
Problem Solving Strategies – set of problems

Maria Keet
University of Cape Town, South Africa

ICPC Training Session, April 12, 2015

Task: categorise the following set of problems into the right strategies.

Each problem fits into one or more category: complete search, divide & conquer,
greedy, dynamic programming, ad hoc (i.e., none in particular), approach not listed
here namely...

They are in one of the competitive programming systems online, so do try to code
them after you categorised them. Where they are to be found is on the solution page,
not here, because you are expected to have solved it before ‘testing’ the solution in the
online system.

Contents

1 Charming canines 2

2 Work reduction 4

3 Trainsorting 6

4 Wine trading in Gergovia 7

5 The jackpot 8

6 Durban Prawns 9

7 Mobile phone coverage 11

8 Blowing fuses 13

1

1 Charming canines

Input: Standard Input; Output: Standard Output; Time Limit: 1 Second

Once upon a time, there lived a lion called Luchu Bandor. When Luchu was young,
he was given cute little poodle as pet, called Bunty Mona. Luchu had grown up and
was feeling uncomfortable taking Bunty to public places along with him, as everyone
would stare at them all the while. At one point, Luchu could not stand it anymore and
started looking for a new dog in the dog kennel and training school, as he still did like
having a dog as pet. Every day Luchu would wait for the morning drill to start. From
there he could see each all dogs doing their routine drill. Now Luchu was looking for the
tallest dog that would be shorter than he; he would also like to consider a dog a little
taller than he. But a dog of his same height will never be on his list. Every morning
Luchu picks up a line of dogs and finds the best two according to his set criterion. His
job has been made easy by the fact that the dogs in each line are ordered by their
height, the shortest one is in the front and the tallest one is at the back. Your task is
to help Luchu on one particular day to find two dogs: the tallest one shorter than he
and the shortest one taller than he.

There will be only one set of input for this problem. The first line of input gives
you a number N (1 ≤ N ≤ 50000), the number of dogs on the line. In the next line
you would have N integers (in the range 1 to 231-1) giving the heights of the N dogs.
There would be a single space after every number. You can assume that the dogs are
ordered in non-decreasing order of their heights. In the next line you would have an
integer Q (1 ≤ Q ≤ 25000) giving the number of queries. Then in the next line Q
queries will follow. Then you would have Q numbers giving the height of Luchu! Don’t
worry, Luchu is from the land where people can have 3 birth dates; Q heights for a dog
will make no difference here. The Q numbers are listed on a line and their range from
1 to 231-1, and as before you would find a single space after every query number. The
query numbers are not supposed to come in any particular order.

For each query height, print two numbers in one line. The first one would be the
height of the tallest dog that is shorter than Luchu, and the next number would be the
height of the shortest dog that is taller than he. These two numbers are to be separated
by a single space. Whenever it is impossible to find any of these two heights, replace
that height with an uppercase ‘X’.

Sample input

4

1 4 5 7

4

4 6 8 10

Sample output

1 5

5 7

7 X

7 X

2

/*Note: You should at least use scanf() and printf() to take input and produce output for

this problem. cin and cout is too slow for this problem to get it within time limit. Sorry for

this but otherwise it becomes impossible for us to set a reasonable time limit.*/

3

2 Work reduction

Time limit: 3.000 seconds

Paperwork is beginning to pile up on your desk, and tensions at the workplace are
starting to mount. Your boss has threatened to fire you if you don’t make any progress
by the end of the day. You currently have N units of paperwork on your desk, and your
boss demands that you have exactly M units of paperwork left by the end of the day.

The only hope for you now is to hire help. There are various agencies which offer
paperwork reduction plans:
For $A they will reduce your paperwork by one unit.
For $B they will reduce your entire paperwork by half (rounding down when necessary).
Note that work can never be reduced to less than 0.

Your task now is to produce a sorted table of agency names and their respective
minimum costs to solve your workload problem.

The first line of input consists of a single positive integer representing the number
of cases to follow. Each case begins with three positive integers separated by spaces:
N – your starting workload, M – your target workload, and L – the number of work
reduction agencies available to you, 1 ≤ M ≤ N ≤ 100000, 1 ≤ L ≤ 100. The next L
lines have the format “[agency name]:A,B”, where A and B are the rates as described
above for the given agency (0 ≤ A,B ≤ 10000). The length of the agency name will be
between 1 and 16, and will consist only of capital letters. Agency names will be unique.

For each test case, print “Case X”, with X being the case number, on a single line,
followed by the table of agency names and their respective minimum costs, sorted in
non-decreasing order of minimum costs. Sort job agencies with identical minimum costs
in alphabetical order by agency name. For each line of the table, print out the agency
name, followed by a space, followed by the minimum required cost for that agency to
solve your problem.

