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Housekeeping points

This course consists of lectures and exercises

Each lecture takes about 2.5 hours, labs 45 minutes

Following the lectures will be easier when you have read the
recommended reading beforehand and it is assumed the
student is familiar with first order logic and conceptual data
modelling, such as UML and ER

The topics covered in this course are of an introductory
nature and due to time constraints only a selection of core
and elective topics will be addressed.

These slides serve as a teaching aid, not as a neat summary

Course webpage, with introduction, references, and schedule:
http://www.meteck.org/teaching/SA/MOWS10OntoEngCouse.html
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Outline

1. Introduction to ontologies

2. Ontology Languages: OWL and OWL2

3. Foundational and top-down aspects of ontology engineering

4. Bottom-up ontology development

5. Methods and methodologies

6. Extra topic
Representation and reasoning challenges
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Part I

Introduction to ontologies
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Outline

1 What is an ontology?

2 What is the usefulness of an ontology?

3 Success stories
The GO and data integration
Exploiting the classification reasoning services
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Background

– Aristotle and colleagues: Ontology
– Engineering: ontologies (count noun)

– Investigating reality, representing it
– Putting an engineering artifact to use

What then, is this engineering artifact?

(Guarino, 2002)
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A few definitions

Most quoted: “An ontology is a specification of a
conceptualization” (by Tom Gruber, 1993)

“a formal specification of a shared conceptualization” (by
Borst, 1997)

“An ontology is a formal, explicit specification of a shared
conceptualization” (Studer et al., 1998)

What is a conceptualization, and a formal, explicit
specification? Why shared?
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Ontologies and meaning

(Guarino, 2002)
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Ontologies and meaning
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Ontologies and reality

Reality
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More definitions

More detailed: “An ontology is a logical theory accounting for
the intended meaning of a formal vocabulary, i.e. its
ontological commitment to a particular conceptualization of
the world. The intended models of a logical language using
such a vocabulary are constrained by its ontological
commitment. An ontology indirectly reflects this commitment
(and the underlying conceptualization) by approximating these
intended models.” (Guarino, 1998)

And back to a simpler definition: “with an ontology being
equivalent to a Description Logic knowledge base” (Horrocks
et al, 2003)
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Description Logic knowledge base

TBox
(with intensional 

knowledge)

ABox
(with extensional 

knowledge involving  
objects and values)

Ontology
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From logical to ontological level
Logical level (no structure, no constrained meaning1):

∃x(Apple(x) ∧ Red(x))

Epistemological level (structure, no constrained meaning):
∃x : apple Red(x) (many-sorted logics)
∃x : red Apple(x)
Apple(a) and hasColor(a, red) (description logics2)
Red(a) and hasShape(a, apple)

Ontological level (structure, constrained meaning):
Some structuring choices are excluded because of ontological
constraints
Apple carries an identiy condition (and is a sortal), Red does
not (is a qualia [‘value’] of the quality [‘attribute’] hasColor
that a thing has)

adapted from (Guarino, 2008)
1

well, meaning in the sense of subject domain semantics
2

Likewise, DL has a formal, (model-theoretic) semantics, so the axioms have a meaning in that sense of

‘meaning/semantics’
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Quality of the ontology

(Guarino, 2002)
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Quality of the ontology

“Bad ontologies are (inter alia) those whose general terms lack
the relation to corresponding universals in reality, and thereby
also to corresponding instances.” ⇒ need for grounding

“Good ontologies are reality representations, and the fact that
such representations are possible is shown by the fact that, as
is documented in our scientific textbooks, very many of them
have already been achieved, though of course always only at
some specific level of granularity and to some specific degree
of precision, detail and completeness.”

(Smith, 2004)
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Initial Ontology Dimensions that have Evolved

Semantic

Degree of Formality and Structure
Expressiveness of the Knowledge Representation Language
Representational Granularity

Pragmatic

Intended Use
Role of Automated Reasoning
Descriptive vs. Prescriptive
Design Methodology
Governance

slide from, and more details available in: http://ontolog.cim3.net/file/work/OntologySummit2007/symposium/

OntologyFramework symposium–Gruninger-Obrst 20070424.ppt
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And graphically
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Making, more or less precisely, the (dis-)agreement among
people explicit

Enrich software applications with the additional semantics

Thus, practically, improving: computer-computer,
computer-human, and human-human communication
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Examples in different application areas, using different
features

Data(base) integration (example today)

Instance classification (example today)

Matchmaking and services

Querying, information retrieval

Ontology-Based Data Access
Ontologies to improve NLP

Bringing more quality criteria into conceptual data modelling
to develop a better model (hence, a better quality software
system)

Orchestrating the components in semantic scientific
workflows, e-learning, etc.
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Success?
Only if Berners-Lee’s vision of the Semantic Web (as in the SciAm 2001

paper) has been realised?

How much “semantics” (with ontologies)?

SemWeb stack, technologies

Absolute measures? e.g.,

Usage of Amazon’s recommender system with and without ontologies

Information retrieval: compare precision and recall between a

statistics-based and a ontologies-mediated document system

Feasibility and performance of a set of user queries posed to a RDBMS

and its RDF-ised version

Relative measures

According to whom is it a success?

philosopher, logician, engineer, domain expert, CEO...

What was taken as baseline material? e.g.,

from string search in a digital library to ontology-annotated sorting

of query answer

from no or clustering-based instance classification to one with

OWL-based knowledge bases
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Early bioinformatics
Advances in technologies to sequence genomes in the late
’80s-early’90s, as well as more technologies for proteins
Need to store the data: in databases (’90s)
Several ‘model organism’ databases with genes (and genomes)
of the fruitfly, yeast, mouse, a flowering plant, flatworm,
zebrafish
Compare genes and genomes

One observation (of many): About 12% (some 18,000) of the
worm genes encode proteins whose biological roles could be
inferred from their similarity to their (putative) orthologues in
yeast, comprising about 27% of the yeast genes ( about 5,700)
What else can we infer from comparing genes and genomes
(across species)?
What about the possibility of automated transfer of biological
annotations from the model organisms to less ‘fancy’
organisms based on gene and protein sequence similarity, to
use to improve human health or agriculture?
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Scope and requirements
Need: a mainly computational system for comparing or
transferring annotation among different species

Methods for sequence comparison existed
Main requirements:

One needs a shared, controlled, vocabulary for annotation of
the gene products, the location where they are active, the
function they perform
To take on board and be compatible with existing
terminologies, like gene and protein keyword databases such as
UniProt, GenBank, Pfam, ENZYME etc.
Database interoperability among, at least, the model organism
databases
Organize, describe, query and visualize biological knowledge at
vastly different stages of completeness
Any system must be flexible and tolerant of this constantly
changing level of knowledge and allow updates on a continuing
basis
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How to meet such requirements?

Two main strands in activities:

Very early adopters from late 1990s (by sub-cellular bio), i.e.,
starting without Semantic Web Technologies
Early adopters from mid 2000s (e.g., eco and agri), starting
with Semantic Web Technologies

The Gene Ontology Consortium

Initiated by fly, yeast and mouse database curators3 and others
came on board (see http://ww.geneontology.org for a full list)

In the beginning, there was the flat file format .obo to store
the ontologies, definitions of terms and gene associations
Several techniques on offer for data(base) integration that
could be experimented with

3
more precisely: FlyBase (http://www.flybase.bio.indiana.edu), Berkeley Drosophila Genome Project

(http://fruitfly.bdgp.berkeley.edu), Saccharomyces Genome Database (http://genome-www.stanford.edu), and

Mouse Genome Database and Gene Expression Database (http://www.informatics.jax.org).
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GO contents example (process)

from GOC, 2000 27/308
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GO contents example (cellular component)

from GOC, 2000 28/308
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Progress

Tool development, e.g. to:

add and query its contents
annotate genes (semi-automatically)
link the three GO ontologies
mine the literature (NLP)

Content development: more in the GO, extensions to the GO
(e.g., rice traits), copy of the principle to other subject
domains (e.g., zebrafish anatomy)

The GO and its approach went well beyond the initial scope
(which does not imply that all requirements were met fully)
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Toward an update of the approach and contents

Problems:

one can infer very little knowledge from the obo-based
bio-ontologies (mainly where there are errors, but not new
insights)—but note that that was not it’s original aim
semantics of the relations overloaded
mushrooming of obo-based bio-ontologies by different
communities, which makes interoperation of the ontologies
difficult
greater needs for collaborative ontology development,
maintenance, etc.

Proposed solution: structured, coordinated, development of
ontologies adhering to a set of principles: the OBO Foundry
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OBO Foundry

Extending the Open Biological Ontologies principles...

open,
orthogonal,
same syntax,
common space for identifiers

... to one for the Open Biological and Biomedical Ontologies:

developed in a collaborative effort
usage of common relations that are unambiguously defined (in
casu: the Relation Ontology)
provide procedures for user feedback and for identifying
successive versions
has to have a clearly bounded subject-matter (“so that an

ontology devoted to cell components, for example, should not include

terms like ‘database’ or ‘integer’ ” ...)

More info in Smith et al, 2007, and http://www.obofoundry.org
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OBO Foundry coverage (canonical ontologies)
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OBO Foundry
Sorting out the ontologies we have; e.g.,

harmonizing the four cell type ontologies into one (CL)
coordinating the anatomy ontologies of the various model
organisms through a Common Aanatomy Reference Ontology
modularization of the subject domain by granularity,
continuants, and occurents

Adding ontologies to fill the gaps
making OBO and OWL ontologies interoperable
“Our long-term goal is that the data generated through
biomedical research should form a single, consistent,
cumulatively expanding and algorithmically tractable whole”
“The result is an expanding family of ontologies designed to
be interoperable and logically well formed and to incorporate
accurate representations of biological reality”
Aimed at “coordinated evolution of ontologies to support
biomedical data integration”
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Instance classification with protein phosphatases (Wolstencroft

et al, 2007)

The setting:

Lots of sequence data in data silos that needs to be enriched
with biological knowledge
Need to organise and classify genes and proteins into
functional groups to compare typical properties across species

The problems:

There is no proper, real life, use case that demonstrates the
benefits of DL reasoning services such as taxonomic and
instance classification
Limitations of traditional similarity methods, and automated
protein motif and domain matching
Automation of p-domain analysis, but not for its interpretation
(i..e, detects presence but not consequences for sub-family
membership)
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Idea

Maybe OWL reasoning can help with the interpretation of the
analysis results:

That it does the classification of the (family of) proteins as
good as a human expert for organisms x (in casu, human)
That the approach is ‘transportable’ to classification of the
(family of) proteins in another organism of which much less is
known (in casu, Aspergillus fumigatus), hence make
predictions for those instances by means of classifying them

Use taxonomic classification and instance classification
reasoning services
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How it can be done

Develop ontology for the subject domain, in OWL
Extract knowledge from peer-reviewed literature
Protein phosphatases; e.g.
Class R5Phosphatase Complete

(Protein and

(hasDomain two TyrosinePhosphataseCatalyticDomain) and

(hasDomain some TransmembraneDomain) and

(hasDomain some FibronectinDomain) and

(hasDomain some CarbonicAnhydraseDomain) and

hasDomain only (TyrosinePhosphataseCatalyticDomain and

TransmembraneDomain and

CarbonicAnhydraseDomain))

Obtain instance data
Process protein sequences by InterProScan
Transform into OWL

Put it together in some system with a reasoner
InstanceStore
Racer reasoner
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Sequence of activities and architecture

Protein sequence
(raw instance data)

InterProScan
(system that analyses 

that data)

Translation to OWL

Protein knowledge
(raw type-level information 
from articles and humans)

Representation as 
OWL ontology

InstanceStore
Racer 

reasoner

Classified 
Proteins
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Results

Human phosphatases:

The reasoner as good as human expert classification
Identification of additional p-domains, refined the classification
into further subtypes

A. fumigatus phosphatates:

Some phosphatases did not fit in any class, representing
differences between the human and A. fumigatus protein
families
Identification of a novel type of calcineurin phosphatase (has
extra domain, like in other pathogenic fungi)

Overall: demonstration that ontology-based approach with
automated reasoning has some advantages over (in addition
to the) existing technologies & human labour, and resulted in
discovery of novel biological information

38/308

Introduction OWL Limitations OWL 2 OWL 2 profiles Reasoning

Part II

Ontology Languages: OWL and OWL2
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Outline
4 Introduction

Limitations of RDFS

5 OWL
Design of OWL
OWL and Description Logics
OWL Syntaxes

6 Limitations

7 OWL 2
OWL 2 DL

8 OWL 2 profiles
OWL 2 EL
OWL 2 QL
OWL 2 RL

9 Reasoning
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Toward one ontology language

Plethora of ontology languages; e.g., KIF, KL-ONE, LOOM,
F-logic, DAML, OIL, DAML+OIL, ....

Lack of a lingua franca; hence, ontology interoperation
problems even on the syntactic level

Advances in expressive DL languages and, more importantly,
in automated reasoners for expressive DL languages (mainly:
FaCT++, then Racer)

Limitations of RDF(S) as Semantic Web ‘ontology language’
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The place of RFDS in the layer cake
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RDFS as an Ontology Language

Classes

Properties

Class hierarchies

Property hierarchies

Domain and range restrictions
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Expressive limitations of RDF(S)

Only binary relations

Characteristics of Properties (e.g. inverse, transitive,
symmetric)

Local range restrictions (e.g. for Class Person, the property
hasName has range xsd:string)

Complex concept descriptions (e.g. Person is defined by Man
and Woman)

Cardinality restrictions (e.g. a Person may have at most 1
name)

Disjointness axioms (e.g. nobody can be both a Man and a
Woman)
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Layering issues

Syntax

Only binary relations in RDF
Verbose Syntax
No limitations on graph in RDF

Every graph is valid

Semantics

Malformed graphs
Use of vocabulary in language

e.g. 〈rdfs:Class,rdfs:subClassOf,ex:a〉
Meta-classes

e.g. 〈ex:a,rdf:type,ex:a〉
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The place of OWL in the layer cake
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Stack of Languages

XML

Surface syntax, no semantics

XML Schema

Describes structure of XML documents

RDF

Datamodel for “relations” between “things”

RDF Schema

RDF Vocabulary Definition Language

OWL

A more expressive Vocabulary Definition Language
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Design Goals for OWL

Shareable

Changing over time

Interoperability

Inconsistency detection

Balancing expressivity and complexity

Ease of use

Compatible with existing standards

Internationalization
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Requirements for OWL

Ontologies are object on the Web

with their own meta-data, versioning, etc...

