
Managing your Project

¡ draft v0.4 !

C. Maria Keet
email: mkeet@cs.uct.ac.za

home: http://www.meteck.org
Department of Computer Science

University of Cape Town
South Africa

January 5, 2024

Contents

1 Introduction 2

2 The kind of activities 2
2.1 Types of theses . 2
2.2 Core activities . 3

2.2.1 Exploration . 3
2.2.2 Problem definition . 3
2.2.3 Proposal . 4
2.2.4 Core research/development . 5
2.2.5 Complete the production of the thesis and defense 6

3 How to structure your activities 6
3.1 Milestones and deliverables . 6
3.2 Dividing up the tasks . 7
3.3 Introducing breaks . 7
3.4 Making a schedule . 8

4 Avoiding and dealing with delays 9
4.1 The onion approach . 9
4.2 Keeping a project log . 10
4.3 Review and revise . 11

5 Closing remarks 12

1

mkeet@cs.uct.ac.za
http://www.meteck.org

1 Introduction

Doing your honours project (thesis) is rather different from the assignments and exams
your are familiar with: it spans a longer period and there are no intermediate official
checks to test your progress and force you to keep going. You will have to rely on
your own motivation and planning of your work to complete it. To be sure, you will
have at least one supervisor to guide you with your project, but they are not there
to do the work for you. In addition, the amount of work that is expected from you
cannot be done the evening before it, like cramming for an exam session, but should
be spread out over the whole period allotted to the project. This will require some
planning of the activities you will carry out for the thesis so as to stay on track and stick
to the commitment you made to yourself. This document provides some suggestions
and guidelines how to plan and manage your activities that will help you bring it to
successful completion (without stressing and panicking too much).

2 The kind of activities

The key milestones for your honours project are the literature review, the project
proposal, and the project paper. For a MSc and PhD thesis, these may include an
additional year report and presentation, and/or ‘entry exam’, and/or publications of
your results as requirements to graduate. But what should you do for it, and how to
go about doing it? This section helps you identifying the subtasks and the next section
provides suggestions how to structure them.

2.1 Types of theses

The kind of activities will vary depending on the nature of your project. In the
following, I speak for CS as discipline only.

You should first consult the “research methods” resources about ‘what is CS’ [2]
and ‘doing research in CS’ [5] (and, optionally, ‘paradigms in CS’ [3]). In a nutshell,
there are two principally different thesis (be they honours, MSc or PhD theses), each
with sub-variants:

1. Theory
(a) Novel theoretical advance (frameworks, theorems, proofs)
(b) Predominantly literature review (Hons/MSc only)

2. System
(a) Proof-of-concept implementation
(b) Application through full design cycle (Hons only, though occasionally seen

at MSc-level)
From a CS research perspective, the pecking order of importance and coolness (and
perceived difficulty) is: 1(a) > 2(a) > 1(b) > 2(b), though in countries like the UK and
USA, which have a more technology-oriented culture, they probably would switch the
position of 1(a) and 2(a) and let others (Europe, mainly) do the theory development
for them. From a perspective of someone who aims to get a good job in the IT industry
after their project/thesis, the pecking order of usefulness is probably 2(a) > 2(b) >
1(a) > 1(b).

They require different competencies and, in part, different activities, but there are
also commonalities, which we go through in the next sections.

2

2.2 Core activities

There are five main phases to any thesis, being:

1. Exploration

2. Problem definition

3. Proposal

4. Body of research/development, including generating a written paper trail

5. Complete the production of the thesis and the defense

I will comment on them briefly in the following subsections.

2.2.1 Exploration

The principal purpose of the exploration phase is to become acquainted with the
area you have chosen. You do this by searching for related work and reading up
on background material. Your supervisor likely will give you some initial hints where
to look, which provides an easy start for looking up other resources: the papers in the
‘references’ section of that material and, when you go to Google scholar1 and search
for the paper, it will return that paper and a “cited by” link. When you click on that
link, you will see who used the paper for something else (which may well be something
you wanted to do but someone else already did). Some journals and publisher already
provide you with a “This paper has been cited by” section on the official page where
the paper was published or a “Similar articles” pop-up, suggesting to save you a Google
search, but also those lists are partial. Also, searching with related or slightly broader
terms can generate interesting results, as can the library databases.