Sample input

2

100 5 3

A:1,10

B:2,5

C:3,1

1123 1122 5

B:50,300

A:1,1000

C:10,10

D:1,50

E:0,0

4

Sample output

Case 1

C 7

B 22

A 37

Case 2

E 0

A 1

D 1

C 10

B 50

5

3 Trainsorting

Time limit: 1.000 seconds

Erin is an engineer. She drives trains. She also arranges the cars within each train.
She prefers to put the cars in decreasing order of weight, with the heaviest car at the
front of the train. Unfortunately, sorting train cars is not easy. One cannot simply pick
up a car and place it somewhere else. It is impractical to insert a car within an existing
train. A car may only be added to the beginning and end of the train. Cars arrive at
the train station in a predetermined order. When each car arrives, Erin can add it to
the beginning or end of her train, or refuse to add it at all. The resulting train should
be as long as possible, but the cars within it must be ordered by weight. Given the
weights of the cars in the order in which they arrive, what is the longest train that Erin
can make?

The first line is the number of test cases to follow. The test cases follow, one after
another; the format of each test case is the following: The first line contains an integer
0 ≤ n ≤ 2000, the number of cars. Each of the following n lines contains a non-negative
integer giving the weight of a car. No two cars have the same weight.

Output a single integer giving the number of cars in the longest train that can be
made with the given restrictions.

Sample input

1

3

1

2

3

Sample output

3

6

4 Wine trading in Gergovia

Time limit: 3.000 seconds

As you may know from the comic “Asterix and the Chieftain’s Shield”, Gergovia
consists of one street, and every inhabitant of the city is a wine salesman. You wonder
how this economy works? Simple enough: everyone buys wine from other inhabitants
of the city. Every day each inhabitant decides how much wine he wants to buy or sell.
Interestingly, demand and supply is always the same, so that each inhabitant gets what
he wants.

There is one problem, however: Transporting wine from one house to another results
in work. Since all wines are equally good, the inhabitants of Gergovia don’t care which
persons they are doing trade with, they are only interested in selling or buying a specific
amount of wine. They are clever enough to figure out a way of trading so that the overall
amount of work needed for transports is minimized.

In this problem you are asked to reconstruct the trading during one day in Gergovia.
For simplicity we will assume that the houses are built along a straight line with equal
distance between adjacent houses. Transporting one bottle of wine from one house to
an adjacent house results in one unit of work.

Input Specification. The input consists of several test cases. Each test case starts
with the number of inhabitants n where 2 ≤ n ≤ 100000. The following line contains
n integers ai (−1000 ≤ ai ≤ 1000). If ai ≥ 0, it means that the inhabitant living in
the ith house wants to buy ai bottles of wine, otherwise if ai < 0, he wants to sell −ai
bottles of wine. You may assume that the numbers ai sum up to 0. The last test case
is followed by a line containing 0.

Output Specification. For each test case print the minimum amount of work units
needed so that every inhabitant has his demand fulfilled. You may assume that this
number fits into a signed 64-bit integer (in C/C++ you can use the data type “long
long”, in JAVA the data type “long”).

Sample input

5

5 -4 1 -3 1

6

-1000 -1000 -1000 1000 1000 1000

0

Sample output

9

9000

7

5 The jackpot

Note: Time Limit: 1 second; Memory Limit: 1 Mb

As Manuel wants to get rich fast and without too much work, he decided to make
a career in gambling. Initially, he plans to study the gains and losses of players, so
that, he can identify patterns of consecutive wins and elaborate a win-win strategy.
But Manuel, as smart as he thinks he is, does not know how to program computers. So
he hired you to write programs that will assist him in elaborating his strategy.

Your first task is to write a program that identifies the maximum possible gain out
of a sequence of bets. A bet is an amount of money and is either winning (and this is
recorded as a positive value), or losing (and this is recorded as a negative value).

The input set consists of a positive number N ≤ 10000, that gives the length of the
sequence, followed by N integers. Each bet is an integer greater than 0 and less than
1000. The input is terminated with N = 0.

For each given input set, the output will echo a line with the corresponding solution.
If the sequence shows no possibility to win money, then the output is the message
“Losing streak.”

Sample input

5

12 -4

-10 4

9

3

-2 -1 -2

0

Sample output

The maximum winning streak is 13.

Losing streak.

