FOL Recap

COMP718: Ontologies and Knowledge Bases Lecture 2: FOL Recap and Description Logics

> Maria Keet email: keet@ukzn.ac.za home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

14 February 2012

Outline

FOL Recap

- Syntax
- Semantics
- First Order Structures

2 Description logics

- Introduction
- Basic DL: ALC
- Reasoning services

1/34

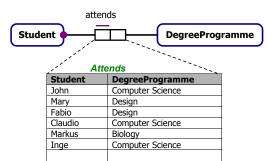
Summary

From data to ORM2 or text and then to FOL—or v.v.

Description logics

Student **is an entity type**. DegreeProgramme **is an entity type**. Student attends DegreeProgramme.

Each Student attends exactly one DegreeProgramme. It is possible that more than one Student attends the same DegreeProgramme. *OR, in the negative:* For each Student, it is impossible that that Student attends more than one DegreeProgramme. It is impossible that any Student attends no DegreeProgramme.



FOL Recap	Description logics	Summary
How to formalise it?		

Description logics

- Note: logic is not the study of truth, but of the relationship between the truth of one statement and that of another
- Syntax
 - Alphabet
 - Languages constructs
 - Sentences to assert knowledge
- Semantics
 - Formal meaning

FOL Recap ●00000000000000	Description logics	Su
Syntax		
First order logic		

The lexicon of a first order language contains:

- Connectives & Parentheses: \neg , \rightarrow , \leftrightarrow , \land , \lor , (and);
- Quantifiers: \forall (universal) and \exists (existential);
- Variables: x, y, z, ... ranging over particulars;
- Constants: *a*, *b*, *c*, ... representing a specific element;
- Functions: f, g, h, ..., with arguments listed as $f(x_1, ..., x_n)$;
- Relations: *R*, *S*, ... with an associated arity.

- vv.)
- Each animal is an organism All animals are organisms If it is an animal then it is an organism ∀x(Animal(x) → Organism(x))
- Each student must be registered for a degree programme
 ∀x(registered_for(x, y) → Student(x) ∧ DegreeProgramme(y))
 ∀x(Student(x) → ∃y registered_for(x, y))
- Aliens exist
 ∃x Alien(x)
- There are books that are heavy ∃x(Book(x) ∧ heavy(x))

6/34

FOL Recap	Description logics	Summary
Syntax		
First order logic		

- (countably infinite) Supply of **symbols** (signature): Variables, Functions , Constants, and Relations
- Terms: A term is inductively defined by two rules, being:
 - 1 Every variable and constant is a term.
 - 2 if f is a m-ary function and t_1, \ldots, t_m are terms, then $f(t_1, \ldots, t_m)$ is also a term.

Definition (atomic formula)

An *atomic formula* is a formula that has the form $t_1 = t_2$ or $R(t_1, ..., t_n)$ where R is an *n*-ary relation and $t_1, ..., t_n$ are terms.

- R1. If ϕ is a formula then so is $\neg \phi$.
- R2. If ϕ and ψ are formulas then so is $\phi \wedge \psi$.
- R3. If ϕ is a formula then so is $\exists x \phi$ for any variable x.

Definition (formula)

A string of symbols is a *formula* of FOL if and only if it is constructed from atomic formulas by repeated applications of rules R1, R2, and R3.

A *free variable* of a formula ϕ is that variable occurring in ϕ that is not quantified. We then can introduce the definition of *sentence*.

Definition (sentence)

A sentence of FOL is a formula having no free variables.

Description logics

FOL Cont.: toward semantics

- Whether a sentence is true or not depends on the underlying set and the interpretation of the function, constant, and relation symbols.
- A *structure* consists of an *underlying set* together with an *interpretation* of functions, constants, and relations.
- Given a sentence ϕ and a structure M, M models ϕ means that the sentence ϕ is true with respect to M. More precisely,

Definition (vocabulary)

A vocabulary \mathcal{V} is a set of function, relation, and constant symbols.

10/34

FOL Recap	Description logics	Summ
Semantics		
FOL Cont.		

- When we say that M models φ, denoted with M ⊨ φ, this is with respect to M being a V-structure and V-sentence φ is true in M.
- Model theory: the interplay between M and a set of first-order sentences T(M), which is called the *theory of M*, and its 'inverse' from a set of sentences Γ to a class of structures.