Ontologies are extendable

They contain classes, properties, data-types,
range/domain, individuals

Equality (for classes, for individuals)

Classes as instances

Cardinality constraints

XML syntax
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Objectives for OWL

Objectives:

layered language

complex datatypes

digital signatures

decidability (in part)

local unique names
(in part)

Disregarded:

default values

closed world option

property chaining

arithmetic

string operations

partial imports

view definitions

procedural
attachments
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Extending RDF Schema

Leveraging experiences with OWL’s predecessors SHOE, OIL,
DAML-ONT, and DAML+OIL (frames, OO, DL)

OWL extends RDF Schema to a full-fledged knowledge
representation language for the Web

Logical expressions (and, or, not)
(in)equality
local properties
required/optional properties
required values
enumerated classes
symmetry, inverse
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Species of OWL

OWL Lite

Classification hierarchy
Simple constraints

OWL DL

Maximal expressiveness
While maintaining tractability
Standard formalization in a DL

OWL Full

Very high expressiveness
Losing tractability
All syntactic freedom of RDF (self-modifying)

54/308

Introduction OWL Limitations OWL 2 OWL 2 profiles Reasoning

Features of OWL languages

OWL Lite

(sub)classes, individuals
(sub)properties, domain,
range
conjunction
(in)equality
(unqualified) cardinality
0/1
datatypes
inverse, transitive,
symmetric properties
someValuesFrom
allValuesFrom

OWL DL

Negation
Disjunction
(unqualified) Full
cardinality
Enumerated classes
hasValue

OWL Full

Meta-classes
Modify language
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OWL Full

No restriction on use of vocabulary (as long as legal RDF)

Classes as instances (and much more)

RDF style model theory
Reasoning using FOL engine
Semantics should correspond to OWL DL for restricted KBs

56/308

Introduction OWL Limitations OWL 2 OWL 2 profiles Reasoning

OWL DL

Use of vocabulary restricted

Cannot be used to do “nasty things” (e.g., modify OWL)
No classes as instances (this will be discussed in a later lecture)
Defined by abstract syntax

Standard DL-based model theory

Direct correspondence with a DL
Automated reasoning with DL reasoners (e.g., Racer, Pellet,
FaCT++)
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OWL Lite

No explicit negation or union

Restricted cardinality (0/1)

No nominals (oneOf)

DL-based semantics

Automated reasoning with DL reasoners (e.g., Racer, Pellet,
FaCT++)
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More on OWL species

OWL Full is not a Description Logic

OWL Lite has strong syntactic restrictions, but only limited
semantics restrictions cf. OWL DL

Negation can be encoded using disjointness
With negation an conjunction, you can encode disjunction

For instance:

Class(C complete unionOf(B C))

is equivalent to:

DisjointClasses(notB B)
DisjointClasses(notC C)
Class(notBandnotC complete notB notC)
DisjointClasses(notBandnotC BorC)

Class(C complete notBandnotC)
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More on layering and OWL flavours

For an OWL DL-restricted KB, OWL Full semantics is not
equivalent to OWL DL semantics

John friend Susan .

OWL Full entails:

John rdf :type owl:Thing . Susan rdf :type owl:Thing . friend
rdf :type owl:ObjectProperty .

John rdf :type :x . :x owl:onProperty friend . :x
owl: minCardinality ”1”ˆˆxsd:nonNegativeInteger .
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OWL and Description Logics

OWL Lite corresponds to the DL SHIF(D)

Named classes (A)
Named properties (P)
Individuals (C (o))
Property values (P(o, a))
Intersection (C u D)
Union (C t D)
Negation (¬C )
Existential value restrictions (∃P.C )
Universal value restrictions (∀P.C )
Unqualified (0/1) number restrictions (≥ nP, ≤ nP, = nP),
0 ≤ n ≤ 1

OWL DL corresponds to the DL SHOIN (D)

Arbitrary number restrictions (≥ nP, ≤ nP, = nP), 0 ≤ n
Property value (∃P.{o})
Enumeration ({o1, ..., on})
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OWL constructs

OWL Construct DL Example

intersectionOf C1 u ... u Cn Human uMale
unionOf C1 t ... t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {o1, ..., on} {john,mary}
allValuesFrom ∀P.C ∀hasChild .Doctor
someValuesFrom ∃P.C ∃hasChild .Lawyer
value ∃P.{o} ∃citizenOf .USA
minCardinality ≥ nP.C ≥ 2hasChild .Lawyer
maxCardinality ≤ nP.C ≤ 1hasChild .Male
cardinality = nP.C = 1hasParent.Female

+ XML Schema datatypes: int, string, real, etc...
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OWL axioms

OWL Axiom DL Example

SubClassOf C1 v C2 Human v Animal u Biped
EquivalentClasses C1 ≡ ... ≡ Cn Man ≡ Human uMale
SubPropertyOf P1 v P2 hasDaughter v hasChild
EquivalentProperties P1 ≡ ... ≡ Pn cost ≡ price
SameIndividual o1 = ... = on President Bush = G W Bush
DisjointClasses Ci v ¬Cj Male v ¬Female
DifferentIndividuals oi 6= oj john 6= peter
inverseOf P1 ≡ P−2 hasChild ≡ hasParent−

Transitive P+ v P ancestor + v ancestor
Symmetric P ≡ P− connectedTo ≡ connectedTo−
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DL-based OWL species as Semantic Web languages vs DLs

⇒ OWL uses URI references as names (like used in RDF, e.g.,
http://www.w3.org/2002/07/owl#Thing)

⇒ OWL gathers information into ontologies stored as documents
written in RDF/XML, things like owl:imports

⇒ RDF data types and XML schema data types for the ranges of
data properties (attributes) (DataPropertyRange)

OWL-DL and OWL-Lite with a frame-like abstract syntax,
whereas RDF/XML is the official exchange syntax for OWL

Annotations
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Syntaxes of OWL

RDF

Official exchange syntax
Hard for humans
RDF parsers are hard to write!

XML

Not the RDF syntax
Still hard for humans, but more XML than RDF tools available

Abstract syntax

Not defined for OWL Full
To some, considered human readable

User-usable ones

e.g., Manchester syntax, informal and limited matching with
UML
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OWL in RDF/XML

Example from [OwlGuide]:

<!ENTITY vin
”http://www.w3.org/TR/2004/REC−owl−guide−20040210/wine#” >
<!ENTITY food
”http://www.w3.org/TR/2004/REC−owl−guide−20040210/food#” > ...
<rdf:RDF
xmlns:vin=”http://www.w3.org/TR/2004/REC−owl−guide−20040210/wine#”
xmlns:food=”http://www.w3.org/TR/2004/REC−owl−guide−20040210/food#”
... >

<owl:Class rdf :ID=”Wine”> <rdfs:subClassOf
rdf : resource=”&food;PotableLiquid”/> <rdfs:label
xml:lang=”en”>wine</rdfs:label> <rdfs:label
xml:lang=”fr”>vin</rdfs:label> ... </owl:Class>

<owl:Class rdf :ID=”Pasta”> <rdfs:subClassOf
rdf : resource=”#EdibleThing” /> ... </owl:Class> </rdf:RDF>
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OWL Abstract syntax

Class( professor partial ) Class( associateProfessor partial
academicStaffMember)

DisjointClasses ( associateProfessor assistantProfessor )
DisjointClasses ( professor associateProfessor )

Class( faculty complete academicStaffMember)

In DL syntax:

associateProfessor v academicStaffMember
associateProfessor v ¬ assistantProfessor
professor v ¬ associateProfessor

faculty ≡ academicStaffMember
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More examples

DatatypeProperty(age range(xsd:nonNegativeInteger))
ObjectProperty( lecturesIn )

ObjectProperty(isTaughtBy domain(course) range(academicStaffMember))
SubPropertyOf(isTaughtBy involves)

ObjectProperty(teaches inverseOf(isTaughtBy)
domain(academicStaffMember) range(course))

EquivalentProperties ( lecturesIn teaches)

ObjectProperty(hasSameGradeAs Transitive Symmetric domain(student)
range(student))
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More examples

In DL syntax:

> v ∀age.xsd : nonNegativeInteger
> v ∀isTaughtBy−.course
> v ∀isTaughtBy .academicStaffMember
isTaughtBy v involves
teaches ≡ isTaughtBy−

> v ∀teaches−.academicStaffMember
> v ∀teaches.course
lecturesIn ≡ teaches
hasSameGradeAs+ v hasSameGradeAs
hasSameGradeAs ≡ hasSameGradeAs−

> v ∀hasSameGradeAs−.student
> v ∀hasSameGradeAs.student
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More examples

Individual (949318 type( lecturer ))

Individual (949352 type(academicStaffMember) value(age
”39”ˆˆ&xsd;integer))

ObjectProperty(isTaughtBy Functional)

Individual (CIT1111 type(course) value(isTaughtBy 949352)
value(isTaughtBy 949318))

DifferentIndividuals (949318 949352) DifferentIndividuals (949352
949111 949318)
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More examples

In DL syntax:

949318 : lecturer
949352 : academicStaffMember
〈949352, ”39”ˆˆ&xsd ; integer〉 : age
> v≤ 1isTaughtBy
CIT 1111 : course
〈CIT 1111, 949352〉 : isTaughtBy
〈CIT 1111, 949318〉 : isTaughtBy
949318 6= 949352
949352 6= 949111
949111 6= 949318
949352 6= 949318
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More examples

Class( firstYearCourse partial restriction (isTaughtBy allValuesFrom
( Professor )))

Class(mathCourse partial restriction (isTaughtBy hasValue (949352)))

Class(academicStaffMember partial restriction (teaches someValuesFrom
(undergraduateCourse)))

Class(course partial restriction (isTaughtBy minCardinality (1)))

Class(department partial restriction (hasMember minCardinality(10))
restriction (hasMember maxCardinality(30)))
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More examples

In DL syntax:

firstYearCourse v ∀isTaughtBy .Professor
mathCourse v ∃isTaughtBy .{949352}
academicStaffMember v ∃teaches.undergraduateCourse
course v≥ 1isTaughtBy
department v≥ 10hasMemberu ≤ 30hasMember
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More examples

Class(course partial complementOf(staffMember))

Class(peopleAtUni complete unionOf(staffMember student))

Class( facultyInCS complete intersectionOf ( faculty
restriction (belongsTo hasValue (CSDepartment))))

Class(adminStaff complete intersectionOf ( staffMember
complementOf(unionOf(faculty techSupportStaff))))

In DL syntax:

course v ¬staffMember
peopleAtUni ≡ staffMember t student
facultyInCS ≡ faculty u ∃belongsTo.{CSDepartment}
adminStaff ≡ staffMember u ¬(faculty t techSupportStaff )
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Layering on top of RDF(S)

RDF(S) bottom layer in Semantic Web stack

Higher languages layer on top of RDFS

Syntactic Layering

Every valid RDF statement is a valid statement in a higher
language

This includes triples containing keywords of these languages(!)

Semantic Layering

For RDFS graph G and higher-level language L:

If G |=RDFS G ′ then G |=L G ′, and ideally

if G |=L G ′ then G |=RDFS G ′
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Syntactically layering OWL on RDF(S)

OWL Lite, OWL DL

OWL Lite, OWL DL
subsets of RDF

Allowed triples defined
through mapping from
abstract syntax

Partial layering:

every OWL Lite/DL
ontology is an RDF
graph
some RDF graphs are
OWL Lite/DL
ontologies

OWL Full

OWL Full encompasses
RDF

Complete layering:

every OWL Full is an
RDF graph
all RDF graphs are
OWL Full ontologies
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Semantically layering OWL on RDF(S)

OWL Lite, OWL DL

OWL Lite/DL semantics
not related to RDFS
semantics

Redefine semantics of
RDFS keywords, e.g.,
rdfs:subClassOf

Work ongoing to
describe correspondence
between subset of RDFS
and OWL Lite/DL

OWL Full

OWL Full semantics is
extension of RDFS
semantics

OWL Full is undecidable

OWL Full semantics hard
to understand
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OWL Lite/DL vs. RDF

RDF Graph defined through translation from Abstract Syntax

Example:

Class(Human partial Animal
restriction(hasLegs cardinality(2))
restriction(hasName allValuesFrom(xsd:string)))

Human rdf:type owl:Class
Human rdfs:subClassOf Animal
Human rdfs:subClassOf :X1
:X1 rdf:type owl:Restriction
:X1 owl:onProperty hasLegs
:X1 owl:cardinality ”2”8sd:nonNegativeInteger

Human rdfs:subClassOf :X2
:X2 rdf:type owl:Restriction
:X2 owl:onProperty hasName
:X2 owl:allValuesFrom xsd:string
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OWL Lite/DL vs. RDF

Not every RDF graph is OWL Lite/DL ontology

Example:

A rdf:type A

How to check whether an RDF graph G is OWL DL?

Construct an OWL ontology O in Abstract Syntax
Translate to RDF graph G’
If G=G’, then G is OWL DL

Otherwise, go to step (1)
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Expressivity limitations

Qualified cardinality restrictions (e.g., no Bicycle v ≥ 2
hasComponent.Wheel)

Relational properties (no reflexivity, irreflexivity)

Data types

restrictions to a subset of datatype values (ranges)
relationships between values of data properties on one object
relationships between values of data properties on different
objects
aggregation functions

Other things like annotations, imports, versioning, species
validation (see p315 of the paper)
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Syntax problems

Having both frame-based legacy (Abstract syntax) and axioms
(DL) was deemed confusing

Type of ontology entity. e.g.,
Class(A partial

restriction(hasB someValuesFrom(C))
hasB is data property and C a datatype?
hasB an object property and C a class?