8

6 Durban Prawns

Input: standard input; Output: standard output; Time Limit: 7 seconds; Memory
Limit: 32 MB

Durban has a lovely subtropical climate. What unsuspecting visitors may not re-
alise, is that cockroaches (of the 7cm long and 1.3cm thick type) like that weather too!
Durban can’t really get rid of them, and Durbanites call them affectionately “Durban
prawns”. However, recently things have gotten a bit out of control, and some exter-
mination programme has to be put in place. As keeping up appearances is important,
the eThekwini Municipality decides that only the streets have to be clean from roaches.
They have tendered the cleanup to the African Catastrophe Management (ACM) com-
pany.

The African Catastrophe Management has scouted for roach nests, having observed
that they always set up their nests on street intersections, and determined that the
only viable method to extinguish them is to use gas bombs. However, gas bombs are
not only lethal to the roaches, but also for humans, so the buildings in the area of the
gas bomb have to be evacuated in advance. To optimize the effect of exterminating the
prawns, and minimize evacuations, the point of setting of the gas bomb must be chosen
very carefully. African Catastrophe Management uses ‘smart gas’, for when fired, the
gas spreads in a rectangular fashion through the streets. The strength of a gas bomb is
given by a number d which specifies the rectangular ‘radius’ of the gas diffusion area.
Take, for example, the section of Durban shown in Fig. 1, and a stylised version of that
(on the right), which shows what happens when a bomb with d = 1 explodes. Assume
all of Durban has its streets in a rectangular grid.

Figure 1: left: small section of the map of Durban, with the gas bomb (green star) on
the corner of Cato road and Che Guevara road; right: suitable abstraction with the
bomb (green star) and a diffusion area when d = 1 (yellow rectangle).

The area of interest consists of a discrete grid of 1025× 1025 fields. The cockroach
exterminator scouts have given a detailed report on where roach populations of different
sizes have built their nests. You are given a gas bomb with strength d and your task is
to find an explosion location for this gas bomb which extinguishes the largest number
of roaches. The best position is determined by the following criteria:
• The sum of all roach population sizes within the diffusion area of the gas bomb

(given by d) is maximal.

9

• If there is more than one of these best positions then the location with the “min-
imal” position will be chosen. Positions are ordered first by their x coordinate
and second by their y coordinate.

Formally, given a location (x1, y1) on the grid, a point (x2, y2) is within the diffusion
area of a gas bomb with strength d if the following equation holds:

max(abs(x2 − x1), abs(y2 − y1)) ≤ d (1)

Regarding the input, the first line contains the number of scenarios in the input. For
each scenario the first line contains the strength d of the gas bomb in the scenario
(1 ≤ d ≤ 50). The second line contains the number n (1 ≤ n ≤ 20000) of cockroach
populations. Then for every roach population follows a line containing three integers
separated by spaces for the position (x, y) and ‘size’ i of the population (1 ≤ i ≤ 255).
It is guaranteed that position coordinates are valid (i.e., in the range between 0 and
1024) and no position is given more than once.

Output. For every problem print a line containing the x and y coordinate of the
chosen location for the gas bomb, followed by the sum of the roach population sizes
which will be extinguished. The three numbers must be separated by a space.

Sample input

1

1

2

4 4 10

6 6 20

Sample output

5 5 30

10

7 Mobile phone coverage

Time limit: 3.000 seconds

The mobile phone company Advanced Cellular, Mobile, and Internet-Connected
Phone Corporation (ACMICPC) is planning to set up a collection of antennas for mobile
phones in a city called Maxnorm. ACMICPC has several collections for locations of
antennas as their candidate plans, and now they want to know which collection is the
best choice.

For this purpose, they want to develop a computer program to find the coverage
of a collection of antenna locations. Each antenna Ai has power ri, corresponding to
“radius”. Usually, the coverage region of the antenna may be modeled as a disk centered
at the location of the antenna (xi, yi) with radius ri. However, in this city Maxnorm
such a coverage region becomes the square [xi − ri, xi + ri]× [yi − ri, yi + ri]. In other
words, the distance between two points (xp, yp) and (xq, yq) is measured by the max
norm max{|xp − xq|, |yp − yq|}, or, the L∞ norm, in this city Maxnorm instead of the

ordinary Euclidean norm
√

(xp − xq)2 + (yp − yq)2.
As an example, consider the following collection of 3 antennas, depicted in Fig. 2.

4.0 4.0 3.0

5.0 6.0 3.0

5.5 4.5 1.0

where the i-th row represents xi, yi, ri such that (xi, yi) is the position of the i-th
antenna and ri is its power. The area of regions of points covered by at least one
antenna is 52.00 in this case.

Figure 2: Illustration for the antennas and coverage.

Write a program that finds the area of coverage by a given collection of antenna
locations.