Definition (theory of M)

For any \mathcal{V} -structure M, the *theory of* M, denoted with $\mathcal{T}(M)$, is the set of all \mathcal{V} -sentences ϕ such that $M \models \phi$.

Definition (model)

For any set of \mathcal{V} -sentences, a *model* of Γ is a \mathcal{V} -structure that models each sentence in Γ . The class of all models of Γ is denoted by $\mathcal{M}(\Gamma)$.

Description logics

FOL Cont.

Definition (*V*-structure)

A \mathcal{V} -structure consists of a non-empty underlying set Δ along with an interpretation of \mathcal{V} . An interpretation of \mathcal{V} assigns an element of Δ to each constant in \mathcal{V} , a function from Δ^n to Δ to each *n*-ary function in \mathcal{V} , and a subset of Δ^n to each *n*-ary relation in \mathcal{V} . We say M is a structure if it is a \mathcal{V} -structure of some vocabulary \mathcal{V} .

Definition (\mathcal{V} -formula)

Let \mathcal{V} be a vocabulary. A \mathcal{V} -formula is a formula in which every function, relation, and constant is in \mathcal{V} . A \mathcal{V} -sentence is a \mathcal{V} -formula that is a sentence.

11/34

Summar

Description logics

Theory in the context of logic

Definition (complete $\mathcal V$ -theory)

Let Γ be a set of \mathcal{V} -sentences. Then Γ is a *complete* \mathcal{V} -theory if, for any \mathcal{V} -sentence ϕ either ϕ or $\neg \phi$ is in Γ and it is not the case that both ϕ and $\neg \phi$ are in Γ .

• It can then be shown that for any \mathcal{V} -structure M, $\mathcal{T}(M)$ is a complete \mathcal{V} -theory (for proof, see *e.g.* [Hedman04, p90])

Definition

FOL Recap

A set of sentences Γ is said to be *consistent* if no contradiction can be derived from Γ .

Definition (theory)

A theory is a consistent set of sentences.

FOL Recap

Description logics

Some definitions

- A formula is valid if it holds under every assignment. ⊨ φ to denote this. A valid formula is called a tautology.
- A formula is satisfiable if it holds under some assignment.
- A formula is unsatisfiable if it holds under *no* assignment. An unsatisafiable formula is called a contradiction.

nantice

15/34

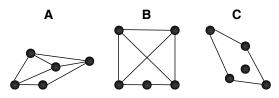
Example

- Is this a theory? ∀x(Woman(x) → Female(x)) ∀x(Mother(x) → Woman(x)) ∀x(Man(x) ↔ ¬Woman(x)) ∀x(Mother(x) → ∃y(partnerOf(x, y) ∧ Spouse(y)) ∀x(Spouse(x) → Man(x) ∨ Woman(x)) ∀x, y(Mother(x) ∧ partnerOf(x, y) → Father(y))
 Is it still a theory if we add:
- $\forall x (Hermaphrodite(x) \rightarrow Man(x) \land Woman(x))$

14/34

FOL Recap	Description logics	Summary
First Order Structures		
Examples of f	irst-order structures (exercise	

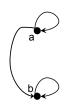
- Graphs are mathematical structures.
- A graph is a set of points, called vertices, and lines, called edges between them. For instance:



- Figures A and B are different depictions, but have the same descriptions w.r.t. the vertices and edges. Check this.
- Graph C has a property that A and B do not have. Represent this in a first-order sentence.
- Find a suitable first-order language for A (/B), and formulate at least two properties of the graph using quantifiers.

FOL Recap ○○○○○○○○○●○○○	Description logics	Summary
First Order Structures		
More graphs (exercise)		

Consider the following graph, and first-order language $\mathcal{L} = \langle R \rangle$, with R being a binary relation symbol (edge).



- Formalise the following properties of the graph as
 L-sentences: (i) (a, a) and (b, b) are edges of the graph; (ii) (a, b) is an edge of the graph; (iii) (b, a) is not an edge of the graph. Let T stand for the resulting set of sentences.
- 2. Prove that $T \cup \{ \forall x \forall y R(x, y) \}$ is unsatisfiable using tableaux calculus.

