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Preface

These lecture notes for the Ontology Engineering course (at the University of Cape
Town, South Africa) are structured in the order of teaching the module for a 4th year
BSc(honours) in Computer Science. This 10-credit course covers Block I and Block II;
the third block (advanced topics) will not be covered, and has not been updated in v1.2
and v1.2.1 of the lecture notes.

Given that the field is in flux, much new material is becoming available rapidly, so
these notes will be updated regularly. I have written these notes under time constraints;
hence, a note of caution: these lecture notes are a work in progress and feedback is
welcome. A bright side of it being an active field of research and technology development
is that you will become acquainted with the forefront of computing—instead of the more
common relatively ‘established’ knowledge of your undergraduate courses—which will put
you at a competitive advantage and give you a head-start especially if you plan to find
a job after graduating with the BSc(hons). The, perhaps downside, is that, at the time
of writing, there is no text book yet that fills the gap between undergraduate and PhD-
student & researcher-level handbooks and scientific articles in logic-based ontologies,
so you will have make do with these notes, the slides, lectures that provide further
explanation, exercises with answers, and you will have to learn to read several of those
scientific articles.

The contents of these lecture notes are themselves updated versions of material I de-
veloped for the EMCL Semantic Web Technologies course I taught at the Free University
of Bozen-Bolzano, Italy, in 2009,subsequent syllabi for the Ontology Engineering courses
at the University of Havana and University of Computer Science, Cuba, and at the Mas-
ters Ontology Winter School 2010, South Africa, and the COMP718/720 notes of 2012
and 2013 at UKZN, and the OE honours course at UCT. Some contents of these lecture
notes, or accompanying slides used in the lectures, or associated exercises are adapted
from slides or tutorials made by other people, and I would like to thank them for hav-
ing made that material available for use and reuse. They are (in alphabetic order) Jos
de Bruijn, Diego Calvanese, Nicola Guarino, Matthew Horridge, Ian Horrocks, Markus
Krotzsch, Lina Lubyte, Tommie Meyer, Mariano Rodriguez-Muro, Sebastian Rudolph,
Frantisek Simancik, and David Toman.

Cape Town, South Africa C. Maria Keet
January, 2015.
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Course Outline

0.1

Aims and Synopsis

The principal aim of this module is to provide the participant with a comprehensive
overview of ontology engineering. A secondary aim is to provide hands-on experience in
ontology development and Semantic Web Technologies that illustrate the theory, such as
language features, automated reasoning, and top-down and bottom-up ontology devel-
opment.

This module covers material such that, upon completion, the student:

(i)
(i)

has a general understanding of the notion of what ontologies and knowledge bases
are, what they can be used for, how, and when not;

has obtained an understanding of the, currently, main ontology languages—OWL
and its underlying Description Logics languages—in order to represent the knowl-
edge in ontologies formally and to reason over them, and have a basic understanding
of what the automated reasoner does;

can confidently use an Ontology Development Environment;

can confidently use methods and methodologies to develop ontologies, including
the top-down approach with foundational ontologies and bottom-up using non-
ontological resources such as relational databases, natural language or thesauri;
and

has become acquainted with several major applications and application scenarios,
such as the Semantic Web, and has had a taste of the research trends in the field.

Interwoven in the module’s aims is skills development for the students’ BSc(honours)
project. The students will become familiar with reading scientific literature and will gain
experience in report writing and presenting their work to their peers.

0.2

Module assessment

The final mark for the module will be based on three categories of assessment:
e A test (exam) at the end of the course [50%]
e One intermediate practical assignment [15%]

The assignment has to be handed in by the end of week x (exact date to be
communicated when the lecture schedule is set); details of the assignment will be
communicated separately.

e Mini-project due at the end of the course [30%)]

X



X Course Outline

The topics you can choose from will be communicated in the first week of
commencement of the lectures; you must have chosen a topic in the second week
(earlier is better, and first-come-first-serve) (exact date to be communicated when
the lecture schedule is set)

e Contribution to the OE Semantic Wiki [5%]

Note: Something has to be submitted for the test (exam), practical assignment, and mini-
project in order to have a chance to pass the course. Contributing to the OE Semantic
Wiki is not compulsory but highly recommended.