OWL-DL has a strict separation of the vocabulary, but the
specification does not precisely specify how to enforce this
separation at the syntactic level
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More syntax problems

RDF’s triple notation, difficult to read and process

OWL 1 provides mapping from the Abstract Syntax into OWL
RDF, but not the converse:

an RDF graph G is an OWL-DL ontology if there exists an
ontology O in Abstract Syntax s.t. the result of the normative
transformation of O into triples is precisely G , which makes
checking whether G is an OWL-DL ontology very hard in
practice:
examine all ‘relevant’ ontologies O in abstract syntax, check
whether the normative transformation of O into RDF yields
precisely G .
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Problems with the semantics

RDF’s blank nodes, but unnamed individuals not directly
available in SHOIN (D)

Frames and axioms
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Aims

Address as much as possible of the identified problems
(previous slides and “the next steps for OWL 2” paper)

Task: compare this with the possible “future extensions” of
the “the making of an ontology language” paper
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Some general points

OWL 2 a W3C recommendation since 27-10-’09

Any OWL 2 ontology can also be viewed as an RDF graph
(The relationship between these two views is specified by the

Mapping to RDF Graphs document)

Direct, i.e. model-theoretic, semantics (⇒ OWL 2 DL) and
an RDF-based semantics (⇒ OWL 2 full)

Primary exchange syntax for OWL 2 is RDF/XML, others are
optional

Three profiles, which are sub-languages of OWL 2 (syntactic
restrictions)
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The Structure of OWL 2
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Overview

Based on SROIQ(D), which is 2NExpTime-complete

More expressive than OWL-DL

Fancier metamodelling and annotations

Improved ontology publishing, imports and versioning control

Variety of syntaxes, RDF serialization (but no RDF-style
semantics)
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The language: properties of properties

property chains (ObjectPropertyChain), e.g.:
SubObjectPropertyOf( ObjectPropertyChain(

a:hasMother a:hasSister ) a:hasAunt )
with having Lois as the mother of Stewie, and Carol a sister of
Lois, the ontology entails that Stewie has Carol as aunt

ObjectMinCardinality, ObjectMaxCardinality,
ObjectExactCardinality, ObjectHasSelf,
FunctionalObjectProperty, InverseFunctionalObjectProperty,
IrreflexiveObjectProperty, AsymmetricObjectProperty, and
DisjointObjectProperties only on simple object properties
(i.e., has no direct or indirect subproperties that are either transitive or

are defined by means of property chains—so we still can’t represent

parthood fully)
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The language: other extensions

qualified cardinality restrictions

The Haskey ‘key’ that are not keys like in conceptual models
and databases

Alike inverse functional only (i.e., merely 1:n instead of 1:1)
but applicable only to individuals that are explicitly named in
an ontology
No unique name assumption, hence inferences are different
from that expected of keys in databases
“relevant mainly for query answering” [Cuenca Grau et al,
2008, p316], which does not go well with OWL 2 DL in
non-toy applications anyway

Richer datatypes, data ranges; e.g., DatatypeRestriction(
xsd:integer xsd:minInclusive "5"8sd:integer
xsd:maxExclusive "10"8sd:integer )
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Partial table of features

Language⇒ OWL 1 OWL 2 OWL 2 Profiles
Feature ⇓ Lite DL DL EL QL RL

Role hierarchy + + + . + .
N-ary roles (where n ≥ 2) – – – . ? .
Role chaining – – + . – .
Role acyclicity – – – . – .
Symmetry + + + . + .
Role values – – – . – .
Qualified number restrictions – – + . – .
One-of, enumerated classes ? + + . – .
Functional dependency + + + . ? .
Covering constraint over concepts ? + + . – .
Complement of concepts ? + + . + .
Complement of roles – – + . + .
Concept identification – – – . – .
Range typing – + + . + .
Reflexivity – – + . – .
Antisymmetry – – – . – .
Transitivity + + + . – .
Asymmetry ? ? + – + +
Irreflexivity – – + . – .
. . . . . . .

Exercise: verify the question marks in the table (tentatively all “–”) and

fill in the dots (any “±” should be qualified at to what the restriction is)
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Rationale

Computational considerations

Consult “OWL profiles” page Table 10. Complexity of the
Profiles

Robustness of implementations w.r.t. scalable applications

Already enjoy ‘substantial’ user base
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OWL 2 EL Overview

Intended for large ‘simple’ ontologies

Focussed on type-level knowledge (TBox)

Better computational behaviour than OWL 2 DL (polynomial
vs. exponential/open)

Based on the DL language EL++ (PTime complete)

Reasoner: e.g. CEL http://code.google.com/p/cel/
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Supported class restrictions

existential quantification to a class expression or a data range

existential quantification to an individual or a literal

self-restriction

enumerations involving a single individual or a single literal

intersection of classes and data ranges
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Supported axioms, restricted to allowed set of class
expressions

class inclusion, equivalence, disjointness

object property inclusion (w. or w.o. property chains), and
data property inclusion

property equivalence

transitive object properties

reflexive object properties

domain and range restrictions

assertions

functional data properties

keys
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NOT supported in OWL 2 EL

universal quantification to a class expression or a data range

cardinality restrictions

disjunction

class negation

enumerations involving more than one individual

disjoint properties

irreflexive, symmetric, and asymmetric object properties

inverse object properties, functional and inverse-functional
object properties
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OWL 2 QL Overview

Query answering over a large amount of instances with same
kind of performance as relational databases (Ontology-Based
Data Access)

Expressive features cover several used features of UML Class
diagrams and ER models (‘COnceptual MOdel-based Data
Access’)

Based on DL-LiteR (more is possible with UNA and in some
implementations)
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Supported Axioms in OWL 2QL, restrictions

Subclass expressions restrictions:

a class
existential quantification (ObjectSomeValuesFrom) where the
class is limited to owl:Thing
existential quantification to a data range
(DataSomeValuesFrom)

Super expressions restrictions:

a class
intersection (ObjectIntersectionOf)
negation (ObjectComplementOf)
existential quantification to a class (ObjectSomeValuesFrom)
existential quantification to a data range
(DataSomeValuesFrom)
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Supported Axioms in OWL 2QL
Restrictions on class expressions, object and data properties
occurring in functionality assertions cannot be specialized
subclass axioms
class expression equivalence (involving subClassExpression),
disjointness
inverse object properties
property inclusion (not involving property chains and
SubDataPropertyOf)
property equivalence
property domain and range
disjoint properties
symmetric, reflexive, irreflexive, asymmetric properties
assertions other than individual equality assertions and
negative property assertions (DifferentIndividuals,
ClassAssertion, ObjectPropertyAssertion, and
DataPropertyAssertion)
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NOT supported in OWL 2 QL

existential quantification to a class expression or a data range
in the subclass position

self-restriction

existential quantification to an individual or a literal

enumeration of individuals and literals

universal quantification to a class expression or a data range

cardinality restrictions

disjunction

property inclusions involving property chains

functional and inverse-functional properties

transitive properties

keys

individual equality assertions and negative property assertions
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OWL 2 RL Overview

Development motivated by: what fraction of OWL 2 DL can
be expressed by rules (with equality)?

Scalable reasoning in the context of RDF(S) application

Rule-based technologies (forward chaining rule system, over
instances)

Inspired by Description Logic Programs and pD*

Reasoning in PTime
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Supported in OWL 2 RL

More restrictions on class expressions (see table 2, e.g. no
SomeValuesFrom on the right-hand side of a subclass axiom)

All axioms in OWL 2 RL are constrained in a way that is
compliant with the restrictions in Table 2.

Thus, OWL 2 RL supports all axioms of OWL 2 apart from
disjoint unions of classes and reflexive object property axioms.

No ∀ and ¬ on lhs, and ∃ and t on rhs of v
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Another section on speculation about future extensions

The ‘leftover’ from OWL 1’s “Future extensions” (UNA,
CWA, defaults), parthood relation (primarily: antisymmetry,
restrictions on current usage of properties)

New “future of OWL”, a.o.:

Syntactic sugar: ‘macros’, ‘n-aries’
Query languages: EQL-lite and nRQL w.r.t. SPARQL
Integration with rules: RIF, DL-safe rules, SBVR
Orthogonal dimensions: temporal, fuzzy, rough, probabilistic
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Reasoning services for DL-based OWL ontologies

OWL ontology is a first-order logical theory ⇒ verifying the
formal properties of the ontology corresponds to reasoning
over a first-order theory

Main (‘standard’) reasoning tasks for the OWL ontologies:

consistency of the ontology
concept (and role) consistency
concept (and role) subsumption
instance checking
instance retrieval
query answering

Non-standard reasoning services, such as explanation, repair,
least common subsumer, ...

Note: Not all OWL languages are equally suitable for all these
reasoning tasks
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Reasoning services for DL-based OWL ontologies
Consistency of the ontology

Is the ontology K = (T ,A) consistent (non-selfcontradictory),
i.e., is there at least a model for K ?

Concept (and role) consistency
is there a model of T in which C (resp. R) has a nonempty
extension?

Concept (and role) subsumption
i.e., is the extension of C (resp. R) contained in the extension
of D in every model of T ?

Instance checking
is a a member of concept C in K , i.e., is the fact C (a)
satisfied by every interpretation of K ?

Instance retrieval
find all members of C in K , i.e., compute all individuals a s.t.
C (a) is satisfied by every interpretation of K

Query answering
compute all tuples of individuals t s.t. query q(t) is entailed by
K , i.e., q(t) is satisfied by every interpretation of K
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Note: Reasoning with OWA (vs. CWA)

Open World Assumption

Absence of information is interpreted as unknown information
Assumes incomplete information
Good for describing knowledge in a way that is extensible

Closed World Assumption

Absence of information is interpreted as negative information
Assumes we have complete information
Good for constraining information and validating data in an
application
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Example
Which alumni do not have a PhD?

Alumnus Degree Obtained

Delani PhD in history
Maria PhD in politics
Peter MSc in Informatics
Dalila PhD in politics

Query under CWA says “Peter”

Query under OWA cannot say “Peter”, because we do not
know if Peter also obtained a PhD. To retrieve “Peter” we
have add an axiom somehow stating that Peter does not have
a PhD (e.g., by being an instance of PhD student, declaring
the degrees to be disjoint & covering, ...).
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Summary
4 Introduction

Limitations of RDFS

5 OWL
Design of OWL
OWL and Description Logics
OWL Syntaxes

6 Limitations

7 OWL 2
OWL 2 DL

8 OWL 2 profiles
OWL 2 EL
OWL 2 QL
OWL 2 RL

9 Reasoning
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Part III

Foundational and top-down aspects of ontology
engineering
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Outline

10 Foundational ontologies
DOLCE
BFO
More foundational ontologies

11 Part-whole relations
Parts, mereology, meronymy
Taxonomy of types of part-whole relations
Mereotopology and other extensions

12 Ontology Design Patterns
Types of patterns
Developing and using an ODP
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General notion

Provide a top-level with basic categories of kinds of things

Principal choices

Endurantist vs. Perdurantist
Universals vs. Particulars

Formal...

... logic: connections between truths – neutral wrt truth

... ontology: connections between things – neutral wrt reality

(Guarino, 2002) (Masolo et al, 2003)
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Descriptive Ontology for Linguistic and Cognitive Engineering

Strong cognitive/linguistic bias:
Descriptive (as opposite to prescriptive) attitude
Categories mirror cognition, common sense, and the lexical
structure of natural language.

Emphasis on cognitive invariants

Categories as conceptual containers: no ‘deep’ metaphysical
implications

Focus on design rationale to allow easy comparison with
different ontological options

Rigorous, systematic, interdisciplinary approach
Rich axiomatization

37 basic categories
7 basic relations
80 axioms, 100 definitions, 20 theorems

Rigorous quality criteria

Documentation
116/308

Foundational ontologies Part-whole relations Ontology Design Patterns

Outline of DOLCE categories
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DOLCE’s basic relations

Parthood

Between quality regions (immediate)
Between arbitrary objects (temporary)

Constitution

Participation

Representation

Dependence: Specific/generic constant dependence

Inherence (between a quality and its host)

Quale

Between a quality and its region (immediate, for unchanging
entities)
Between a quality and its region (temporary, for changing
entities)
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DOLCE’s primitive relations between basic categories
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DOLCE’s basic relations w.r.t. qualities
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Various commitments regarding ‘attributes’

DOLCE: [PerDurant/EnDurant] –qt– Quality –ql– Region

Options:

OWL: DataProperty with as domain class and range a
datatype

More compact notation
But modelling based on arbitrary (and practical, application)
decisions, increasing the chance of incompatibilities and less
reusable
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DOLCE’s basics on universals

.......
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DOLCE’s characterisation of categories

... etc...
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Can all that be used?