FUL	Reca	p
		00000

Description logics

First Order Structures Reasoning

000

- Representing the knowledge in a suitable logic is one thing, reasoning over it another. e.g.:
 - How do we find out whether a formula is valid or not?
 - How do we find out whether our knowledge base is satisfiable?
- Among others:
 - Truth tables
 - Tableaux (principal approach for DL reasoners)
 - ...

FOL Recap

Introduction

19/34

First Order Structures

Tableaux summary (1/2)

- A sound and complete procedure deciding satisfiability is all we need, and the tableaux method is a decision procedure which checks the existence of a model
- It exhaustively looks at all the possibilities, so that it can eventually prove that no model could be found for unsatisfiable formulas.
- $\phi \models \psi$ iff $\phi \land \neg \psi$ is NOT satisfiable—if it is satisfiable, we have found a counterexample
- Decompose the formula in top-down fashion

18/34

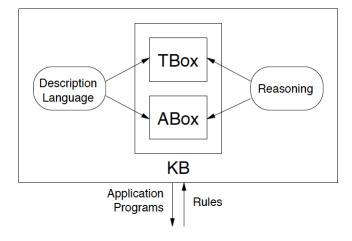
FOL Recap Description logics 00000 First Order Structures Tableaux summary (2/2)

- Tableaux calculus works only if the formula has been translated into Negation Normal Form, i.e., all the negations have been pushed inside
- Recollect the list of equivalences, apply those to arrive at NNF, if necessary.
- If a model satisfies a conjunction, then it also satisfies each of the conjuncts
- If a model satisfies a disjunction, then it also satisfies one of the disjuncts. It is a non-deterministic rule, and it generates two alternative branches.
- Apply the completion rules until either (a) an explicit contradiction due to the presence of two opposite literals in a node (a clash) is generated in each branch, or (b) there is a completed branch where no more rule is applicable.

Description logics Summar 000000 What are DLs?

- A logical reconstruction and (claimed to be a) unifying formalism for other KR languages, such as frames-based systems, OO modelling, Semantic data models, etc.
- A structured fragment of FOL
- Representation is at the predicate level: no variables are present in the formalism
- Any (basic) Description Logic is a subset of \mathcal{L}_3 , i.e., the function-free FOL using only at most three variable names.
- Provide theories and systems for declaratively expressing structured information and for accessing and reasoning with it.
- Used for, a.o.: terminologies and ontologies, formal conceptual data modelling, information integration,

Description Logic knowledge base



23/34

FOL Recap	Description logics	Summary
Basic DL: ALC		
${\cal ALC}$ Examples		

- - Concepts denoting entity types/classes/unary predicates/universals, including top ⊤ and bottom ⊥;
 - Roles denoting relationships/associations/n-ary predicates/properties;
 - Constructors: and $\sqcap,$ or $\sqcup,$ and not $\neg;$ quantifications forall \forall and exists \exists
 - Complex concepts using constructors
 - Let C and D be concept names, R a role name, then
 - $\neg C$, $C \sqcap D$, and $C \sqcup D$ are concepts, and
 - $\forall R.C$ and $\exists R.C$ are concepts
 - Individuals

- Concepts (primitive, atomic): Book, Course
- Roles: ENROLLED, READS
- Complex concepts:
 - Student ⊑ ∃ENROLLED.(Course ⊔ DegreeProgramme) (a primitive concept)
 - Mother \sqsubseteq Woman $\sqcap \exists$ PARENTOF.Person
 - Parent ≡ (Male ⊔ Female) □ ∃PARENTOF.Mammal □ ∃CARESFOR.Mammal (a defined concept)
- Individuals: Student(Shereen), Mother(Sally), ¬Student(Sally), ENROLLED(Shereen, COMP101)
- But what does it really mean?

- Domain Δ is a non-empty set of objects
- \bullet Interpretation: $\cdot^{\mathcal{I}}$ is the interpretation function, domain $\Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every role name R to a subset $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
 - ${}^{\mathcal{I}}$ maps every individual name *a* to elements of $\Delta^{\mathcal{I}}$: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- Note: $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $\perp^{\mathcal{I}} = \emptyset$

• C and D are concepts, R a role

•
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.R^{\mathcal{I}}(x,y) \to C^{\mathcal{I}}(y)\}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y.R^{\mathcal{I}}(x,y) \land C^{\mathcal{I}}(y)\}$

Basic DL: ALC

OL Recap

Reasoning services

Semantics of ALC (3/3)