2.2.2 Problem definition

Having read up on your topic, and, more importantly, having analysed critically the
papers you have read, you may have observed gaps or limitations. Or you had a rough
idea of the problem already, but you have not been able to find any resource that
proposes a satisfactory solution. These observations help you to come to a precise
definition of the problem that has to be solved or the formulation of a hypothesis to
be falsified or the research question to be answered. Understanding the problem(s) is
not as easy as it sounds, nor is formulating it properly. For instance, the following are
not problem statements:

1. Need to optimise the algorithm for the travelling salesman problem.
2. How to support the user in selecting the appropriate part-whole relation (aggre-

gation association).
The first one is not, because it indicates a desire to achieve something (optimization),
and the second one is not, because it looks at doing something (holding his hand as
‘support’?) for no particular reason. What, in theory, could be the real problems
underlying those two are (mildly exaggerated and simplified):

1http://scholar.google.com

3

http://scholar.google.com

1. Real-time applications require calculation of the solution to the travelling sales-
man problem within one minute, but all the extant algorithms x, y, and z take
umpteen minutes to compute the answer, hence there is no technology that meets
the performance requirement demanded by the client.

2. Both experienced and novice modellers do not know which part-whole relation
is appropriate between classes in their domain ontologies and they often choose
one arbitrarily, which causes an incorrect representation of the knowledge with
respect to reality it aims to represent and leads to wrong deductions with respect
to the subject domain semantics. (This, in turn, leads to erroneous suggestions
to users of, e.g., decision support systems in medicine, therewith potentially
threatening a patient’s life.)

Problems are things that can be solved—maybe not by you, but that is a separate
topic—and can be shown to be solved (e.g., a correct proof demonstrating P = NP).
A hypothesis is formulated such that it can be falsified (or validated). And research
questions can be answered.

What are good hypotheses and research questions? Let’s first look at problematic
ones and determine why they are problematic. A typical example of problematic
questions is of the form “Can X be solved by Y?”, e.g., “Can one use theorem prover
ABC to efficiently draw inferences in higher order logics?” or “Can one use algorithm
ABC to efficiently compute the solution to the travelling salesman problem?”. Why?
It fails if the answer is ‘no’ and it even fails if the answer is ‘yes’ but the encoding has
not been optimised (hence, less efficient). Or maybe someone else can do it efficiently,
but you don’t have enough skills to do so—the question should be about the research,
not evaluate your competencies. And when is something ‘efficient’, compared to what?
That has not be specified. In addition, while focussing only on ABC might be sufficient
for a BSc project (depending on the difficulty of ABC, if it has been implemented before
etc.), it is probably too narrow for a MSc/PhD topic.

A sensible research question for your project could be “is ABC faster than DEF in
computing the answer to the travelling salesman problem?” (and if so: why; if not:
why not?), which can be easily reformulated into a hypothesis (“ABC is faster than
DEF in computing the answer to the travelling salesman problem”) or into a problem
(“it is unknown whether ABC faster than DEF in computing the answer to travelling
salesman problem”—although then one has to include a motivation that someone cares
to know, and why).

The indications provided in this section are not exhaustive, but hopefully gives you
at least a basic notion. To practice formulating a problem or research question, you
could first have a look at how others did it by, e.g., analysing the papers you read,
finding the formulation of the problem/question (it should be written somewhere in
the introduction), or else extracting it from the text.

2.2.3 Proposal

With the problem definition in hand, you can start setting out how a solution should
look like, and how that is to be done. This is formulated into a thesis proposal. The
purpose of a proposal is to clarify the goal of your thesis, it outlines possible steps to
carry it out, it gives you a yardstick to measure your achievements, and it is a first
‘seed text’ for the thesis.

It is an important document, because if your proposal is good, you may well fly
through your thesis and obtain a good mark. On the other hand, if the proposal is

4

bad, you may embark a journey on the wrong road or you may still not know which
road to take. When is a proposal not good? There can be many reasons for that,
among others:

• You did not search good enough, and the problem has been solved already;
• The problem is too big to tackle in the short time available to complete your

thesis;
• The problem is too small and narrow for a thesis;
• There is no clearly measurable outcome planned;
• Nobody cares about solving that problem;
• Interesting and hot topic, but there are many well-funded research groups work-

ing on it already (you are most likely going to be scooped and/or they will
outperform you).