DOLCE in KIF

DOLCE in OWL:

DOLCE-Lite: simplified translations of Dolce2.0
Does not consider: modality, temporal indexing, relation
composition
Different names are adopted for relations that have the same
name but different arities in the FOL version
Some commonsense concepts have been added as examples

DOLCE-2.1-Lite-Plus version includes some modules for
Plans, Information Objects, Semiotics, Temporal relations,
Social notions (collectives, organizations, etc.), a Reification
vocabulary, etc.
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DLP3971

Several Modules for (re)use: DOLCE-Lite, SocialUnits,
SpatialRelations, ExtendedDnS, and others

Still rather complex to understand (aside from using
OWL-DL): Full DOLCE-Lite-Plus with 208 classes, 313 object
properties, etc (check the “Active ontology” tab in Protégé) and basic
DOLCE-Lite 37 classes, 70 object properties etc (in SHI)

Time for a DOLCE-Lite ultra-“ultralight”? e.g. for use with
OWL 2 QL or OWL 2 EL

Current DOLCE Ultra Lite—DUL—uses friendly names and
comments for classes and properties, has simple restrictions for
classes, and includes into a unique file the main parts of
DOLCE, D&S and other modules of DOLCE Lite+
BUT... is still in OWL-DL (OWL-Lite+Disjointness)

http://wiki.loa-cnr.it/index.php/LoaWiki:Ontologies
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Examples
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Examples
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Comment: “The immediate relation
holding between endurants and per-
durants (e.g. in ’the car is run-
ning’).Participation can be constant (in
all parts of the perdurant, e.g. in ’the
car is running’), or temporary (in only
some parts, e.g. in ’I’m electing the
president’).A ’functional’ participant is
specialized for those forms of participa-
tion that depend on the nature of par-
ticipants, processes, or on the intention-
ality of agentive participants. Tradi-
tional ’thematic role’ should be mapped
to functional participation.For relations
holding between participants in a same
perdurant, see the co-participates rela-
tion.”
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BFO Overview

Ontology as reality representation

Aims at reconciling the so-called three-dimensionalist and
four-dimensionalist views

A Snap ontology of endurants which is reproduced at each
moment of time and is used to characterize static views of the
world
Span ontology of happenings and occurrents and, more
generally, of entities which persist in time by perduring
Endurants (Snap) or perdurants (Span)

Limited granularity

Heavily influenced by parthood relations, boundaries,
dependence
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Overview

BFO 1.1 in OWL with 39 classes, no object or data properties,
in ALC.

There is a bfo-ro.owl to integration relations of the Relation
Ontology with BFO (extensions under consideration)

Version in Isabelle (mainly part-wholes, but not all categories)

Version in OBO (the original Gene Ontology format, with
limited, but expanding, types of relationships)

Version in Prover9 (first order logic model checker and
theorem prover)
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BFO Taxonomy
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BFO Core

A non-extensional temporal mereology with collections, sums,
and universals

BFO as a collection of smaller theories

EMR, QSizeR, RBG, QDiaSizeR, ..., Adjacency, Collections,
SumsPartitions, Universals, Instantiation,
ExtensionsOfUniversals, PartonomicInclusion,
UniversalParthood

Reference material http://www.ifomis.org/bfo/fol and
http://www.acsu.buffalo.edu/∼bittner3/Theories/BFO/

133/308

Foundational ontologies Part-whole relations Ontology Design Patterns

Section of one of the sub-theories in BFO Core
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A relation ontology

What are the ‘core’ and primitive relations necessary to
develop a domain ontology?

Do we need a separate ontology for relations, or integrated in
a foundational ontology?

Philosophers do not agree on the answers, but the modellers
and engineers need agreement to facilitate interoperability
among ontologies
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The Relation Ontology

Definitions for is a, part of , integral part of , proper part of ,
located in, contained in, adjacent to, transformation of ,
derives from, preceded by , has participant, has agent,
instance of

Proposed extensions under consideration, among others:

Relations between generically dependent continuants and
specifically dependent continuants (a.o., concretizes,
has quality , has function, ...)
A relation between a process and a process or quality
(regulates)
Refinements on derived from
Measurements (has value, of dimension, ...)
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Ontologies and choices

Other more or less used foundational ontologies, a.o.:

GFO
SUMO
OCHRE
...

Within WonderWeb project: a (future) aim to develop a
library of foundational ontologies with mappings between
them: choose your pet ontology and be interoperable with the
others

Exercise: examine DolceliteBFOinDLandMSyntax.pdf (or their
respective OWL files) and spot commonalities and differences
between DOLCE and BFO (or any two other foundational
ontologies)
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Some questions and problems (not exhaustive...)4

Is a tunnel part of the mountain?

What is the difference, if any, between how Cell nucleus
and Cell are related and how Receptor and Cell wall are
related?

And w.r.t. Brain part of Human and/versus Hand part
of Boxer? (assuming boxers must have their own hands)

A classical example: hand is part of musician, musician part of
orchestra, but clearly, the musician’s hands are not part of the
orchestra. Is part-of then not transitive, or is there a problem
with the example?

4
The following slides are based on the tutorial given at Meraka

[http://www.meteck.org/files/PartspresMOWS08.pdf], which does have the references to the related works.
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Analysis of the issues from diverse angles

Mereological theories (Varzi, 2004), usage & extensions (e.g.
mereotopology, relation with granularity, set theory)

Early attempts with direct parthood, SEP triples, and other
outstanding issues, some still remaining

Cognitive & linguistic issues from meronymy

Usage in conceptual modelling and ontology engineering

Subject domains: thus far, mainly geo, bio, medicine
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Ground Mereology

Reflexivity (everything is part of itself)

∀x(part of (x , x)) (1)

Antisymmetry (two distinct things cannot be part of each other, or: if they are, then they are the same

thing)

∀x , y((part of (x , y) ∧ part of (y , x))→ x = y) (2)

Transitivity (if x is part of y and y is part of z, then x is part of z)

∀x , y , z((part of (x , y) ∧ part of (y , z))→ part of (x , z)) (3)

Proper parthood

∀x , y(proper part of (x , y) ≡ part of (x , y) ∧ ¬part of (y , x)) (4)
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Ground Mereology

Proper parthood

∀x , y(proper part of (x , y) ≡ part of (x , y) ∧ ¬part of (y , x)) (5)

Asymmetry (if x is part of y then y is not part of x)

∀x , y(part of (x , y)→ ¬part of (y , x)) (6)

Irreflexivity (x is not part of itself)

∀x¬(part of (x , x)) (7)
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Defining other relations with part of
Overlap (x and y share a piece z)

∀x , y(overlap(x , y) ≡ ∃z(part of (z , x) ∧ part of (z , y))) (8)

Underlap (x and y are both part of some z)

∀x , y(underlap(x , y) ≡ ∃z(part of (x , z) ∧ part of (y , z))) (9)

Over- & undercross (over/underlap but not part of)

∀x , y(overcross(x , y) ≡ overlap(x , y) ∧ ¬part of (x , y)) (10)

∀x , y(undercross(x , y) ≡ underlap(x , y) ∧ ¬part of (y , x)) (11)

Proper overlap & Proper underlap

∀x , y(p overlap(x , y) ≡ overcross(x , y) ∧ overcross(y , x)) (12)

∀x , y(p underlap(x , y) ≡ undercross(x , y) ∧ undercross(y , x))
(13)
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With x as part, what to do with the remainder that makes up
y?

Weak supplementation: every proper part must be
supplemented by another, disjoint, part. MM
Strong supplementation: if an object fails to include another
among its parts, then there must be a remainder. EM

Problem with EM: non-atomic objects with the same proper
parts are identical, because of this (extensionality principle),
but sameness of parts may not be sufficient for identity E.g.: two

objects can be distinct purely based on arrangement of its parts, differences statue and its marble

(multiplicative approach)
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General Extensional Mereology

Strong supplementation [EM]

¬part of (y , x)→ ∃z(part of (z , y) ∧ ¬overlap(z , x)) (14)

And add unrestricted fusion [GEM]. Let φ be a property or
condition, then for every satisfied φ there is an entity
consisting of all entities that satisfy φ. 5 Then:

∃xφ→ ∃z∀y(overlap(y , z)↔ ∃x(φ ∧ overlap(y , x))) (15)

Note that in EM and upward we have identity, from which one
can prove acyclicity for ppo

There are more mereological theories, and the above is not
uncontested (more about that later)

5Need to refer to classes, but desire to stay within FOL. Solution: axiom
schema with only predicates or open formulas
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Relations between common mereological theories
5

Ground Mereology 
M

Minimal Mereology 
MM

Extensional Mereology 
EM

Closure Mereology 
CM

Extensional Closure Mereology 
CEM = CMM

General Mereology 
GM

General Extensional Mereology 
GEM = GMM

Fig. 1: Hasse diagram of mereological theories; from
weaker to stronger, going uphill (after [44]).

We can define the sum σ and product π in GEM, which enables one to succinctly
rewrite sum (20), product (21), remainder (22), complement (23), and universal indi-
vidual (24). See [44] sections 4.2 and 4.3 for further detail and discussion.

x+ y = σz(part of(z, x) ∨ part of(z, y)) (20)

x× y = σz(part of(z, x) ∧ part of(z, y)) (21)

x− y = σz(part of(z, x) ∧ ¬overlap(z, y)) (22)

∼ x = σz(¬overlap(z, x)) (23)

U = σz(part of(z, z)) (24)

Given these basics, we can proceed to its mathematical analysis and some interesting
properties, which are described in the next section.

2.2 GEM and set theory

Set theory provides structural relations to abstract mathematical entities called sets
by using the is element of relation (see [19] for a brief online introduction, among
many sources and books). However, its grounding in reality is debatable due to the
many abstract ingredients, which mereology may overcome at least to some extent (see
e.g. the introduction of [6] for arguments and §5.2 below). Since mereological theories
are formulated in predicate logic (see above in §2.1), one can assess how they relate
to set theory from a mathematical perspective, comprehensively assessed by Pontow
and Schubert [30].
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Can any of this be represented in a decidable fragment of first
order logic for use in ontologies and (scalable) software
implementations?
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Things are improving...

Early days (90s) and simplest options: DL-role R as partof,
or has-part added as primitive role as �, model it as the
transitive closure of a parthood relation (16) and define e.g.
Car as having wheels that in turn have tires (17):

� .= (primitive-part) ∗ (16)

Car
.

= ∃ � .(Wheel u ∃ � .Tire) (17)

Then Car v ∃ �.Tire

SEP triples with ALC
What SHIQ fixes cf. ALC: Transitive roles, Inverse roles (to
have both part-of and has-part), Role hierarchies (e.g. for
subtypes of part-of), qualified Number restrictions (e.g. to
represent that a bycicle has-part 2 wheels)

Build-your-own DL-language
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What we can(not) implement now with DL-based ontology
languages

Table: Properties of parthood and proper parthood compared to their
support in DLRµ, SHOIN and SROIQ. ∗: properties of the parthood
relation (in M); ‡: properties of the proper parthood relation (in M).

Language ⇒ DLRµ SHOIN SROIQ DL-LiteA

Feature ⇓ (∼ OWL-DL) (∼ OWL 2 DL) (∼ OWL 2 QL)

Reflexivity ∗ + – + –
Antisymmetry ∗ – – – –
Transitivity ∗ ‡ + + + –
Asymmetry ‡ + + + +
Irreflexivity ‡ + – + –

Acyclicity + – – –
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Definitions in OBO Relations Ontology

Instance-level relations

c part of c1 at t - a primitive relation between two continuant
instances and a time at which the one is part of the other
p part of p1, r part of r1 - a primitive relation of parthood,
holding independently of time, either between process
instances (one a subprocess of the other), or between spatial
regions (one a subregion of the other)
c contained in c1 at t , c located in c1 at t and not c
overlap c1 at t
c located in r at t - a primitive relation between a continuant
instance, a spatial region which it occupies, and a time
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Definitions in OBO Relations Ontology

Class-level relations

C part of C1 , for all c , t, if Cct then there is some c1 such
that C1c1t and c part of c1 at t.
P part of P1 , for all p, if Pp then there is some p1 such
that: P1p1 and p part of p1.
C contained in C1 , for all c , t, if Cct then there is some c1

such that: C1c1t and c contained in c1 at t

Need to commit to a foundational ontology. Recently, linked
to BFO http://obofoundry.org/ro/#mappings (test release)

Same labels, different relata and only a textual constraint:
Label the relations differently
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Linguistic use of part-whole relations (meronymy)

Part of?
? Centimeter part of Decimeter
? Decimeter part of Meter
— therefore Centimeter part of Meter
? Meter part of SI
— but not Centimeter part of SI

Transitivity?
? Person part of Organisation
? Organisation located in Bolzano
— therefore Person located in Bolzano?
— but not Person part of Bolzano
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Linguistic use of part-whole relations (meronymy)

Part of?
? Centimeter part of Decimeter
? Decimeter part of Meter
— therefore Centimeter part of Meter
? Meter part of SI
— but not Centimeter part of SI

Transitivity?
? Person member of Organisation
? Organisation located in Bolzano
— therefore Person located in Bolzano?
— but not Person member of Bolzano
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Linguistic use of part-whole relations

Which part of?
? CellMembrane structural part of RedBloodCell
? RedBloodCell part of Blood
— but not CellMembrane structural part of Blood
? Receptor structural part of CellMembrane
— therefore Receptor structural part of RedBloodCell
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Linguistic use of part-whole relations

Which part of?
? CellMembrane structural part of RedBloodCell
? RedBloodCell contained in? Blood
— but not CellMembrane structural part of Blood
? Receptor structural part of CellMembrane
— therefore Receptor structural part of RedBloodCell
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Addressing the issues

Efforts to disambiguate this confusion; e.g. an informal
taxonomy by Winston et al (1987), list of 6 types motivated
by UML conceptual modeling (Odell) ontology-inspired
conceptual modelling (Guizzardi)

Location, containment, membership of a collective, quantities
of a mass

Relatively well-settled debate on transitivity, or not
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Overview

Mereological part of (and subtypes) versus ‘other’ part-whole
relations

Categories of object types of the part-whole relation changes

Structure these relations by (non/in)transitivity and kinds of
relata

Simplest mereological theory, M.