0.3 Course material

The course material consists of:

e These lecture notes;

e Lecture slides posted on the course’s Vula site (the slides are a lecture aid, not a
summary of the contents);

e Reading material for the lectures: the lecture notes (relevant chapter/section to be
read before the lecture), and the papers, book chapters, standardization documen-
tation that are listed at the end of each chapter.

e Material for the chosen mini-project (some are already listed in the bibliography,
and additional ones or will be made available depending on the chosen project
topic).

The slides and reading material will be made available through the course’s Vula site.
Some material in the slides and what will pass the revue during the lecture has not been
integrated in these lecture notes yet (and not everything described in the lecture notes
appear in the slides), so one is not a substitute for the other.

0.4 Course content

Note: each “lecture” is a double lecture, and this is a rough indication of the schedule.

1. Lecture 1: Introduction. The introductory lecture addresses differences between
databases and knowledge bases, conceptual data models and ontologies, what an
ontology is (and is not), and a prominent application area, being the Semantic Web.

2. Block 1: Logic foundations for ontologies

(a) Lecture 2: FOL recap and tableaur. The first part of the lecture will be
a recap of the basics of first order predicate logic, introduce the notion of
model-theoretic semantics, and how to formalise knowledge based on natural
language and diagrams. The second part introduces reasoning over a logical
theory, and tableaux in particular.

(b) Lecture 3: Description Logics and OWL. This lecture is devoted to the basics of
Description Logics (DLs, a family of languages that are decidable fragments of
FOL and lie at the basis of most ‘species’ of the World Wide Web consortium’s
standardised Web Ontology Language OWL), and we will start introducing
OWL 2 features.
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()

Lecture 4: OWL 2 and Automated Reasoning. We continue with OWL 2, and
its profiles will be discussed. In addition, we take a look at the principal auto-
mated reasoning services for (OWL) ontologies, such as satisfiability checking
and classification.

3. Block 2: Ontology engineering

(a)

Lecture 5: Methods and Methodologies. This lecture takes a closer look at pa-
rameters for ontology design, methods (such as OntoClean, glassbox reason-
ing) and tools, and more comprehensive methodologies (Methontology, MoKi,
NeOn methodology).

Lecture 6: Top-down Ontology Development 1. One step of ontology develop-
ment is the use of foundational ontologies and their formalisations (on paper
in FOL, in OWL DL, Isabelle). In particular, we shall look at the DOLCE and
BFO foundational ontologies, and commence with a core relation in ontology
development, being part-whole relations.

Lecture 7: Top-down Ontology Development II. We continue with part-whole
relations and add the notions ontology design patterns and ontology reuse.

Lecture 8: Bottom-up Ontology Development. In addition to starting from
‘above’, one can reusing legacy material to generate candidate classes and
relations to speed up populating an ontology. In particular, we will look at
relational databases, thesauri (including SKOS), and natural language pro-
cessing.

4. Block 3: Advanced Topics

Note: we will not cover this material, but is made available for your perusal.

(a)

Lectures x and y: ‘Ontology’/Conceptual Model-based Data Access. Due to
various usage scenarios, there is a need to maintain the link between the data
and the knowledge, such as in scientific workflows or in silico biology and
enhanced user and content management in e-learning applications. This can
be done in one knowledge base or to connect a database to an ontology (or
vv.) so that one can query the database ‘intelligently’ through the ontology by
availing of its classes, object properties and axioms. In these two lectures, we
will start with a motivation and an overview of one such system (WONDER),
which relies on the DL-Lite family of DL languages (roughly OWL 2 QL), a
mapping layer, and a relational database. We then shall look at its technical
details as well as the principal options for reaslising such a system.