What makes for a good proposal? This is not simply the opposite of a bad proposal.
Here are several parameters:

• The solution/answer should serve some purpose;
• Results will be concrete;
• Permits theoretical and practical approaches;
• Feasible within the allotted time and available resources;
• There is faculty competent in the topic who can guide you (or they know someone

who is and can).
You are expected to present your proposal to the department before embarking on the
core tasks of the project, precisely to avoid the former and aim for a good proposal.

2.2.4 Core research/development

The tasks to carry out, i.e., the item “Body of research/development, including gen-
erating a written paper trail” listed above, differ along the type of thesis. For theory,
the outcome is always in writing, although in recent years, there may be proof-of-
concept tools, repositories, or other evaluation material added to that. For systems
development, it is both in writing and well-documented software.

Moreover, software development has a clear design procedure, which should be
reflected in the activities you plan. For proof-of-concept software, the (high-level)
tasks would be something along the line of:

• More theory & literature research
• Design of the algorithm
• Program the algorithm
• Test and evaluate the algorithm

On the other hand, tasks for straight-forward application development in, say, the
waterfall methodology would be:

• Requirements analysis
• Design conceptual model and logical model
• Program the implementation
• Test it
• Evaluate with users

Theory-oriented theses may seem somewhat more flexible than system-oriented projects,
but are not. The tasks may look like:

• More theory & literature research,
• Design framework/method
• Evaluate framework/method

5

• Compare your solution with related works
or:

• More theory & literature research
• Design language/algorithm/modelling solution
• Prove correctness of encoding/complexity
• Compare your solution with related works

The most important difference, however, is that with theory-oriented theses, writing is
doing research, i.e., it is an integral part of the tasks, whereas this is not the case with
system-oriented thesis. Sure, one has to generate a paper trail with the latter type,
but when, say, developing the conceptual data model for the application, the model is
the real outcome of that task, not its explanatory text.

2.2.5 Complete the production of the thesis and defense

You are expected to provide a written and oral account of your project work. There is
separate documentation that describes the structure of reports and writing style (e.g.,
[1, 4, 6]), so I will not go into those details here.

While a presentation takes only the timespan of a week to prepare, writing the
thesis or project paper clearly and coherently takes a lot longer—and always longer
than you think it will take. Here at UCT, for the honours project, you are expected to
write a 10-page double column ‘article-like’ report that exhibits the core of your work
with substantial details that are enough for the reader to understand what has been
done and provides evidence for the outcomes. The length of a Masters or PhD thesis
depends on the programme and the topic.

Needless to say, each of the above-mentioned tasks can be broken down into sub-
tasks, down to the point where initially the major task “do an honours thesis” has
been broken down into manageable activities that are doable in the day-to-day work,
one step at a time toward that end-goal.

3 How to structure your activities

The previous section already indicated some sequence in the activities, but it did not
give any practical hints on how to do that for your project work. The first you have to
determine are your milestones and deliverables, then you break up the major activities
into smaller tasks, and based on that, you can make a schedule for your activities.

3.1 Milestones and deliverables

Deliverables are the concrete things you have to deliver to someone before or at a
specified deadline. For instance, your written proposal and your thesis are deliverables,
and perhaps your supervisor asks you to hand in a first full draft of the thesis by a
certain date. They are requirements and constraints that have to be met in order to
have a chance to pass the course.

A milestone is a significant moment of time with a certain accomplishment of a
task in the project. For instance, the proof of a theorem or the first version of the
implemented algorithm. They help you to be pleased/satisfied/proud of the progress
you have made, and they will keep you focussed on the important tasks to do.

You should include both in your schedule.

6

3.2 Dividing up the tasks

We have a list of the general, high-level, tasks that have to be carried out from the
previous section, and some basics regarding the deliverables and milestones that have
to be included. They do not make a schedule yet. What is missing is a further break-
down into subtasks.

For instance, take “literature research”. This entails:
• sourcing the literature
• reading it
• analysing it (summarise, pros and cons of their proposal)
• follow up on their references
• making a bibliography, and
• writing a “State of the art” section in your thesis that synthesises the relevant

literature.
Task planning does not have to go into extreme detail. For instance, for “making a
bibliography”, planning very fine-grained subtasks like ‘explore reference management
software’ and ‘read the bibtex manual’ is a bit over the top (in my opinion). You can
note those in your project log (see Section 4.2) that you did them as part of that task,
though.