Commit to a foundational ontology: DOLCE (though one also
could choose, a.o., BFO, OCHRE, GFO, ...)
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DOLCE categories

PT
Particular

ED
Endurant

PD
Perdurant

PED
Physical
Endurant

NPED
Non-physical

Endurant

AS
Arbitrary

Sum

EV
Event

ST
Stative

ACH
Achievement

ACC
Accomplishment

ST
State

PRO
Process

NPOB
Non-physical

object

MOB
Mental object

SOB
Social object

POB
Physical
object

F
Feature

M
Amount
of matter

NAPO
Non-agentive

physical object

APO
Agentive 

physical object

…

…

… … … …

… …
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Part-whole relations

 

Part-whole relation 

mpart_of 
((Meronymic) part-whole relation) 

part_of 
(Mereological part-of relation) 

member-of constitutes sub-quantity-of participates-in involved-in spatial-part-of 

f-part-of 

s-part-of 

located-in contained-in member-of’ 

… … 
… … 

… … 
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Part-whole relations

“member-bunch”, collective nouns (e.g. Herd, Orchestra) with
their members (Sheep, Musician)

∀x , y(member ofn(x , y) , mpart of (x , y) ∧ (POB(x) ∨ SOB(x))
∧SOB(y))

“material-object”, that what something is made of (e.g., Vase and
Clay)

∀x , y(constitutesit(x , y) ≡ constituted ofit(y , x) , mpart of (x , y)∧
POB(y) ∧M(x))
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Part-whole relations

“quantity-mass”, “portion-object”, relating a smaller (or sub) part
of an amount of matter to the whole. Two issues (glass of wine &
bottle of wine vs. Salt as subquantity of SeaWater)

∀x , y(sub quantity ofn(x , y) , mpart of (x , y) ∧M(x) ∧M(y))

“noun-feature/activity”, entity participates in a process, like
Enzyme that participates in CatalyticReaction

∀x , y(participates init(x , y) , mpart of (x , y) ∧ ED(x) ∧ PD(y))
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Part-whole relations
processes and sub-processes (e.g. Chewing is involved in the
grander process of Eating)

∀x , y(involved in(x , y) , part of (x , y) ∧ PD(x) ∧ PD(y))

Object and its 2D or 3D region, such as contained in(John’s
address book, John’s bag) and located in(Pretoria,
South Africa)

∀x , y(contained in(x , y) , part of (x , y) ∧ R(x) ∧ R(y)∧
∃z ,w(has 3D(z , x) ∧ has 3D(w , y) ∧ ED(z) ∧ ED(w)))

∀x , y(located in(x , y) , part of (x , y) ∧ R(x) ∧ R(y)∧
∃z ,w(has 2D(z , x) ∧ has 2D(w , y) ∧ ED(z) ∧ ED(w)))

∀x , y(s part of (x , y) , part of (x , y) ∧ ED(x) ∧ ED(y))
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Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that

Reasoning with a taxonomy of relations

The RBox reasoning service to pinpoint errors
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Decision diagram

 

X part-of Y → X f-part-of Y 
(functional part-of) 

Does the part-of role 
relate roles? 

X part-of Y → X involved-in Y 

Is X a member of Y? 
(like player-team) 

X part-of Y → X member-of Y 

Is X made of Y? 
(like bike-steel,  

vase-clay) 

X part-of Y → Y constituted-of X 

Is X a portion or subquantity of Y? 
(like slice-pie, wine or  

other mass noun) 

X part-of Y → X sub-quantity-of Y 

Is X a spatial part of Y? 
(like oasis-desert,  

nucleus-cell) 

Are X and Y geographical object types? 
(as in place-area, like Massif  

Central in France) 

X part-of Y → X located-in Y 

Then 
X part-of Y → X contained-in Y 

(like a book in the bag) 

Is X part of Y and X is also 
functionally dependent on Y (or vv)? 

(like heart-body, handle-cup) 

No 

Is X part-of an event Y? 
(like bachelor-party, 
enzyme-reaction) 

X part-of Y → X participates-in Y 

Then 
X part-of Y → X s-part-of Y 

(structural part-of, like shelf-cupboard) 

Yes
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Decision diagram

 

X part-of Y → X f-part-of Y 
(functional part-of) 

Does the part-of role 
relate roles? 

X part-of Y → X involved-in Y 

Is X a member of Y? 
(like player-team) 

X part-of Y → X member-of Y 

Is X made of Y? 
(like bike-steel,  

vase-clay) 

X part-of Y → Y constituted-of X 

Is X a portion or subquantity of Y? 
(like slice-pie, wine or  

other mass noun) 

X part-of Y → X sub-quantity-of Y 

Is X a spatial part of Y? 
(like oasis-desert,  

nucleus-cell) 

Are X and Y geographical object types? 
(as in place-area, like Massif  

Central in France) 

X part-of Y → X located-in Y 

Then 
X part-of Y → X contained-in Y 

(like a book in the bag) 

Is X part of Y and X is also 
functionally dependent on Y (or vv)? 

(like heart-body, handle-cup) 

No 

Is X part-of an event Y? 
(like bachelor-party, 
enzyme-reaction) 

X part-of Y → X participates-in Y 

Then 
X part-of Y → X s-part-of Y 

(structural part-of, like shelf-cupboard) 

Yes
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Decision diagram

 

X part-of Y → X f-part-of Y 
(functional part-of) 

Does the part-of role 
relate roles? 

X part-of Y → X involved-in Y 

Is X a member of Y? 
(like player-team) 

X part-of Y → X member-of Y 

Is X made of Y? 
(like bike-steel,  

vase-clay) 

X part-of Y → Y constituted-of X 

Is X a portion or subquantity of Y? 
(like slice-pie, wine or  

other mass noun) 

X part-of Y → X sub-quantity-of Y 

Is X a spatial part of Y? 
(like oasis-desert,  

nucleus-cell) 

Are X and Y geographical object types? 
(as in place-area, like Massif  

Central in France) 

X part-of Y → X located-in Y 

Then 
X part-of Y → X contained-in Y 

(like a book in the bag) 

Is X part of Y and X is also 
functionally dependent on Y (or vv)? 

(like heart-body, handle-cup) 

No 

Is X part-of an event Y? 
(like bachelor-party, 
enzyme-reaction) 

X part-of Y → X participates-in Y 

Then 
X part-of Y → X s-part-of Y 

(structural part-of, like shelf-cupboard) 

Yes
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Using DOLCE’s categories

The participating objects instantiate some category (ED, PD,
etc)

Given the formalization, one immediately can exclude/identify
appropriate relations, taking a shortcut in the decision
diagram

E.g.: Chewing and Eating are both a kind of (a subtype of)
PD, hence involved in
E.g.: Alcohol and Wine are both mass nouns, or M, hence
sub quantity of

Demo of OntoPartS
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Requirements for reasoning over the hierarchy

Represent at least Ground Mereology,

Express ontological categories and their taxonomic relations,

Having the option to represent transitive and intransitive
relations, and

Specify the domain and range restrictions (/relata/entity
types) for the classes participating in a relation.
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Current behaviour of reasoners

A1. Class hierarchy with asserted conditions

B. Correct role box (object properties) C. Wrong role box (object properties)

A2. Other class 
hierarchy with 

the same 
asserted 

conditions
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Current behaviour of reasoners

3. A1+C+racer: class hierarchy is inconsistent 4. A2+C+racer: Chassis reclassified 
as PD

1. A1+B+racer: ontology OK 2. A2+B+racer: ontology OK

5: Required inference result A1/A2+C+reasoner: 

role hierarchy is inconsistent, with inconsistent roles “domain & range involved-in and part-of are 
inconsistent”, which can be fixed by the user, else the reasoner suggests:

Computing superroles reasoner log: “involved-in Moved to pwrelation“ and “part-of Moved to involved-in”
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The RBox Compatibility service – definitions

Definition (Domain and Range Concepts)

Let R be a role and R v C1 × C2 its associated Domain & Range
axiom. Then, with the symbol DR we indicate the User-defined
Domain of R—i.e., DR = C1—while with the symbol RR we
indicate the User-defined Range of R—i.e., RR = C2.

Definition (RBox Compatibility)

For each pair of roles, R, S , such that 〈T ,R〉 |= R v S , check:

Test 1. 〈T ,R〉 |= DR v DS and 〈T ,R〉 |= RR v RS ;

Test 2. 〈T ,R〉 6|= DS v DR ;

Test 3. 〈T ,R〉 6|= RS v RR .

An RBox is said to be compatible iff Test 1 and (2 or 3) hold for
all pairs of role-subrole in the RBox.
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The RBox Compatibility service – behaviour

If Test 1 does not hold: warning that domain & range
restrictions of either R or S are in conflict with the role
hierarchy proposing either

(i) To change the role hierarchy or
(ii) To change domain & range restrictions or
(iii) If the test on the domains fails, then propose a new

axiom R v D ′R × RR , where D ′R ≡ DR u DS
6, which

subsequently has to go through the RBox compatibility
service (and similarly when Test 1 fails on range
restrictions).

6The axiom C1 ≡ C2 is a shortcut for the axioms: C1 v C2 and C2 v C1.
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The RBox Compatibility service – behaviour

If Test 2 and Test 3 fail: warn that R cannot be a proper
subrole of S but that the two roles can be equivalent. Then,
either:
(a) Accept the possible equivalence between the two roles or
(b) Change domain & range restrictions.

Ignoring all warnings is allowed, too
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Extensions in various directions

Mereotopology, with location, GIS, Region Connection
Calculus (http://www.comp.leeds.ac.uk/qsr/rcc.html)

Mereogeometry

Mereology and/vs granularity

Temporal aspects of part-whole relations
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Knowledge and Google & AfriGIS
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Knowledge and Google & AfriGIS

How can we represent

The Kruger Park overlaps with South Africa
Durban is a tangential proper part of South Africa
Gauteng is a non-tangential proper part of South Africa
Botswana is connected to South Africa (do they share a
border?)
Lesotho is spatially located within the area of South Africa
(but not part of)?

Can we do all that with mereology? Use only spatial
relations? Combining mereo+spatial?
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Mereology with spatial notions

Another primitive: C onnected, which is reflexive and
symmetric

More and more expressive theories, e.g.:

T: C (x , x) and C (x , y)→ C (y , x)
MT: T and P(x , y)→ E (x , y) where E is enclosure
(E (x , y) =def ∀z(C (z , x)→ C (z , y)))

Two primitives, P and C , or part in terms of C ?

P =def ∀z(C (z , x)→ C (z , y))

or perhaps “x and y are connected parts of z” as primitive,
CP(x , y , z), then:
P(x , y) =def ∃z CP(x , z , y) and
C (x , y) =def ∃z CP(x , y , z)
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Some of the mereo- and topological theories

Ground Topology
             T

Minimal (mereo) Topology
                  MT

Reductive Mereotopology
                 RMT

Ground Mereology
             M

EM

General Extensional Mereology
                         GEM

General Extensional Mereotopology
                       GEMT

KGEMT

Note: one can add explicit variations with Atom/Atomless and 
Boundary/Boundaryless

Figure: Diagram of mereo- and mereotopological theories; from weaker
to stronger, going uphill (after descriptions in Varzi (2007))

178/308

Foundational ontologies Part-whole relations Ontology Design Patterns

Rationale

It is hard to reuse only the “useful pieces” of a comprehensive
(foundational) ontology, and the cost of reuse may be higher
than developing a new ontology from scratch

Need for small (or cleverly modularized) ontologies with
explicit documentation of design rationales, and best
reengineering practices

Hence, in analogy to software design patterns: ontology
design patterns

ODPs summarize the good practices to be applied within
design solutions

ODPs keep track of the design rationales that have motivated
their adoption

content of slides based on Presutti et al, 2008
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ODP definition

An ODP is an information object

A design pattern schema is the description of an ODP,
including the roles, tasks, and parameters needed in order to
solve an ontology design issue

An ODP is a modeling solution to solve a recurrent ontology
design problem. It is an Information Object that expresses a
Design Pattern Schema (or skin) that can only be satisfied by
DesignSolutions. Design solutions provide the setting for
Ontology Elements that play some ElementRole(s) from the
schema. (Presutti et al, 2008)
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ODP types
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Types of Patterns

Six families of ODPs: Structural OPs, Correspondence OPs,
Content OPs (CPs), Reasoning OPs, Presentation OPs, and
Lexico-Syntactic OPs

CPs can be distinguished in terms of the domain they
represent

Correspondence OPs (for reengineering and mappings—next
lecture)

Reasoning OPs are typical reasoning procedures

Presentation OPs relate to ontology usability from a user
perspective; e.g., we distinguish between Naming OPs and
Annotation OPs

Lexico-Syntactic OP are linguistic structures or schemas that
permit to generalize and extract some conclusions about the
meaning they express
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Structural OPs

Logical OPs:

Are compositions of logical constructs that solve a problem of
expressivity in OWL-DL (and, in cases, also in OWL 2 DL)
Only expressed in terms of a logical vocabulary, because their
signature (the set of predicate names, e.g. the set of classes
and properties in an OWL ontology) is empty
Independent from a specific domain of interest
Logical macros compose OWL DL constructs; e.g. the
universal+existential OWL macro
Transformation patterns translate a logical expression from a
logical language into another; e.g. n-aries

184/308

Foundational ontologies Part-whole relations Ontology Design Patterns

Example: n-ary relation Logical OP
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Architectural OPs

Architectural OPs are defined in terms of composition of
Logical OPs that are used in order to affect the overall shape
of the ontology; i.e., an Architectural OP identifies a
composition of Logical OPs that are to be exclusively used in
the design of an ontology

Examples of Architectural OPs are: Taxonomy, Modular
Architecture, and Lightweight Ontology

E.g., Modular Architecture Architectural OP consists of an
ontology network, where the involved ontologies play the role
of modules, which are connected by the owl:import operation
with one root ontology that imports all the modules
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Lexico-Syntactic OPs

linguistic structures or schemas that consist of certain types of
words following a specific order and that permit to generalize
and extract some conclusions about the meaning they express;
verbalisation patterns

E.g., “subClassOf” relation, NP<subclass> be
NP<superclass>, a Noun Phrase should appear before the
verb—represented by its basic form or lemma, be in this
example—and the verb should in its turn be followed by
another Noun Phrase

Other Lexical OPs provided for OWL’s equivalence between
classes, object property, subpropertyOf relation, datatype
property, existential restriction, universal restriction,
disjointness, union of classes

Mainly for English language only, thus far

Similar to idea of ORM’s verbalization templates
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How to create an ODP

See chapter 3 of (Presutti et al., 2008)

Where do ODPs come from (section 3.4—in part: legacy sources, which we deal with

in the next lecture)

Annotation schema

How to use them

Content Ontology Design Anti-pattern (AntiCP)
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Sample exercise: an ODP for the adolena ontology?
Novel Abilities and Disabilities OntoLogy for ENhancing
Accessibility: adolena
Can this be engineered into an ODP? If so, which type(s),
how, what information is needed to document an ODP?