Lecture z: Temporal ontologies. There are various extensions to the ‘basic’
ontology languages and reasoning services, such as vagueness, uncertainty,
and the temporal dimension. In this lecture we cover a temporal DL and
some of the modelling issues it solves.

5. Block 4: Recap and Miniprojects

(a)

Lecture 9: QOverflow, Recap, and Research trends. Time permitting (or on
request), we take a look as some research trends, where we will take a selec-
tion from any of the following topics: modularization, dealing with imprecise
knowledge (fuzzy/rough), interaction with conceptual data modelling, multi-
lingual ontologies, or ‘debugging’ ontologies (glass-box reasoning).



xii Course Outline

(b) Mini-project Presentations. Pending scheduling, each group will present the
outcome of their chosen mini-project and discuss it in class, and everyone must
attend the lecture and participate in the presentation and discussions.



CHAPTER 1

Introduction

This chapter introduces ontologies: what they are (roughly), what they are used for, and
describes a few success stories where they have been instrumental at solving problems.
Where and how an ontology can solve problems is not of the variety “when you have
only a hammer, everything looks like a nail”, but where the use of an ontology was the
solution to a particular problem, or at least an essential ingredient. A warning upfront:
some paragraphs may sound a bit ‘esoteric’, and lots of new terms are introduced in this
chapter that are fleshed out in much more detail only in subsequent chapters. Therefore,
it is probably useful to revisit this chapter later—and don’t be put off if it is not all clear
and raises many questions now!

A very short and informal way of clarifying what “an ontology” in computing is, is

that it is a file containing structured knowledge about a particular subject domain, and
this file is used as a component of a so-called ‘intelligent’ information system. Fancy
marketing talk may speak of some of those ontology-driven information systems
as “like a database on steroids!”. Ontologies have been, and are being, used to solve
data integration problems by providing the common, agreed-upon vocabulary which is
then used in a way so that the software understands that, say, an entity Student of a
relational database DB; actually means the same thing as AdvancedlLearners in some
application software OQOs. Tools can then be developed to link up those two applica-
tions and exchange information. Over time, people invented other ways to use ontologies
and contribute to solving different problems. For instance, a question-answering system
that lets the scientist chat with a library chatterbot to find relevant literature in agri-
culture (compared to imprecise string and rigid keyword matching), automatically find
a few theoretically feasible candidate rubber molecules out of very many (compared to
painstaking trial-and-error work in the laboratory), and automated discovery of a new
enzyme (outperforming the human experts!).

In the next section (Section 1.1), we have a quick peek at what an ontology—the
artefact—looks like, and proceed to the more and less pedantic viewpoints of defining
what an ontology is (Section 1.2). Sections 1.3 and 1.4 provide a flavour of the usefulness
and some success stories of ontologies.
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1.1 What does an ontology look like?

The actual artefact can appear in many formats that are tailored to the intended ‘user’,
but at the heart of it, is a logic-based representation. Let us take as example the African
Wildlife Ontology (AWO), which is a so-called ‘tutorial ontology’ that will return in the
exercises. The AWO contains knowledge about wildlife, such as that giraffes eat leaves
and twigs, that they are herbivores, that herbivores are animals, and so on.

A mathematician may prefer to represent such knowledge with first order predicate
logic. For instance:

Va(Lion(x) — Vy(eats(z,y) N Herbivore(y)) A 3z(eats(z, z) A Impala)) (1.1)

that states that “all lions eat herbivores, and they also eat impalas”. Thus, this axiom
could be one of the axioms in the ontology. One can represent the same knowledge also
in logics other than some plain vanilla first order logic; e.g., in a Description Logic
language, we have the same knowledge formally represented as:

Lion C Veats.Herbivore M Jeats.Impala (1.2)

A domain expert, however, typically will prefer a more user-friendly rendering, such as
an automatically generated (pseudo) natural language rendering, e.g.:

Each lion eats only herbivore and eats some Impala
where the first “V’ in equation 1.1 is verbalised as Each, the “A” as and, and the “3”
as some. Pseudo-natural language is also called ‘controlled natural language’ because it
uses only a specific subset of a complete natural language. Another option is to use a
graphical language, as shown in Figure 1.1.