The input contains multiple data sets, each representing a collection of antenna
locations. A data set is given in the following format.

n
x1 y1 r1
x2 y2 r2
. . .
xn yn rn

11

The first integer n is the number of antennas, such that 2 ≤ n ≤ 100. The coordinate
of the i-th antenna is given by (xi, yi), and its power is ri. xi, yi and ri are fractional
numbers between 0 and 200 inclusive. The end of the input is indicated by a data set
with 0 as the value of n.

For each data set, your program should output its sequence number (1 for the first
data set, 2 for the second, etc.) and the area of the coverage region. The area should
be printed with two digits to the right of the decimal point, after rounding it to two
decimal places. The sequence number and the area should be printed on the same
line with no spaces at the beginning and end of the line. The two numbers should be
separated by a space.

Sample input

3

4.0 4.0 3.0

5.0 6.0 3.0

5.5 4.5 1.0

2

3.0 3.0 3.0

1.5 1.5 1.0

0

Sample output

1 52.00

2 36.00

12

8 Blowing fuses

Maybe you are familiar with the following situation. You have plugged in several
electrical devices, such as a toaster, refrigerator, microwave oven, computers, a stereo,
etc, and have them all running. But at the moment when you turn on the TV, the fuse
blows, since the power drawn from all the machines is greater than the capacity of the
fuse. Of course this is a great safety feature, avoiding that houses burn down too often
due to fires ignited by overheating wires. But it is also annoying to walk down to the
basement (or some other inconvenient place) to replace to fuse or switch it back on.

What one would like to have is a program that checks before turning on an electrical
device whether the combined power drawn by all running devices exceeds the fuses
capacity (and it blows), or whether it is safe to turn it on.

The input consists of several test cases. Each test case describes a set of electrical
devices and gives a sequence of turn on/off operations for these devices. The first line
of each test case contains three integers n, m and c, where n is the number of devices
(n ≤ 20), m the number of operations performed on these devices and c is the capacity
of the fuse (in Amperes). The following n lines contain one positive integer ci each, the
consumption (in Amperes) of the i-th device. This is followed by m lines also containing
one integer each, between 1 and n inclusive. They describe a sequence of turn on/turn
off operations performed on the devices. For every number, the state of that particular
devices is toggled, i.e., if it is currently running, it is turned off, and if it is currently
turned off, it will by switched on. At the beginning all devices are turned off. The
input will be terminated by a test case starting with n = m = c = 0. This test case
should not be processed.

For each test case, first output the number of the test case. Then output whether
the fuse was blown during the operation sequence. The fuse will be blown if the sum of
the power consumptions ci of turned on devices at some point exceeds the capacity of
the fuse c. If the fuse is not blown, output the maximal power consumption by turned
on devices that occurred during the sequence. Output a blank line after each test case.

Sample input

2 2 10

5

7

1

2

3 6 10

2

5

7

2

1

2

3

1

3

0 0 0

13

Sample output

Sequence 1

Fuse was blown.

Sequence 2

Fuse was not blown.

Maximal power consumption was 9 amperes.

14

Solution

This page doesn’t give you the solution to the actual problem, only the category and
which UVa problem it is. You still have to solve and code it. You can test your solution
at http://uva.onlinejudge.org/.

Problem 1: Charming canines. This is essentially UVa problem 10611; I changed
the storyline, but all the variables, input etc. are exactly the same. Solvable using
Divide & Conquer (binary search).

Problem 2: Work reduction. This is UVa problem 10670. Solvable using Greedy.

Problem 3: Trainsorting. This is UVa problem 11456. Solvable using Dynamic
Programming.

Problem 4: Wine trading in Gergovia. This is UVa problem 11054, and also used
in the 2006/2007 ACM ICPC Local Contest at the University of Ulm. Solvable using
Greedy.

Problem 5: The jackpot. This is UVa problem 10684. Solvable using Dynamic
Programming (maximum 1-D sum/maximum consecutive subsequence)

Problem 6: Durban prawns. This is essentially UVa problem 10360, which is from
the TUD Programming Contest; I changed the storyline, but all the variables, input
etc. are exactly the same. Solvable using Complete Search.

Problem 7: Mobile Phone Coverage. This is UVa problem 688. Solvable using
Complete Search + Geometry.

Problem 8: Blowing fuses. This is UVa problem 661. Solvable using an ad hoc
algorithm (simulation).

15

http://uva.onlinejudge.org/

	Charming canines
	Work reduction
	Trainsorting
	Wine trading in Gergovia
	The jackpot
	Durban Prawns
	Mobile phone coverage
	Blowing fuses