Function

hasFunction

Ability

assistsWith / 
isAssistedBy

Device

DisabilityServiceProvider

isAffectedBy / 
affects

amelioratesprovidedBy /
provides

requiresAbility

Assistive 
Device

Replacement 
Device

Physical 
Ability

assistsWith / 
isAssistedBy

Body
Part

replaces
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Summary

10 Foundational ontologies
DOLCE
BFO
More foundational ontologies

11 Part-whole relations
Parts, mereology, meronymy
Taxonomy of types of part-whole relations
Mereotopology and other extensions

12 Ontology Design Patterns
Types of patterns
Developing and using an ODP
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Part IV

Bottom-up ontology development
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Outline

13 RDBMSs and other ‘legacy KR’
Example: manual and automated extractions

14 Natural language
Introduction
Ontology learning
Ontology population

15 Biological models and thesauri
Models in biology
Thesauri
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Bottom-up

From some seemingly suitable legacy representation to an
OWL ontology

Database reverse engineering
Conceptual model (ER, UML)
Frame-based system
OBO format
Thesauri
Formalizing biological models
Excel sheets
Text mining, machine learning, clustering
etc...

193/308

RDBMSs and other ‘legacy KR’ Natural language Biological models and thesauri

A few languages
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Levels of ontological precision

(from Gangemi, 2004)
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Examples: OBO and Protégé-frames

OBO in OWL 2 DL

OBO is a Directed Acyclic Graph (with is a, part of, etc.
relationships)
with some extras (a.o., date, saved by, remark)
and ‘work-arounds’ (not-necessary and inverse-necessary) and
non-mappable things (antisymmetry)
There are several OBO-in-OWL mappings, some more
comprehensive than others
e.g. FMA-Lite

197/308

RDBMSs and other ‘legacy KR’ Natural language Biological models and thesauri

Examples: OBO and Protégé-frames

Frames (as in Protégé) into OWL-DL (see Zhang &
Bodenreider, 2004), and its problems doing that to the FMA

Not a formal transformation
Slot values generally correspond to necessary conditions—so
they took a first guess to define an anatomical entity as the
sum of its parts
Global axioms dropped (with an eye on the reasoner)
After the conversion of the 39,337 classes and 187 slots from
FMA in Protégé (ignoring laterality distinctions), FMAinOWL
contains 39,337 classes, 187 properties and 85 individuals
Additional optimizations: optimizing domains and subClassOf
axioms
But still caused Racer to fail to reason over the whole file;
restricting properties further obtained results
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General considerations for RDBMSs

Set aside of data duplication, violations of integrity
constraints, hacks, outdated imports from other databases,
outdated conceptual data models

Some data in the DB—mathematically instances—actually
assumed to be concepts/universals/classes

‘impedance mismatch’ DB values and ABox objects

⇒ instances-but-actually-concepts-that-should-become-OWL-
classes and
real-instances-that-should-become-OWL-instances
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General considerations for RDBMSs

Reuse/reverse engineer the physical DB schema

Reuse conceptual data model (in ER, EER, UML, ORM, ...)

But,

Assumes there was a fully normalised conceptual data model,
Denormalization steps to flatten the database structure, which,
if simply reverse engineered, ends up in the ontology as a class
with umpteen attributes
Minimal (if at all) automated reasoning with it

Redo the normalization steps to try to get some structure
back into the conceptual view of the data?

Add a section of another ontology to brighten up the
‘ontology’ into an ontology?

Establish some mechanism to keep a ‘link’ between the terms
in the ontology and the source in the database?
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Manual Extraction

Most database are not neat as assumed in the ‘Automatic
Extraction of Ontologies’ (e.g., denormalised)

Then what?

Reverse engineer the database to a conceptual data model
Choose an ontology language for your purpose

Example: the HGT-DB about horizontal gene transfer (the
same holds for the database behind adolena)
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Section of the HGT conceptual data model (in ORM 2)

Organism
(Abbrev)

Gene
(.ID)

has / is on chromosome of

TaxID

NCBIID

OrganismName

BP

GenCode

{ 4, 11 }

NrGenes

NrPredHGTgenes

Taxonomy
(Abbrev)

KEGGCode
has link to

… has … information

… has … on its genome

has

has genome length

has

has

has has

NrCromosomes
{ 1, 2 }

… contains … chomosomes

GCValue

StDevGCorg

has computed *

GC1_o GC2_oGCtotal_o GC3_o

Percentage

… has … of transferred genes

GeneFunction
(.ID)

Function
has

has

Synonym

Strand

{ '-', '+' }

Coordinates
(.ID)

… has … on chromosome

BeginEnd

Length

GeneName
has

… has … of gene name

with

of has total has direction

GCstatsOrg
(Abbrev)

GCstatsGene
(.ID)

GCtotal_g GC1_g GC2_g GC3_g

has

has

MahSimMah

{ '1', '2' }

SimGC

{ '1', '2' }

DevAA

Nc

{ 20..61 }

P2

{ 0..1 }

ICDI

{ 0..1 }

Chi2

has

with translational efficiency

with bias

with bias degree

GCregion

{ 'high', 'low', '-', '+', 'f' }

Prediction

{ 'hgt', 'heg', '-' }
PID

has

has

with guesstimate

PATH
(.code)

KEGG
(.code)

participates in
… has … reference code

AltCode
(Abbrev)

has

OrganismInfo
(Abbrev)

has

HGTPredictions
(Abbrev)

has

… minus … makes up … **

GeneIDInfo
(.ID)

has additional

HGTPredictionGene
(.ID)

of has participant / participates in

GeneStats
(.ID)

hashas oddness
has oddness

has of / with

… has … at codon position

The statistics for AA and CodonUS are moved to a separate figure

ClusterOrthologGenes
has

nearby

"GeneNearbyGene"

adjacent to

overlaps with

Threshold

with max bp gap

GeneCluster
(.ID)located in

StrictHGTGeneCluster

FlexibleHGTGeneCluster

contains / located in

HGTGeneCluster

PathwayGenesCluster

Size

has minimum

NrStrictHGTClusters

has amount

is a cluster of

GCstDevGene

… has … at codon position

AggregateGCvalue
has computed *

Taxtree

has place in
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Manual mapping to DL-LiteA

Basic statistics:

38 classes
34 object properties of which 17 functional
55 data properties of which 47 functional
102 subclass axioms

Subsequently used for Ontology-Based Data Access
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Automatic Extraction of Ontologies

Examples

Lina Lubyte & Sergio Tessaris’s presentation of the DEXA’09
paper
Reverse engineering from DB to ORM model with, e.g.,
VisioModeler v3.1 or NORMA
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Natural language and ontologies

Using ontologies to improve NLP

To enhance precision and recall of queries
To enhance dialogue systems
To sort literature results
To navigate literature (linked data)

Using NLP to develop ontologies (TBox)

Searching for candidate terms and relations: Ontology learning
(today; ref Alexopoulou et al, 2008)

Using NLP to populate ontologies (ABox)

Document retrieval enhanced by lexicalised ontologies
Biomedical text mining (today; ref Witte et al, 2007)

Natural language generation from a formal language
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A few notes on the nature of relations

Early ideas were put forward by Williamson85 and have been
elaborated on and structured in Fine00, Inwagen06, Leo08,
and Cross027

Three different ontological commitments8 about relations and
relationships, which are, in Fine’s terminology, the standard
view, the positionalist, and the anti-positionalist commitment

7
Full references in Keet, C.M. Positionalism of relations and its consequences for fact-oriented modelling.

Proc. of ORM’09, OTM Workshops, Springer, LNCS 5872, 735-744.
8

well, different people are convinced about the nature of the relation in reality; it does not exclude the

possibility that maybe the corresponding different formalisations have equivalence-preserving transformations

between them and admit the exact same models (if on assumes a model-theoretic semantics)).
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The ‘standard view’ commitment

Relies on linguistics and the English language in particular

Take the fact John loves Mary, then one could be led to
assume that loves is the name of the relation and John and
Mary are the objects participating in the relation

Then Mary loves John is not guaranteed to have the same
truth value as the former fact—changing the verb does, i.e.,
Mary is loved by John

We (seem to) have two relations, loves and its inverse is
loved by
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Problems with the ‘standard view’ (1/2)

First, generally, for names a and b, a loves b holds iff what a
denotes (in the reality we aim to represent) loves what b
denotes.

John loves Mary is not about language but about John loving
Mary, so John and Mary are non-linguistic; cf. ‘cabeza’
translates into ‘head’

Then, that John loves Mary and Mary is being loved by John
refer to only one state of affairs between John and Mary

Why should we want, let alone feel the need, to have two
relations to describe it?
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Toward the ‘positionalist’ commitment

Designate the two aforementioned facts to be relational
expressions and not to let the verb used in the fact
automatically also denote the name of the relation

Then we can have many relational expressions standing in for
the single relation that captures the state of affairs between
John and Mary

In analogy, we can have many relational expressions for one
relationship at the type level
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Problems with the ‘standard view’ (2/2)

Second, the specific order of the relation: changing the order
does not mean the same for verbs that indicate an asymmetric
relation; different for some other languages.

Consider John kills the dragon. In Latin we have:
Johannus anguigenam caedit, or
anguigenam caedit Johannus, or
Johannus caedit anguigenam,
which all refer to the same state of affairs

But Johannum anguigena caedit is a different story alltogether

Likewise for John loves Mary and Johannus Mariam amat
versus Johannum Maria amat.
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Toward the ‘positionalist’ commitment

A linguistic version of argument places (roles) thanks to the
nominative and the accusative that are linguistically clearly
indicated

The order of the argument places is not relevant for the
relation itself

English without such declensions that change the terms so as
to disambiguate the meaning of a relational expression

Inverses for seemingly asymmetrical relations necessarily exist
in reality and descriptions of reality in English, but not in
other languages even when they represent the same state of
affairs???

Asymmetric relational expressions, but this does not imply
that the relation it verbalises is asymmetric
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The ‘positionalist’ commitment

Binary relation killing and identify the argument
places—“argument positions” [Fine00] to have
“distinguishability of the slots” [Cross02]—killer and deceased
(loosely, a place for the nominative and a place for the
accusative), assign John to killer and the dragon to deceased
and order the three elements in any arrangement

Relation(ship) and several distinguishable ‘holes’ and we put
each object in its suitable hole.

There are no asymmetrical relations, because a relationship R
and its inverse R−, or their instances, say, r and r ′, are
identical, i.e., the same thing [Williamson85,Fine00,Cross02]
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The ‘positionalist’ commitment

Ingredients

(i) an n-ary relationship R with A1, . . . ,Am participating object
types (m ≤ n),

(ii) n argument places π1, . . . , πn, and
(iii) n assignments α1, . . . , αn that link each object o1, . . . , on (each

object instantiating an Ai ) to an argument place (α 7→ π × o)

R, π1, π2, π3, r ∈ R, o1 ∈ A1, o2 ∈ A2, o3 ∈ A3, then any of
∀x , y , z(R(x , y , z)→ A1(x) ∧ A2(y) ∧ A3(z)) and its
permutations with corresponding argument places—i.e.,
R[π1, π2, π3], and e.g., R[π2, π1, π3], and [π2π3]R[π1]—all
denote the same SoA under the same assignment o1 to π1, o2

to π2, and o3 to π3 for the extension

Thus, r(o1, o2, o3), r(o2, o1, o3), and o2o3ro1 are different
representations of the same SoA where objects o1, o2, and o3

are related to each other by means of relation r .
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Graphical depictions

A. Positionalist B. Anti-positionalist

Mary John
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Problems with the ‘positionalist’ commitment

From an ontological viewpoint, it requires identifiable
argument positions to be part of the fundamental furniture of
the universe.

Practically, it requires something to finger-point to, i.e, to
reify the argument places, and use it in the signature of the
formal language, which is not clean and simple

Symmetric relations, such as adjacent to, and relationships
are problematic:

i. Take πa and πb of a symmetric binary relation r , assign o1 to
position πa and o2 to πb in state s.

ii. One can do a reverse assignment of o1 to position πb and o2

to πa in state s ′

iii. But then o1 and o2 do not occupy the same positions as they
did in s, so s and s ′ must be different, which should not be the
case.
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The ‘anti-positionalist’ commitment

No argument positions, but just a relation and objects that
yield states by “combining” into “a single complex” [Fine00]

Solves the problems with the standard view

Solves the positionalist’s problem with symmetric relations

(How to formalise this idea in a KR language is another
problem)
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Example
 
 
 
 

Sea located between Island and Mainland. 
Sample Population: 
North Sea located between UK and Continental Europe 

       Caribbean Sea located between Jamaica and South America 
 
 

Island is separated from Mainland by Sea. 
Sample Population: 
UK is separated from Continental Europe by North Sea 
Jamaica is separated from South America by Caribbean Sea 

 
 

C. 

A. B. 

Figure: Positionalist examples in ORM. A: an ORM diagram rendering of
Fig. 10-A; B: a reading added and a possible generalization of it, naming
the relationship, e.g. betweenness; C: sample fact types and populations.
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Ontologies in practice: Semantic Tagging—Classes, Terms

http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf
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Ontologies in practice: Semantic Tagging—Lexicalized
Ontologies

http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf
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Examples (out of many)

Generic tools: see http://www.deri.ie/fileadmin/documents/

teaching/tutorials/DERI-Tutorial-NLP.final.pdf for a long list

GoPubMed (Dietze et al, 2009)

Layer over PubMed, which indexes ± 19mln articles in the
bio(medical) domain; pre-processing of the abstracts
(advanced semantic tagging)
Results of the PubMed query are sorted according to terms in
the ontology

Question answer system AliQAn for agriculture (Vila and Ferrández,

2009)

Question assignment task too difficult for specialised domains
Add ontology to an open domain QA system, using
AGROVOC and WordNet

Attempto Controlled English (ACE), rabbit, etc.; grammar
engine, template-based approach

221/308

RDBMSs and other ‘legacy KR’ Natural language Biological models and thesauri

Background

Ontology development is time consuming

Bottom-up ontology development strategies, of which one is
to use NLP

Where, if anywhere, can NLP make life easier for ontology
development, and how?