* o Impala
IIIIEHHHHEIII

Figure 1.1: Screenshot of the lion eating only herbivores and at least some impala (with the
OntoGraf plugin in Protégé 4.x).

* o animal [ | lion

Remember that an ontology is an engineering artefact that has to have a machine-
processable format that faithfully adheres to the logic. None of these representations are
easily computer-processable, however. To this end, there are serialisations of the ontol-
ogy that are easily computer-processable; the most popular one is the Web Ontology
language OWL, which actually consists of several languages and has several machine-
processable formats. Some of those serialisations are still for human consumption (sort
of), others are definitely not designed with human readability in mind, but really for
computers and the tools that use ontologies. A machine-processable version of the class
lion in the RDF /XML format looks as follows:

<owl:Class rdf:about="&AfricanWildlifeOntologyl;lion">
<rdfs:subClassOf rdf:resource="&AfricanWildlifeOntologyl;animal"/>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&AfricanWildlifeOntologyl;eats"/>
<owl:someValuesFrom rdf:resource="&ontologies;AfricanWildlifeOntology2.owl#Impala"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
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<owl:Restriction>
<owl:onProperty rdf:resource="&AfricanWildlifeOntologyl;eats"/>
<owl:allValuesFrom rdf:resource="&AfricanWildlifeOntologyl;herbivore"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:comment>Lions are animals that eat only herbivores.</rdfs:comment>
</owl:Class>

where the “V” from equation 1.1 is serialised as owl:allValuesFrom, the “J” is serialised
as owl:someValuesFrom, and the subclassing (“—” and “C”) as rdfs:subClass0f. You
typically will not have to write an ontology in RDF /XML format. As a computer scien-
tist, you may design tools that will have to process or modify such machine-processable
ontology files (though even there, there are tool development toolkits and APIs that cover
many tasks). For the design of an ontology, there are ontology development environments
that render the ontology graphically, textually, or with an logic view!. A screenshot of
one such tool, Protégé, is included in Figure 1.2. We will use mainly Protégé in the
course.

| ® O AfricanWildlifeOntology2 (http://www.meteck.org/teaching/ontologies/AfricanWildlifeOntology2.owl) - [/Users/mariak...

[<a]= [ @ AfricanWildlifeOntology2 i ®q

[ Active Ontology = Entities Classes | Object Properties = Data Properties = Individuals =~ OWLViz = DL Query = OntoGraf ]

[ Class hierarchy | Class hierarchy {inferred) ] [ Annotations | Usage ]
l:l:ll:l Annotations

animal
Impala
Ompnivore
RockDassie
Warthog
carnivore
giraffe i
herbivore | Equivalent classes m
|
!

comment
“Lions are animals that eat only herbivores.”

plant
CarnivorousPlant
Grass animal

Palmtree eats only herbivore
tasty-plant
trap

Superclasses

eats some Impala 4

4

To use the reasoner click Reasoner- >5tart reasoner E Show Inferences .

Figure 1.2: Screenshot of the lion eating only herbivores and at least some impala in the Protégé
ontology development environment.

1.2 What is an ontology?

Note: You may prefer to read this section again later on in the course, when we are well
into Block II. Try to read it now anyway, but if it’s not clear upon the first read, then
don’t worry, as it will become clearer as we go along.

To place “ontologies” in its right context, the first two questions one has to ask and
answer are:

e What is an ontology?

LODE tools have lots of other features, which you will use in the exercises
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e What is it good for? (or: what problems does it solve?)

In order to arrive at the answers, let us first compare it with some artefacts you are
already familiar with: relational databases and conceptual data models such as EER and
UML.