In addition to the subdivision of the larger tasks, you should decide what your
actual milestones will be and by when you want to have them. For instance, you are
developing an application for Needy Client Corporation and, depending on the method-
ology you use, part of the usual software development cycle may be the identified task
to “develop a prototype”. Subtasks can be identified for that; e.g.:

• determining what features should function in the first prototype
• the programming itself
• the initial testing
• the presentation of the prototype to the employees of Needy Client Corporation,

and
• processing their feedback

A milestone in this list of tasks could be the penultimate one: it is your first presentable
thing of your thesis work to the outside world. Observe that here I had not chosen the
last event in the list: clients complain anyway and once they see a prototype or mock-
up, they tend to generate new requirements and wishes that they want you to take
into account, which might sound discouraging initially. Just that they want more does
not imply that what you did is insignificant. Milestones for theory-oriented activities
could be, e.g., the proof, the algorithm, the framework, or the model.

3.3 Introducing breaks

Let’s be honest to yourself: will you really work on the thesis each day from now until
September? If you plan to do so, and you skip even a single day, you may feel guilty
for slacking. But if you plan (and do), say, on average 30 minutes more per day for
two weeks, you have a well-deserved day off! Or, perhaps, there is a major family
event some time in the upcoming months: there is no shame in integrating that into
your schedule—in fact, it is better to do so, so that you can enjoy the event, instead of
beating yourself up for not working on the thesis and getting behind in the planning.
Planning breaks is a bit like fooling yourself, but it works wonders. So, yes, you can
plan breaks into you schedule; I would even say that you are encouraged to do so.

7

Why is that so? What you have to take into account is that the ‘problem’ with
research and development projects is that you always can do more to get an even
better end result. This is in stark contrast with a normal course where there is a
clearly delimited piece of knowledge and skills you have to acquire, and once you know
it, it’s enough. For theses, there is no upper bound, really. As a consequence, you may
end up working all the time on it. However, occasionally taking a step back, taking
a break and coming back with a fresh mind and energy helps you see things in a new
light, gets you over a lapse in motivation, or makes ‘writer’s block’ vanish. Or you
can use it as a carrot for yourself to get a less pleasant task done more quickly (‘if I
complete x, I can go to the beach for a whole weekend’), and actually enjoy the time
off.

3.4 Making a schedule

We are now ready to start making a schedule, using the deliverables, milestones, main
tasks, and subtasks. There are strict deadlines for the presentation, demos, and for the
deliverables you have to hand in, but the rest is up to you to decide in collaboration
with your supervisor. In theory, there are two ways to put actual dates to the activities:
calculating forward, and calculating backward—it should result in the same schedule
either way.

While it is possible to put your schedule in a MS Word or Excel sheet, this is
rather inflexible to manage, because with every little change (say, you were ill for a
week), you will have to update it manually. There is not only a plethora of software
for scheduling, there are also different scheduling systems. PERT (program evaluation
and review techniques) and Gantt are the most well-known ones. Figure 1 shows an
(incomplete) Gantt chart. The key elements of such a chart are:

• Break-down of activities and sub-activities (on the left)
• Milestones (noted on the left, visualised with a blue diamond on the right)
• The estimated workdays for each (sub-)activity (4th column in the left-hand

pane)
• The assignment of start and end dates together with the estimated workdays

(which generates the blue rectangles)
• The dependencies between the activities (“Precedes” in the left pane, visualised

as lines connecting diamond and/or rectangles in the right-hand pane)
The software signals any inconsistencies. For instance, if you were to have included a
thesis submission deadline of Dec 1, 2011 and it being the end of the whole project, but
subsequently you add an end date for, say, performance testing, to be Dec, 5, then it
will flag that your schedule won’t work. Or when you add an activity write conclusions
and abstract that you think will take you 5 days (1 day = 8 hours) to complete and set
the start date Nov 24, 2011 but your predefined actual days in the week have only 4
hours, it will tell you that you go over the project deadline and are supposed to tweak
the dates and workdays until it fits with its internal constraints.

Hence, the ‘forward’ calculation means adding your activities sequentially, adding
estimated workdays, estimated begin and end date. It will tell you soon enough if you
have time left (perhaps you can add an activity?) or short on time—even before you
have really started. The backward calculation is in that respect more dangerous for
your project: you may end up with an initial schedule where either you should have
started a few weeks ago and are behind already or it gives the false impression you can
slack until mid August.