Current results are mostly discouraging, and depend on the
approach, technique, and ontological commitment

We take a closer look at ontology learning limited to finding
terms for a domain ontology
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Bottom-up ontology development with NLP

Usual parameters, such as purpose (in casu, document
retrieval), formal language (an OWL species)

A standard kind of ontology (not a comprehensive lexicalised
ontology)

Additional considerations for “text-mining ontologies”

Level of granularity of the terms to include (hypo/hypernyms)
How to deal with synonyms (‘LDL I’ and ‘large LDL’)
Handle term variations (e.g., ‘LDL-I’ and ‘LDL I’, ‘Tangiers’
disease’ and ‘Tangier’s Disease’)
Disambiguation; e.g. w.r.t. abbreviations
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Method to test automated term recognition
Compare the terms of a manually constructed ontology with
the terms obtained from text mining a suitable corpus
Build an ontology manually

Lipoprotein metabolism (LMO), 223 classes with 623 synonyms
Create a corpus

3066 review article abstract from PubMed, obtained with a
‘lipoprotein metabolism’ search

Automatic Term Recognition (ATR) tools
Text2Onto: relative term frequency, TFIDF, entropy, hypernym

structure of WordNet, Hearst patterns

Termine: statistics of candidate term, such as total frequency of

occurrence, frequency of the term as part of other longer candidate terms,

length of term

OntoLearn: linguistic processor and syntactic parser, Domain relevance

and domain consensus

RelFreq: relative frequency of a term in a corpus

TFIDF: RelFreq + doc. frequency derived from all phrases in PubMed
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Results

OntoLearn excluded form analysis because it regenerated few
terms

Text2Onto only included in analysis for up to 300 abstracts
(could not process all 3066)

Precision for LMO 17-35% for top 50 terms, and 4-8% for top
1000 terms

Precision for LMO + expert analysis of the automatically
generated terms: up to 75% for top 50 terms, and up to 29%
for top 1000 terms

Termine good for the longer terms, RelFreq and TFIDF for
the shorter terms
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Results (cont’d)

from Alexopoulou et al, 2008
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What went wrong with some of the terms?

LMO terms that were not in the 50k abstracts grouped into:
Rarely occurring terms: occur rarely even in the whole of
PubMed
Rarely occurring variants of terms: e.g., ‘free chol’ (0, instead
of 2622 for ‘free cholesterol’)
Very long terms; e.g, ‘predominance of large low-density
lipoprotein particles’, which can be decomposed into smaller
terms
Combinations of terms/variants; e.g., ‘increased total chol’ (0,
instead of 116 for ‘increased total cholesterol’),
Terms that should normally be easily found; e.g., ‘diabetes
type I’ (126) and ‘acetyl-coa c-acyltransferase’, probably due
to limited corpus

Predicted terms, not in LMO: wrongly predicted (±25% of
the TFIDF top50) or can be added to LMO (±40% of the
TFIDF top50)
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Typical NLP tasks

Named Entity recognition/semantic tagging; e.g., “... the
organisms were incubated at 37◦C”)

Entity normalization; e.g., different strings refer to the same
thing (full and abbreviated name, or single letter amino acid,
three-letter aminoacid and full name: W, Trp, Tryptophan)

Coreference resolution; in addition to synonyms (lactase and
β-galactosidase), there as pronominal references (it, this)

Grounding; the text string w.r.t. external source, like UniProt,
that has the representation of the entity in reality

Relation detection; most of the important information in
contained within the relations between entities, NLP can be
enhanced by considering semantically possible relations
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Requirements for NLP ontologies

Domain ontology (at least a taxonomy)

Text model, concerns with classes such as sentence, text
position and locations like abstract, intorduction

Biological entities, i.e., contents for the ABox, often already
available in biological databases on the Internet

Lexical information for recognizing named entities; full names
of entities, their synonyms, common variants and misspellings,
and knowledge about naming, like endo- and -ase

Database links to connect the lexical term to the entity
represent in a particular database (the grounding step)

Entity relations; represented in the domain ontology
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MutationMiner use case

See Witte et al. book chapter for details

Ontology in OWL, in Protégé; with class name, textual
definition and example instances

Species info from the NCBI taxonomy; note the management
of central scientific name and its synonyms, common variants
and misspellings

Uniprot and use of its back-links to the NCBI taxonomy
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Discussion

Significant upfront investments due to novelty and complexity
of SWT

Benefits:

Standardizes data exchange, consolidate disparate resources
Detecting inconsistencies (caused by, e.g. a pronoun with an
incompatible relation to another textual entity)

To do: Ontological NLP, enhancing standard NLP tools to
take more of SWT into account
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Overview

Pure and applied life sciences use many diagrams

Some diagram hand drawn, but more and more with software

Come with their own ‘icon vocabulary’ and many diagrams

Exploit such informal but structured representation of
information to develop automatically (a preliminary version
of) a domain ontology

Formalize the ‘icon vocabulary’ in a suitable logic language,
choose a foundational ontology (taxonomy, relations),
categorise the formalised icons accordingly, load each diagram
into the ontology, verify with the domain expert
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Example of a PathwayAssist diagram

Figure: Node description: red: proteins, green: small molecules, orange:
functional classes, yellow: cell processes, violet: nuclear receptors. Link
description: grey dotted: regulation, violet solid: binding, yellow-green
solid: protein modification, blue solid: expression.

Kindly provided by Kristina Hettne
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PathwayAssist vocabulary

Kindly provided by Kristina Hettne
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Case study motivation

Experiment in 2005 (Keet, 2005), but progress made in ecology
(Madin et al, 2008; MTSR’09 proceedings)

Extensive use of modelling in ecology, but not much shared
(depending on sub-discipline)

Models used with independent software tools (DB and other
applications)

‘Legacy code’ (procedural), moving toward more OO, and
ontologies

Requirement for (re-)analysis to upgrade legacy SW, develop
new SW to meet increasing complexities and rising demands

use the opportunity to create a more durable, yet
computationally usable, shared, agreed upon
representation of the knowledge about reality
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Example: the Microbial Loop [Tett&Wilson04]
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Key aspects in the ecological model: Flow, Stock,
Converter, Action Connector
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Informal ‘Translation’

A Stock correspond to a noun (particular or universal)

Flow to verb

Converter to attribute related to Flow or Stock

Action Connector relates the former

Object is candidate for an Endurant

Event or activity for a method or Perdurant

Converter maps to Attribute or property

Action Connector candidate for relationship between any two
of Flow, Stock and Converter
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‘Translation’ w.r.t. DOLCE categories

Basic mapping to DOLCE categories:

∀x((Stock(x)↔ Entity(x))→ ED(x))
∀x((Flow(x)↔ Entity(x))→ PD(x))
∀x((Converter(x)↔ Entity(x))→ (Q(x) ∨ ST (x)))
∀x(ActionConnector(x , y)→ Relationship(x , y))
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DOLCE categories

241/308

RDBMSs and other ‘legacy KR’ Natural language Biological models and thesauri

ML to Microbial Loop domain ontology

Aim: to test translations with a real STELLA model

ML’s initial mapping to ontological categories contain 38
STELLA elements: 11 Stock/ED, 21 Flow/PD, 2
Converters/ST, 4 Action Connectors/Relationships

The MicrobialLoop ontology has 59 classes and 10 properties

Increase due to including DOLCE categories and implicit
knowledge of ML that is explicit in MicrobialLoop
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Example: the Microbial Loop [Tett&Wilson04]
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Section of more refined mapping to DOCLE categories

more mappings at http://www.meteck.org/supplDILS.html

244/308

RDBMSs and other ‘legacy KR’ Natural language Biological models and thesauri

Section in ezOWL
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The serialized version of the ontology (section)
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Discussion

Formalising ecological natural, functional and integrative
concepts

aids comparison of scientific theories
makes the implicit explicit, and more expressive than other
modelling practices, therefore useful:

points to ambiguous sections,
part of/extra tool for doing science,
importance ontology maintenance, comparisons

Modular, backbone or all-encompassing ontology/ies

With the mappings, a quicker bottom-up development of
ecological ontologies
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To summarize

Taxonomies insufficiently expressive compared to existing
ecological modelling techniques

Perspective of flow in ecological models cannot be represented
adequately in a taxonomy

More comprehensive semantics of formal ontologies

Formalised mapping between STELLA and ontology elements
facilitates bottom-up ontology development and has excellent
potential for semi-automated ontology development

STELLA as intermediate representation, widely used by
ecologists and is translatable to a representation usable for
ontologists
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Overview

Thesauri galore in medicine, education, agriculture, ...

Core notions of BT broader term, NT narrower term, and RT
related term (and auxiliary ones UF/USE)

E.g. the Educational Resources Information Center thesaurus:
reading ability

BT ability
RT reading
RT perception

E.g. AGROVOC of the FAO:
milk

NT cow milk
NT milk fat

How to go from this to an ontology?
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Problems

Lexicalisation of a conceptualisation

Low ontological precision

BT/NT is not the same as is a, RT can be any type of
relation: overloaded with (ambiguous) subject domain
semantics

Those relationships are used inconsistently

Lacks basic categories alike those in DOLCE and BFO (ED,
PD, SDC, etc.)
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Simple Knowledge Organisation System(s): SKOS

W3C standard intended for converting Thesauri, Classification
Schemes, Taxonomies, Subject Headings etc into one
interoperable syntax

Concept-based search instead of text-based search
Reuse each others concept definitions
Search across (institution) boundaries
Standard software

Limitations:

‘unusual’ concept schemes do not fit into SKOS (original
structure too complex)
skos:Concept without clear properties (like in OWL) and still
much subject domain semantics in the natural language text
‘semantic relations’ have little semantics (skos:narrower
does not guarantee it is is a or part of )
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A rules-as-you-go approach

A possible re-engineering procedure:

Define the ontology structure (top-level hierarchy/backbone)
Fill in values from one or more legacy Knowledge Organisation
System to the extent possible (such as: which object
properties?)
Edit manually using an ontology editor:

make existing information more precise
add new information
automation of discovered patterns (rules-as-you-go)

see (Soergel et al, 2004)
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A rules-as-you-go approach

A possible re-engineering procedure:

Define the ontology structure (top-level hierarchy/backbone)
Fill in values from one or more legacy Knowledge Organisation
System to the extent possible (such as: which object
properties?)
Edit manually using an ontology editor:

make existing information more precise
add new information
automation of discovered patterns (rules-as-you-go); e.g.
- observation: cow NT cow milk should become cow
<hasComponent> cow milk
– pattern: animal <hasComponent> milk (or, more generally
animal <hasComponent> body part)
— derive automatically: goat NT goat milk should become
goat <hasComponent> goat milk
other pattern examples, e.g., plant <growsIn> soil type and
geographical entity <spatiallyIncludedIn> geographical entity
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Summary

13 RDBMSs and other ‘legacy KR’
Example: manual and automated extractions

14 Natural language
Introduction
Ontology learning
Ontology population

15 Biological models and thesauri
Models in biology
Thesauri
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Part V

Methods and methodologies
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Outline

16 Parameters and dependencies

17 Example methods: OntoClean and Debugging
Guidance for modelling: OntoClean
Debugging ontologies

18 Methodologies and tools
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The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are many methods for ontology development, but no
up-to-date methodology
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The landscape

Multiple modelling issues in ontology development for the
applied life sciences (e.g., part-of, uncertainty, prototypes,
multilingual), methodological issues, highly specialised
knowledge

W3C’s incubator group on modelling uncertainty,
mushrooming of bio-ontologies, ontology design patterns,
W3C standard OWL, etc.

Solving the early-adopter issues moves the goal-posts

Which ontologies are reusable for one’s own ontology?
What are the consequences choosing one ontology over the
other?
The successor of OWL, draft OWL 2, has 5 languages: which
one should be used for what and when?
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Purposes

Querying data by means of an ontology (OBDA) through
linking databases to an ontology

Database integration, (GO, OBO Foundry)

Structured controlled vocabulary to link data(base) records
and navigate across databases on the Internet (‘linked data’)

Using it as part of scientific discourse and advancing research
at a faster pace, (including experimental ontologies)

Coordination among and integration of Web Services
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Purpose

Ontology in an ontology-driven information system destined
for run-time usage, e.g., in scientific workflows, MASs,
ontology-mediated data clustering, and user interaction in
e-learning

Ontologies for NLP, e.g.m annotating and querying Digital
Libraries and scientific literature, QA systems, and materials
for e-learning

As full-fledged discipline “Ontology (Science)”, where an
ontology is a formal, logic-based, representation of a scientific
theory

Tutorial ontologies, e.g., the wine and pizza ontologies
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Reusing ontologies

Foundational ontologies

Reference ontologies

Domain ontologies that have an overlap with the new
ontology;

For each of them, resource usage considerations, such as

Availability of the resource (open, copyright)
If the source is being maintained or abandoned one-off effort;
Community effort, research group, and if it has already some
adoption or usage;
Subject to standardization policies or stable releases;
If the ontology is available in the desired or required ontology
language.
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Example

image from http://www.imbi.uni-freiburg.de/ontology/biotop/
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Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;
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Languages – preliminary considerations

Depending on the purpose(s) (and available resources), one
ends up with either

(a) a large but simple ontology, i.e., mostly just a taxonomy
without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a large and elaborate ontology, which includes rich usage of
properties, defined concepts, and, roughly, requiring OWL-DL;
or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language
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Languages

Older KR languages (frames, obo, conceptual graphs, etc.)
Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL is most expressive and based on the DL language
SROIQ
OWL 2 EL fragment to achieve better performance with larger
ontologies (e.g., for use with SNOMED-CT)
OWL 2 QL fragment to achieve better performance with
ontologies linked to large amounts of data in secondary
storage (databases); e.g. DIG-QuOnto
OWL 2 RL has special features to handle rules

Extensions (probabilistic, fuzzy, temporal, etc.)