It is sometimes stated that “knowledge bases are more powerful relational databases”,
but that does not explain what the ‘umph’ is that offer the additional features. A down
to earth comparison between relational databases and knowledge bases reveals that,
unlike RDBMSs, knowledge bases include the representation of the knowledge explicitly,
by having rules included, by using automated reasoning (beyond plain queries) to infer
new or implicit knowledge and detect inconsistencies of the knowledge base, and they
usually operate under the Open World Assumption?.

An important distinction between conceptual data models and ontologies is that a
conceptual data model provides an application-specific implementation-independent rep-
resentation of the data that will be handled by the prospective application, whereas
(domain) ontologies provide an application-independent representation of a specific sub-
ject domain (in principle, regardless the particular application). From this distinction
follow further differences regarding their contents—in theory at least—to which we shall
return to later in the module. Looking at actual ontologies and conceptual data models,
the former is normally formalised in a logic language, whereas conceptual modelling is
more about drawing the boxes and lines informally?, and they are used differently and
serve different purposes.

This informal brief comparison gives a vague idea of what an ontology might be, but
it does not get us closer to a definition of what an ontology is. There is no unanimously
agreed-upon definition what an ontology is and definitions that have been proposed within
computer science have changed over the past 20 years (this will be discussed during the
lecture). The most quoted (but problematic!) definition is the following one by Tom
Gruber:

Definition 1.1 (by [Gruber, 1993]). An ontology is a specification of a conceptualization.

You may see this quote especially in older scientific literature on ontologies, but it has
been superseded by other, more precise ones. Gruber’s definition is unsatisfactory for
several reasons: what is a “conceptualization” exactly, and what is a “specification”? A
proposed refinement to address these two questions is the following one:

Definition 1.2 (by [Studer et al., 1998]). An ontology is a formal, explicit specification
of a shared conceptualization.

However, this still leaves us with the questions as to what a “conceptualization” is and
what a “formal, explicit specification” is. And why—and how—“shared”? A compre-
hensive definition is given in Guarino’s landmark paper on ontologies [Guarino, 1998]
(revisited in [Guarino et al., 2009]):

Definition 1.3 (by [Guarino, 1998]). An ontology is a logical theory accounting for the
intended meaning of a formal vocabulary, i.e. its ontological commitment to a particular
conceptualization of the world. The intended models of a logical language using such a
vocabulary are constrained by its ontological commitment. An ontology indirectly reflects
this commitment (and the underlying conceptualization) by approximating these intended
models.

2ys. Closed World Assumption in a relational database setting. We return to the OWA and CWA
later

3though one surely can provide formal foundations for conceptual data models (e.g.,
[Artale et al., 2007a, Berardi et al., 2005, Keet, 2013])
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To some, this a mouthful and too wieldy, and a simpler definition is given by the devel-
opers of the World Wide Web Consortium’s standardised ontology language OWL:

Definition 1.4 (by [Horrocks et al., 2003]). an ontology being equivalent to a Description
Logic knowledge base*.

That last definition has a different issue, and is unduly restrictive, because 1) it surely
is possible to have an ontology that is represented in another logic language (OBO for-
mat, Common Logic, etc.) and 2) then formalising a thesaurus as a “Description Logic
knowledge base” (i.e., in OWL) also ends up as a simple ‘light-weight ontology’ (e.g., the
NCI thesaurus® as cancer ‘ontology’®) and a conceptual data model in EER or UML that
is translated into OWL becomes an ‘application ontology’ or ‘operational ontology’ by
virtue of it being formalised in OWL. But, as we saw above, there are differences between
the two.

An alternative approach to the issue of definitions was taken in the 2007 Ontolog
Communiqué’, where its participants and authors made a collection of things drawn
into diagram to express ‘things that have to do with an ontology’; this is depicted in
Figure 1.3. It is intended as a “Template for discourse” about ontologies, which has a
brief® and longer? explanation of the text in the labeled ovals.