8

Figure 1: An incomplete Gantt chart (made with Merlin).

If you cannot make a schedule that fits with a realistic amount of estimated work-
days for each activity, you have a problem. There can be several reasons for that. Look
at it from the bright side: it is better to know upfront that your informal intuitive
planning does not work so it can be amended early on instead of getting totally stuck
or overworked later.

4 Avoiding and dealing with delays

First, and foremost, to be able to deal with a delay, you need to make yourself aware
that a delay exists, or when a delay is, or can be, avoided. Keeping a project log and
taking the ‘onion approach’ are two mechanisms for this, which will be introduced in
the next two sections. But despite all things, you still may incur a delay for some
reason or other; suggestions how to cope with that are described in Section 4.3.

4.1 The onion approach

A mechanism to keep you focussed is to use the so-called onion approach: identify a
core of essentials that really must be part of your thesis, a list of important components,
and the nice-to-have ones. This helps to ensure you at least will have you core results
by the deadline, and if there is time remaining, you can gradually add extra layers to
the core result.

For instance, your thesis may revolve around the novel implementation of some
algorithm in a fancy way. Then having it implemented is a task, but so are testing on
performance, developing a nice user interface, and it needs a user manual. Obviously,
the implementation of the algorithm itself is a core task, and then the second or the
third one, and writing a manual is last. Two fictitious examples are shown in Figure 2.
How does your ‘onion’ look like? Does it match with your (initial) schedule? Did you
set the right priorities from the start? Perhaps you have to revise your schedule. For
instance, you may have an order of tasks a, b, c, d, e, and f in the initial schedule,

9

implement
algorithm

 test
performance

make GUI

user testing

formalise
graphical
language

design
 rules

implement it

 test with
sample diagrams

Figure 2: Two fictitious examples of how an ‘onion’ of tasks may look like for a thesis.

because you know upfront you like doing b more than f, but in the logical order of
things, f just have to be done at least before c, and possibly also before b. Then the
schedule has to be adjusted.

Reading this information at the very beginning of the project duration enables (or
would have enabled) you to think about prioritisation of your activities first, and devise
a sensible planning based on that. Monitoring your schedule can be done through
keeping a project log.

4.2 Keeping a project log

A project log is a document where you summarise the activities and ideas relevant to
the project you did that day, and the time spent on it. Although it may seem to bit of
a tedious task to do at the beginning, it is useful for several reasons as you go along:

• You can see for yourself whether you really are spending a reasonable amount of
time on the thesis over the weeks and months.

• You can cross-check it with your planning: are you working on the tasks you set
out to do or are you being side-tracked with other activities?

• You have a single location where you can write down ideas you may have to
follow up, which are otherwise easily forgotten about a few months later.

• If you need to ‘backtrack’ from a dead-end in the development, you know where
to backtrack to.

• It provides a trail with which you can demonstrate that it really is your work.
• It helps you evaluating your work (the progress in the development of ideas,

software, and thesis writing) and reflect on you work habits: were they effective?
(if yes, why, if not: why not?) Would you do it the same way if you had to do it
again?

Assuming you have an outline of the activities and made some schedule (see Sec-
tion 3), then you can format that into a project log by simply adding a ‘comments’
and/or ‘progress’ column and a ‘actual time spent’ column. An example is shown in
Figure 3. For instance, it states that in the week of May 10, the statement of require-
ments is scheduled to be completed and, indeed, this was the case (“11-5: finished
revised SoR”). It also contains text like “17-6: See lab notes on testing today. 3.5h”,
which indicates there is a clear distinction between the kind of things you did (testing)

10

Figure 3: A section of an old-fashioned project log (of the author, when she did her
honours project).

and the technical issues encountered (documented in the lab notes): the project log is
for recording the former information. It also contains some tasks and ideas to (possi-
bly) follow up on (“4-9: added table 3.4 on design features. Re-read/correct this later”
and “30-8: or maybe add an appendix on a brief explanation of ORM?”, respectively).

4.3 Review and revise

Despite good planning, you may not keep up with your planning. The way to deal
with the delay(s) depends on what causes it. There can be many reasons for delays,
e.g.:

1. You underestimated the problem you aimed to solve because:
(a) it is harder than you thought and doing task x takes more time,
(b) you don’t have sufficient competencies in topic x, or
(c) scratching the surface revealed a plethora of underlying problems that also

need to be solved.
2. You had a few drafts but the computer crashed and you did not make a back-up.
3. You need resource x to continue that was supposed to be available by week 5,

but only came available by week 10.
4. Family emergency.
5. ...

