-order sentence.

Find a suitable first-order language for A (/B), and formulate
at least two properties of the graph using quantifiers.
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First Order Structures

More graphs (exercise)

Consider the following graph, and first-order language L = 〈R〉,
with R being a binary relation symbol (edge).

a

b

1. Formalise the following properties of the graph as
L-sentences: (i) (a, a) and (b, b) are edges of the graph; (ii)
(a, b) is an edge of the graph; (iii) (b, a) is not an edge of the
graph. Let T stand for the resulting set of sentences.

2. Prove that T ∪ {∀x∀yR(x , y)} is unsatisfiable using tableaux
calculus.
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First Order Structures

Reasoning

Representing the knowledge in a suitable logic is one thing,
reasoning over it another. e.g.:

How do we find out whether a formula is valid or not?
How do we find out whether our knowledge base is satisfiable?

Among others:

Truth tables
Tableaux (principal approach for DL reasoners)
...
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First Order Structures

Tableaux summary (1/2)

A sound and complete procedure deciding satisfiability is all
we need, and the tableaux method is a decision procedure
which checks the existence of a model

It exhaustively looks at all the possibilities, so that it can
eventually prove that no model could be found for
unsatisfiable formulas.

φ |= ψ iff φ ∧ ¬ψ is NOT satisfiable—if it is satisfiable, we
have found a counterexample

Decompose the formula in top-down fashion

20/35



FOL Recap Description logics Summary

First Order Structures

Tableaux summary (1/2)

A sound and complete procedure deciding satisfiability is all
we need, and the tableaux method is a decision procedure
which checks the existence of a model

It exhaustively looks at all the possibilities, so that it can
eventually prove that no model could be found for
unsatisfiable formulas.

φ |= ψ iff φ ∧ ¬ψ is NOT satisfiable—if it is satisfiable, we
have found a counterexample

Decompose the formula in top-down fashion

20/35



FOL Recap Description logics Summary

First Order Structures

Tableaux summary (1/2)

A sound and complete procedure deciding satisfiability is all
we need, and the tableaux method is a decision procedure
which checks the existence of a model

It exhaustively looks at all the possibilities, so that it can
eventually prove that no model could be found for
unsatisfiable formulas.

φ |= ψ iff φ ∧ ¬ψ is NOT satisfiable—if it is satisfiable, we
have found a counterexample

Decompose the formula in top-down fashion

20/35



FOL Recap Description logics Summary

First Order Structures

Tableaux summary (2/2)

Tableaux calculus works only if the formula has been
translated into Negation Normal Form, i.e., all the
negations have been pushed inside

Recollect the list of equivalences, apply those to arrive at
NNF, if necessary.

If a model satisfies a conjunction, then it also satisfies each of
the conjuncts

If a model satisfies a disjunction, then it also satisfies one of
the disjuncts. It is a non-deterministic rule, and it generates
two alternative branches.

Apply the completion rules until either (a) an explicit
contradiction due to the presence of two opposite literals in a
node (a clash) is generated in each branch, or (b) there is a
completed branch where no more rule is applicable.
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Outline

1 FOL Recap
Syntax
Semantics
First Order Structures

2 Description logics
Introduction
Basic DL: ALC
Reasoning services
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Introduction

What are DLs?

A logical reconstruction and (claimed to be a) unifying
formalism for other KR languages, such as frames-based
systems, OO modelling, Semantic data models, etc.

A structured fragment of FOL

Representation is at the predicate level: no variables are
present in the formalism

Any (basic) Description Logic is a subset of L3, i.e., the
function-free FOL using only at most three variable names.

Provide theories and systems for declaratively expressing
structured information and for accessing and reasoning with it.

Used for, a.o.: terminologies and ontologies, formal
conceptual data modelling, information integration, ....
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Introduction

Description Logic knowledge base
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Basic DL: ALC

ALC

Concepts denoting entity types/classes/unary
predicates/universals, including top > and bottom ⊥;

Roles denoting relationships/associations/n-ary
predicates/properties;

Constructors: and u, or t, and not ¬; quantifications forall ∀
and exists ∃
Complex concepts using constructors

Let C and D be concept names, R a role name, then
¬C , C u D, and C t D are concepts, and
∀R.C and ∃R.C are concepts

Individuals

25/35



FOL Recap Description logics Summary

Basic DL: ALC

ALC Examples

Concepts (primitive, atomic): Book, Course

Roles: ENROLLED, READS

Complex concepts:

Student v ∃ENROLLED.(Course t DegreeProgramme)
(a primitive concept)
Mother v Woman u ∃PARENTOF.Person
Parent ≡ (Male t Female) u ∃PARENTOF.Mammalu
∃CARESFOR.Mammal (a defined concept)

Individuals: Student(Shereen), Mother(Sally),
¬Student(Sally), ENROLLED(Shereen, COMP101)

But what does it really mean?
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Basic DL: ALC

Semantics of ALC (1/3)

Domain ∆ is a non-empty set of objects

Interpretation: ·I is the interpretation function, domain ∆I

·I maps every concept name A to a subset AI ⊆ ∆I

·I maps every role name R to a subset RI ⊆ ∆I ×∆I

·I maps every individual name a to elements of ∆I : aI ∈ ∆I

Note: >I = ∆I and ⊥I = ∅
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Basic DL: ALC

Semantics of ALC (2/3)

C and D are concepts, R a role

(¬C )I = ∆I\CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∀R.C )I = {x | ∀y .RI(x , y)→ CI(y)}
(∃R.C )I = {x | ∃y .RI(x , y) ∧ CI(y)}
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Basic DL: ALC

Semantics of ALC (3/3)

C and D are concepts, R a role, a and b are individuals

An interpretation I satisfies the statement C v D if CI ⊆ DI

An interpretation I satisfies the statement C ≡ D if CI = DI

C (a) is satisfied by I if aI ∈ CI

R(a, b) is satisfied by I if (aI , bI) ∈ RI

An interpretation I = (∆I , ·I) is a model of a knowledge base
KB if every axiom of KB is satisfied by I
A knowledge base KB is said to be satisfiable if it admits a
model
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Reasoning services

Logical implication

KB |= φ if every model of KB is a model of φ

Example:
TBox: ∃TEACHES.Course v ¬Undergrad t Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

KB |= Professor(John)

What if:
TBox: ∃TEACHES.Course v Undergrad t Professor
ABox: TEACHES(John, cs101), Course(cs101),
Undergrad(John)

KB |= Professor(John)? or perhaps
KB |= ¬Professor(John)?
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Reasoning services

Reasoning services for DL-based OWL ontologies

Consistency of the knowledge base (KB 2 > v ⊥)
Is the KB = (T ,A) consistent (non-selfcontradictory), i.e., is
there at least a model for KB?

Concept (and role) satisfiability (KB 2 C v ⊥)
is there a model of KB in which C (resp. R) has a nonempty
extension?

Concept (and role) subsumption (KB |= C v D)
i.e., is the extension of C (resp. R) contained in the extension
of D (resp. S) in every model of T ?

Instance checking (KB |= C (a) or KB |= R(a, b))
is a (resp. (a, b)) a member of concept C (resp. R) in KB,
i.e., is the fact C (a) (resp. R(a, b)) satisfied by every
interpretation of KB?

Instance retrieval ({a | KB |= C (a)})
find all members of C in KB, i.e., compute all individuals a s.t.
C (a) is satisfied by every interpretation of KB
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Reasoning services

Tableau reasoning

Most common for DL reasoners

Like for FOL:

Unfold the TBox
Convert the result into negation normal form
Apply the tableau rules to generate more Aboxes
Stop when none of the rules are applicable

T ` C v D if all Aboxes contain clashes

T 0 C v D if some Abox does not contain a clash
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Reasoning services

Negation Normal Form

C and D are concepts, R a role

¬ only in front of concepts:

¬¬C gives C
¬(C u D) gives ¬C t ¬D
¬(C t D) gives ¬C u ¬D
¬(∀R.C ) gives ∃R.¬C
¬(∃R.C ) gives ∀R.¬C

33/35



FOL Recap Description logics Summary

Reasoning services

Tableau rules

u-rule If (C1 u C2)(a) ∈ S but S does not contain both C1(a) and
C2(a), then
S = S ∪ {C1(a),C2(a)}

t-rule If (C1 t C2)(a) ∈ S but S contains neither C1(a) nor C2(a),
then
S = S ∪ {C1(a)}
S = S ∪ {C2(a)}

∀-rule If (∀R.C )(a) ∈ S and S contains R(a, b) but not C (b), then
S = S ∪ {C (b)}

∃-rule If (∃R.C )(a) ∈ S and there is no b such that C (b) and
R(a, b), then
S = S ∪ {C (b),R(a, b)}
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