A broader scope of the ontological level is also described in [Guarino, 2009], and a
more recent overview about definitions of “an ontology” versus Ontology in philosophy
can be found in [Guarino et al., 2009], which refines in a step-wise and more precise
fashion Studer et al’s [Studer et al., 1998] and Guarino’s [Guarino, 1998] definition (Def-
initions 1.2 and 1.3, above).

For better or worse, currently, and in the context of the most prominent application
area of ontologies—the Semantic Web—the tendency is toward it being equivalent to
a logical theory, and a Description Logics knowledge base in particular (Definition 1.4).
Ontologist at least frown when someone calls ‘a thesaurus in OWL’ or ‘an ER diagram in
OWL’ ontologies, but even aside from that: the blurring of the distinctions between the
different artefacts is problematic for various reasons, and one should note the fact that
just because something is represented in OWL does not make it an ontology, just as that
something that is represented in a language other than OWL may well be an ontology.

Orthogonally, there are discussions about what is actually represented in an ontology,
i.e., its contents, from a philosophical perspective. Philosophers are in the picture because
the term ‘ontology’ is taken from philosophy, where it has a millennia-old history, and one
uses insights emanating from philosophy when developing good ontologies. When we refer
to that philosophical notion, we use Ontology, with a capital ‘0’, and it does not have a
plural. One debate is about ontology as a representation of a conceptualization—roughly:
things you are thinking of—and as a representation of reality. Practically, whether that is
a relevant topic depends on the subject domain for which you would be developing an on-
tology. If you represent formally the knowledge about, say, malaria infections, you would
better represent the (best approximation of) reality, being the current state of scientific
knowledge, not some divergent political or religious opinion about it, because the wrong
representation can lead to wrong inferences, and therewith wrong treatments that are ei-
ther ineffective or even harmful. Conversely, there are subject domains where it does not

4Note: we will go into some detail of OWL and Description Logics in Chapters 3 and 4.

*http://ncit.nci.nih.gov/

Shttp://www.mindswap.org/2003/CancerOntology/ncilncology. owl

"http://ontolog.cim3.net/cgi-bin/wiki.pl?0ntologySummit2007_Communique

8http://ontolog.cim3.net/cgi-bin/wiki.pl?0ntologySummit2007_FrameworksForConsideration/
DimensionsMap

“http://ontolog.cim3.net/cgi-bin/wiki.pl?0ntologySummit2007_Communique
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Figure 1.3: The OntologySummit2007’s “Dimension map”.

really matter much whether you represent reality or a conceptualization thereof, or some-
thing independent of whether that exists in reality or not, or even certainly does not exist
in reality. We will discuss some of the pros and cons of these views in the lecture; a recent,
longer, debate can be found in [Merrill, 2010a, Merrill, 2010b, Smith and Ceusters, 2010].
Merrill [Merrill, 2010a] provides several useful clarifications. First, there is an “Empiri-
cist Doctrine” where “the terms of science... are to be taken to refer to actually existing
entities in the real world”, such as Jacaranda tree, HIV infection and so forth, which are
considered mind-independent, because (roughly) HIV infections occurred also without
humans thinking of it, knowing how it worked, and naming those events HIV infections.
This is in contrast with the “conceptualist view according to which such terms refer to
concepts (which are taken to be psychological or abstract formal entities of one sort or
another)”, with concepts considered to be mind-dependent entities; prototypical exam-
ples of such mind-dependent entities are Phlogiston and Unicorn—there are no objects
in the world as we know it that are phlogiston or unicorns, only our outdate theories
and fairy tale stories, respectively, about them. Second, the “Universalist Doctrine”,
which asserts “that the so-called “general terms” of science” (HIV infection etc.) “are
to be understood as referring directly to universals’, with universals being “a class of
mind independent entities, usually contrasted with individuals, postulated to ground and
explain relations of qualitative identity and resemblance among individuals. Individuals
are said to be similar in virtue of sharing universals.” [MacLeod and Rubenstein, 2005].
However, philosophers do not agree on the point whether universals exist, and even if
they exist, what kind of things they are. This brings the inquiring person to metaphysics,
which, perhaps, is not necessarily crucial in building ontologies that are to serve infor-
mation systems; e.g., it need not be relevant for developing an ontology about viruses
whilst adhering to the empiricist doctrine. The philosophically inclined reader may wish
to go a step further and read about interactions between Ontology and metaphysics