Delays caused by 1(a) are easy to detect if you keep a project log: you planned for task
x to take a week, and after, say, 4 weeks your still working on it. Among other typical
causes: testing software and bug-fixing is a common task that takes more time than
one initially anticipates, and designing good and efficient algorithms is not as easy as
it sounds.

If you do not have sufficient competencies, then you will have to put in extra time
and effort, consulting textbooks etc. If that fails within a reasonable amount of time,
try harder. If that fails, you are probably not capable enough in the selected field, but

11

perhaps you are in another topic, so there might be a way to change topic—but this
means you will have to put in extra time to make up for the lost time.

Delays due to 1(c) are quite common in science. This most likely will result in
redefining the topic of your thesis to something more specific to narrow down the
problem into something feasible within the allotted time.

As for cause 2: do make back-ups each day!
The third cause is a catch-all for various external factors that can mess up your

planning. Say, the Internet was down due to a cyber-attack, there is a 3-week strike,
it takes ages to get your test subjects together, the specific hardware upgrade hasn’t
arrived, your supervisor decided to go on an extended research visit out of town, etc.
The latter three causes can be anticipated and if you know from your initial planning
that that may/will occur, then revise your schedule such that those things that may
take more time are attended first, and you can work on other activities in the meantime
(like reading papers, writing a framework of your thesis). Your project log will help
with that as well, to demonstrate you did start early with the possible time-consuming
things and did all feasible other activities as a stop-gap, which makes people somewhat
more lenient to accept the ‘external factors’ excuse and make amends.

5 Closing remarks

Rest me to say that these are suggestions and guidelines. They are based on related
material and my own experiences. There is not a ‘one way’ to do a thesis or honours
poject, and I have tried different approaches with different theses I completed suc-
cessfully (in the sciences, engineering, and humanities), which partially depended on
the topic of the thesis. Making a schedule of activities (including a prioritisation of
activities), sticking to them, and keeping a logbook invariably were useful. And start
writing early.

References

[1] M. Ashby, “How to write a paper,” January 2000, engineering Department,
University of Cambridge. [Online]. Available: http://www-mech.eng.cam.ac.uk/
mmd/ashby-paper-V6.pdf

[2] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and
P. R. Young, “Computing as a discipline,” Communications of the ACM, vol. 32,
no. 1, pp. 9–23, 1989.

[3] A. H. Eden, “Three paradigms of computer science,” Minds & Machines, vol. 17,
pp. 135–167, 2007.

[4] G. D. Gopen and J. A. Swan, “The science of scientific writing,” American
Scientist Online, vol. November-December, 1990. [Online]. Available: http:
//www.docstyles.com/library/ascience.pdf

[5] C. Johnson, “What is research in computing science?” glasgow Interactive
Systems Group (GIST), Department of Computer Science, Glasgow University,
Glasgow, G12 8QQ. [Online]. Available: http://www.dcs.gla.ac.uk/∼johnson/
teaching/research skills/research.html

12

http://www-mech.eng.cam.ac.uk/mmd/ashby-paper-V6.pdf
http://www-mech.eng.cam.ac.uk/mmd/ashby-paper-V6.pdf
http://www.docstyles.com/library/ascience.pdf
http://www.docstyles.com/library/ascience.pdf
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html

[6] N. Stanton, Mastering Communication, 3rd ed. Macmillan, London, 1996.

Additional sources consulted

Nutt, Werner. How to write a PhD Thesis. Heriot-Watt University, Edinburgh, UK.
2004. [presentation slides].

The Open University. The IT and Computing Project—Resources. Faculty of Tech-
nology. version 2. 2003 [CD-ROM CDR0579].

13

	Introduction
	The kind of activities
	Types of theses
	Core activities
	Exploration
	Problem definition
	Proposal
	Core research/development
	Complete the production of the thesis and defense

	How to structure your activities
	Milestones and deliverables
	Dividing up the tasks
	Introducing breaks
	Making a schedule

	Avoiding and dealing with delays
	The onion approach
	Keeping a project log
	Review and revise

	Closing remarks