Differences between expressiveness of the ontology languages
and their trade-offs
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Reasoning services

Description logics-based reasoning services

The standard reasoning services for ontology usage:
satisfiability and consistency checking, taxonomic
classification, instance classification;
‘Non-standard’ reasoning services to facilitate ontology
development: explanation/justification, glass-box reasoning,
pin-pointing errors, least-common subsumer;
Querying functionalities, such as epistemic and (unions of)
conjunctive queries;

Ontological reasoning services (OntoClean, RBox reasoning
service)

Other technologies (e.g., Bayesian networks)
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OntoClean overview

Problem: messy taxonomies on what subsumes what

How to put them in the right order?

OntoClean provides guidelines for this (see to Guarino & Welty, 2004 for an

extended example)

Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for more information on the basics)
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Basics

A property of an entity is essential to that entity if it must be
true of it in every possible world, i.e. if it necessarily holds for
that entity.

Special form of essentiality is rigidity

Definition (+R)

A rigid property φ is a property that is essential to all its instances,
i.e., ∀xφ(x)→ �φ(x).

Definition (-R)

A non-rigid property φ is a property that is not essential to some
of its instances, i.e., ∃xφ(x) ∧ ¬�φ(x).
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Basics

Definition (∼R)

An anti-rigid property φ is a property that is not essential to all its
instances, i.e., ∀xφ(x)→ ¬�φ(x).

Definition (¬R)

A semi-rigid property φ is a property that is non-rigid but not
anti-rigid.

Anti-rigid properties cannot subsume rigid properties
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Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)
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Basics

Definition

A non-rigid property carries an IC Γ iff it is subsumed by a rigid
property carrying Γ.

Definition

A property φ supplies an IC Γ iff i) it is rigid; ii) it carries Γ; and
iii) Γ is not carried by all the properties subsuming φ. This means
that, if φ inherits different (but compatible) ICs from multiple
properties, it still counts as supplying an IC.

Any property carrying an IC: +I (-I otherwise).

Any property supplying an IC: +O (-O otherwise); “O” is a
mnemonic for “own identity”

+O implies +I and +R
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Formal ontological property classifications

 
 
 

 
+D+O +I +R -D Type 

+D-O +I +R -D Quasi-Type 

-O +I ~R +D Material role 
-O +I ~R -D Phased sortal

+D-O +I ¬R -D Mixin 

Sortal 

+D-O -I +R -D Category 

-O -I ~R +D Formal role 
~R -D 

+D-O -I 
¬R -D 

Attribution 

Non-Sortal
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Formal ontological property classifications

Sortal
Non-rigid

Mixin

Phased sortal
Caterpillar, Chrysalis, Butterfly (for Papilionoidae)

Rigid

Type
Cat, Chair

Quasi-type
Herbivore

Property

Role

Anti-rigid
Material role
Student, Food

Non-sortal

Formal role
Recipient

Attribution
Blue, Spherical

Category
Endurant, Abstract entity
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Basic rules

Given two properties, p and q, when q subsumes p the
following constraints hold:

1. If q is anti-rigid, then p must be anti-rigid
2. If q carries an IC, then p must carry the same IC
3. If q carries a UC, then p must carry the same UC
4. If q has anti-unity, then p must also have anti-unity

5. Incompatible IC’s are disjoint, and Incompatible UC’s are
disjoint

And, in shorthand:

6. +R 6⊂∼ R
7. −I 6⊂ +I
8. −U 6⊂ +U
9. +U 6⊂∼ U

10. −D 6⊂ +D
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Example: before
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Example: after
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Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that
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Overview

Using automated reasoners for ‘debugging’ ontologies,
requires one to know about reasoning services

Using standard reasoning services

New reasoning services tailored to pinpointing the errors and
explaining the entailments
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Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable
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Common errors

Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

Atomic: An individual belongs to a class and its complement
Cardinality: An individual has a max cardinality restriction but
is related to more distinct individuals
Datatype: A literal value violates the (global or local) range
restrictions on a datatype property

Basic set of clashes for KBs (ontology + instances) are:

Inconsistency of assertions about individuals, e.g., an individual
is asserted to belong to disjoint classes or has a cardinality
restriction but related to more individuals
Individuals related to unsatisfiable classes
Defects in class axioms involving nominals (owl:oneOf, if
present in the language)
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Where are we?

Parameters that affect ontology development, such as
purpose, base material, language

Methods, such as reverse engineering text mining to start,
OntoClean to improve

Tools to model, to reason, to debug, to integrate, to link to
data

Methodologies that are coarse-grained: they do not (yet)
contain all the permutations at each step, i.e. what and how
to do each step, given the recent developments;

e.g. step x is “knowledge acquisition”, but what are it
component-steps?
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Example methodology: Methontology

Basic methodology:

specification: why, what are its intended uses, who are the
prospective users
conceptualization, with intermediate representations
formalization (transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model)
implementation (represent it in an ontology language)
maintenance (corrections, updates, etc)

Additional tasks (as identified by Methontology)

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others (More comprehensive

assessment of extant methodologies in Corcho et al, 2003)
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MOdelling wiKI

MoKi is based on a SemanticWiki, which is used for
collaborative and cooperative ontology development

It enables actors with different expertise to develop an
“enterprise model”9: use both structural (formal) descriptions
and more informal and semi-formal descriptions of knowledge

⇒ access to the enterprise model at different levels of
formality: informal, semi-formal and formal

more info and demo at http://moki.fbk.eu

9
enterprise model: “a computational representation of the structure, activities, processes, information,

resources, people, behavior, goals, and constraints of a business, government, or other enterprise”
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Extending the methodologies

Methontology, MoKi, and others (e.g., On-To-Knowledge,
KACTUS approach) are for developing one single ontology

Changing landscape in ontology development towards building
“ontology networks”

Characteristics: dynamics, context, collaborative, distributed

E.g., the emerging NeOn methodology
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Extending the methodologies: NeOn

NeOn’s “Glossary of Activities” identifies and defines 55
activities when ontology networks are collaboratively built

Among others: ontology localization, -alignment,
-formalization, -diagnosis, -enrichment etc.

Divided into a matrix with “required” and “if applicable”

Embedded into a comprehensive methodology (under
development)

(more info in neon 2008 d5.4.1.pdf)
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Scenarios for Building Ontology Networks
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Tools

Thus far, no tool gives you everything

WebODE to support Methontology with a software
application
Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.
NeOn toolkit aims to be a “open source multi-platform
ontology engineering environment, which aims to provide
comprehensive support for all activities in the ontology
engineering life-cycle”; 45 plugins
RacerPro, RacerPorter. a.o.: sophisticated querying
KAON, SWOOP, etc.
Specialised tools for specific task, such as ontology integration
and evaluation (e.g. Protégé-PROMPT, ODEClean)
RDF-based ones, such as Sesame

Longer list and links to more lists of tools in the accompanying text and

references
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Reasoning scenarios
Social Aspects
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Challenges

SWT challenges or failures?

Challenge: solution to problem y not possible yet (or very
difficult to achieve) with current SWT, but in theory is
(expected to be) feasible

Failure: technology x claims to solve problem y but it does
not and will not do so, or technology x is developed for a
non-existing problem but does not solve real problems

Is y one that, at least in theory, can be solved with SWT?
Was y described too broadly, so that it solves only a subset of
the cases?
Were there perhaps additional requirements put on a solution?

Are disconnected technologies with ad-hoc patches a
challenge to solve or a failure in devising a generic suite?

A failure according to one may be considered a challenge by
another

Offer and demand, perceptions, perspectives, expectations
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Challenges

A few general issues

RDF triple stores vs. RDBMSs vs OWL ABoxes in memory;
more generally:

Making ‘legacy’ (operational) systems ‘Semantic Web
compliant’
Add a ‘wrapper’ over the legacy system so that from the
outside it looks like it uses SWT

How to integrate rules other than at instance level

Modularization

Semantics-based language transformations

Coordination among tools with different functionalities
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Language limitations considerations

Known trade-offs between expressiveness and computational
complexity

Different ontology developers and their scopes (and purposes
of the ontologies):

to some, there is more in OWL/OWL2 than needed and used
to some, there is not enough

From a logician’s perspective, language limitations are not
failures per sé, only challenges to find the more interesting
and useful combinations of features

From a modeller’s perspective, the trade-offs can be such that
it is deemed a failure with respect to the expectations and
application needs
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Which language do we need?

The (reflexive, antisymmetric, transitive) parthood relation

Each Government has as members at least 10 Ministers

A father is necessarily male

Each plane passenger boards the aircraft after having checked
in

Swedish people are very tall

The class of people who are young

Generally, birds do fly

90% of the Italians have brown eyes

Any two people are related to each other in one way or
another
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Limitations as identified by users/modellers (a.o., Schulz et al, 2009)

n-ary relations, where n > 2

“Hepatitis hasSymptom Fever in most but not all cases”

What about doing it with probabilistic default knowledge?
(ψ | φ)[l , u] as “generally, if an object belongs to φ, then it
belongs to ψ with a probability in [l , u]”
e.g., (∃hasSymptom.Fever | Hepatitis)[1, 1]

“In 2000, worldwide prevalence of diabetes mellitus was
2.8%”

Probabilistic, or arithmetic, or what have we?
First, it assumes some class Human and a class
HumanDiabetesMellitus, where some of the instances of the
former have (are bearerOf) an instance of the latter
Second, we have some notion of prevalence, but what is it
associated to (a property of)? of the human population in the
world, not a property of an individual human
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Limitations as identified by users/modellers (Schulz et al,
2009)

... Diabetes example continued

Authors’ proposal to put it in the ABox with arithmetic

operators, e.g. “ |DiabeticHuman|
|Human| = 0.028”

Another option: put in TBox with a data property, e.g.,
HumanDiabetesMellitus v ∃hasPrevalence.real
Yet another: represent the probability of a human having
diabetes mellitus
What are the pros and cons of each option w.r.t. subject
domain semantics, Ontology, and the ontology languages?

Problems with Drug Abuse Prevention (in SNOMED CT)

DrugAbusePrevention v Procedure u ∃hasFocus.DrugAbuse
DrugAbusePrevention ≡ Procedure u ∃hasParticipant.Person u
∃causes.(State u hasParticipant.(Person u ∃participatesIn.¬
DrugAbuse))
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Challenges

Limitations as identified by users/modellers (Schulz et al,
2009)

“Concussion of the brain without loss of consciousness”, and
the temporal aspects

“aspirin prevents myocardial infarction”

Let us assume that is total prevention (though we could add a
probability to it)
This only holds for humans actually ingesting aspirin, not for
the substance itself
It then intends to say that the human taking aspirin will not
have a myocardial infarction at all times in the future, which
can be represented in a suitable temporal logic with the �+

e.g., AspirinIntake v �+prevents.MyocardialInfarction, or
MyocardialInfarction v �+preventedBy.AspirinIntake, or
AspirinIntake v
�+hasPhysiologicalEffect.¬MyocardialInfarction ?

302/308

Challenges

Introduction on reasoning scenarios

The standard reasoning services are obviously sorted out

Performance issues for the ‘debugging’ and explanation
reasoning, and how to provide the ‘best’ explanation

Querying OWL 2 DL, and any ABox data

Additional reasoning scenarios with ‘standard’ ontologies

Reasoning over fuzzy, rough, probabilistic, possibilistic, time,
.... ontologies and data
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Scenarios

1. Supporting the ontology development process

2. Classification

3. Model checking (violation)

4. Finding gaps in an ontology & discovering new relations

Deriving types and relations from instance-level data
Computing derived relations at the type level

5. Comparison of two ontologies ([logical] theories)

6. Reasoning with part-whole relations

7. Using (including finding inconsistencies in) a hierarchy of
relations

8. Reasoning across linked ontologies

9. Complex queries
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Checking against instances

Usual model checking

Model checking against real instances in the ABox/Database

For each DL-concept in the OWL-formalised ontology
(representing a universal), there has to be at least one ABox
instance (as representation of the entity in reality)
To spot “redundant” DL-concepts w.r.t. the data-needs

Model violation

Reducing the amount of instances to only those that do not
violate the TBox (or: the more inconsistencies, the better)
For instance, to find a few candidate molecules that satisfy a
given set of properties, out of a large pool of possibly suitable
molecules; e.g., for drug discovery in pharmainformatics, tyre
production
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Challenges

Discovering information

The idea is that the combination of bio-ontologies, instances,
and automated reasoning services somehow can find either the
missing relations, or the types, or both

How can one find what is, or may, not be in the ontology but
ought to be there?

At the TBox-level

computing derived relations (object properties)
find out where relations that are known by the developer have
not yet been added to the ontology (finding ‘known gaps’)
add ‘ontological’ notions with top type ‘whole’ in a partonomy;
e.g., 17 types of macrophage in the FMA each must be part of
something
flag classes that have no relation (no or no is a) to anything
else in the ontology
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Challenges

Discovering information
For the TBox through querying the data (ABox, RDBMS)

i. “for each x:X, y:Y, r :R, XRY, does there exist a z:Z, s:S , such
that there exist ≥ 1 x and xsz?”

ii. “for each x:X, y:Y, r :R, XRY, does there exist an xsz and an
xta where z:Z, s:S , a:A, t:T hold?”

iii. Find-me-anything-you-have: “for each x:X, return any r1, ...rn,
their type of role and the concepts Y1, ...Yn they are related
to”

X Y

Z

R

S
X Y

ZA

R

ST?

X'
?

X …

…

R1

?
R2

…
Ri

Y?

Rj

(i) (ii) (iii)
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Challenges

Building ontologies involves humans

Building an ontology is, generally, an interdisciplinary
(transdisciplinary?) endeavour

Different disciplines with different mores, goals

The collaboration requires patience, respect, capability to
listen, compromise

More slides in a separate file, time permitting
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