• C and D are concepts, R a role, a and b are individuals

000000

- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- An interpretation \mathcal{I} satisfies the statement $C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$
- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- R(a, b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$
- An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ is a model of a knowledge base \mathcal{KB} if every axiom of \mathcal{KB} is satisfied by \mathcal{I}
- A knowledge base \mathcal{KB} is said to be satisfiable if it admits a model

28/34

Summar

27/34

Description logics OL Recap Reasoning services Logical implication

- $\mathcal{KB} \models \phi$ if every model of \mathcal{KB} is a model of ϕ
- Example:

TBox: \exists TEACHES.Course $\sqsubseteq \neg$ Undergrad \sqcup Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

- $\mathcal{KB} \models \text{Professor(John)}$
- What if:

TBox: \exists TEACHES.Course \Box Undergrad \sqcup Professor ABox: TEACHES(John, cs101), Course(cs101), Undergrad(John)

• $\mathcal{KB} \models \text{Professor}(\text{John})$? or perhaps $\mathcal{KB} \models \neg \texttt{Professor}(\texttt{John})$?

Description logics

Reasoning services for DL-based OWL ontologies

- Consistency of the knowledge base $(\mathcal{KB} \nvDash \top \Box \bot)$
 - Is the $\mathcal{KB} = (\mathcal{T}, \mathcal{A})$ consistent (non-selfcontradictory), i.e., is there at least a model for \mathcal{KB} ?
- Concept (and role) satisfiability ($\mathcal{KB} \nvDash C \sqsubset \bot$)
 - is there a model of \mathcal{KB} in which C (resp. R) has a nonempty extension?
- Concept (and role) subsumption ($\mathcal{KB} \models C \sqsubseteq D$)
 - i.e., is the extension of C (resp. R) contained in the extension of D (resp. S) in every model of \mathcal{T} ?
- Instance checking $(\mathcal{KB} \models C(a) \text{ or } \mathcal{KB} \models R(a, b))$
 - is a (resp. (a, b)) a member of concept C (resp. R) in \mathcal{KB} , i.e., is the fact C(a) (resp. R(a, b)) satisfied by every interpretation of \mathcal{KB} ?
- Instance retrieval ({ $a \mid \mathcal{KB} \models C(a)$ })
 - find all members of C in \mathcal{KB} , i.e., compute all individuals a s.t. C(a) is satisfied by every interpretation of \mathcal{KB}

FOL Recap 0000000000000000	Description logics	Summary	FOL Recap	Description logics ○○○○○○○○●○
Reasoning services			Reasoning services	
Tableau reasoning			Negation Normal	Form

- Most common for DL reasoners
- Like for FOL:
 - Unfold the TBox
 - Convert the result into negation normal form
 - Apply the tableau rules to generate more Aboxes
 - Stop when none of the rules are applicable
- $\mathcal{T} \vdash C \sqsubseteq D$ if all Aboxes contain clashes
- $\mathcal{T} \nvDash C \sqsubseteq D$ if some Abox does not contain a clash

- C and D are concepts, R a role
- \neg only in front of concepts:
 - $\neg \neg C$ gives C
 - $\neg(C \sqcap D)$ gives $\neg C \sqcup \neg D$
 - $\neg(C \sqcup D)$ gives $\neg C \sqcap \neg D$
 - $\neg(\forall R.C)$ gives $\exists R.\neg C$
 - $\neg(\exists R.C)$ gives $\forall R.\neg C$

FOL Recap Description logics Summar 00000000000 0000000000 Summar Reasoning services Tableau rules

¬rule If (C₁ □ C₂)(a) ∈ S but S does not contain both C₁(a) and C₂(a), then S = S ∪ {C₁(a), C₂(a)} □-rule If (C₁ □ C₂)(a) ∈ S but S contains neither C₁(a) nor C₂(a), then S = S ∪ {C₁(a)} S = S ∪ {C₁(a)} S = S ∪ {C₂(a)} ∀-rule If (∀R.C)(a) ∈ S and S contains R(a, b) but not C(b), then S = S ∪ {C(b)} ∃-rule If (∃R.C)(a) ∈ S and there is no b such that C(b) and R(a, b), then S = S ∪ {C(b), R(a, b)}

- Syntax
- Semantics
- First Order Structures

2 Description logics

- Introduction
- \bullet Basic DL: \mathcal{ALC}
- Reasoning services