1.3. What is the usefulness of an ontology? 7

[Varzi, 2012].

1.3 What is the usefulness of an ontology?

Ontologies for information systems were first proposed to contribute to solving the issues
with data integration: an ontology provides the common vocabulary for the applica-
tions that is at one level of abstraction higher up than conceptual data models such as
EER diagrams and UML Class Diagrams. Over the years, it has been used also for other
purposes. We start with two distinct scenarios of data integration where ontologies play a
central role, and subsequently describe other scenarios where ontologies are an important
part of the solution.

1.3.1 Data and information system integration

Figure 1.4 sketches the idea of the ontology-driven schema-based and conceptual data
model-based data integration and Figure 1.6 shows an example of data-level data inte-
gration that we shall elaborate on in the next two subsections.

Integrating legacy systems. In the setting of ontology-driven schema-based and
conceptual data model-based data integration, a typical situation is as follows. You have
several databases in the same topic; e.g., this was the case when UDW and UND merged
into UKZN: each university had its own database with information about students, yet,
as UKZN, there had to be one single database to manage the data of all students. This
meant that the two databases had to be integrated somehow. A similar situation occurs
oftentimes in industry, especially due to mergers and acquisitions, in government due
to the drive for e-Government services to the citizens of the country, or attempting to
develop a software system for integrated service delivery, as well as in healthcare due to a
drive for electronic health records that need to combine various systems, say, a laboratory
database with the doctor’s database, among other scenarios.

While the topic of data integration deserves its own course, we focus here only on the
ontology-driven aspect. Let us assume we have the relational databases and therewith at
least their respective physical schemas, and possibly also the relational model and even
the respective conceptual models, and also some object-oriented application software on
top of the relational database. Their corresponding conceptual data models are tailored
to the RDBMS/OO application and may or may not be modelled in the same conceptual
data modelling language; e.g., one could be in EER, another on ORM, in MADS, in
UML and so forth. The example in Figure 1.4 is a sketch of such a situation about
information systems of flower shops, where at the bottom of the figure we have two
databases and one application that has been coded in C4++. In the layer above that,
there is a section of their respective conceptual data models: we have one in EER with
bubble-notation, one in ORM, and one UML Class Diagram. Each conceptual data model
has “Flower” and “Colour” included in some way: in the UML Class diagram, the colour
is an attribute of the flower, i.e., Color — Flower x String (that actually uses only the
values of the Pantone System) and similarly in the EER diagram (but then without the
data type), and in the ORM diagram the colour is a value type (unary predicate) Colour
with an additional relation to the associated datatype colour region in the spectrum.
Clearly, the notion of the flower and its colour is the same throughout, even though it is
represented differently in the conceptual data model and in the implementations. It is
here that the ontology comes into play, for it is the place to assert exactly that underlying,
agreed-upon notion. It enables one to assert that:
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Figure 1.4: Sketch of an ontology-based application integration scenario. Bottom: different
implementations, such as relational databases and OO software; Centre: conceptual data models
tailored to the application; Top: a domain ontology that provides a shared common vocabulary
for interoperability among the applications. See text for explanation.
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e EER’s, ORM’s and UML diagram’s Flower ‘means’ Flower in the domain ontol-
ogy'?, which is indicated with the red dashed arrows.

e EER’s and ORM’s Colour and UML’s Color denote the same kind of thing, albeit
at one time it is represented as a unary predicate (in ORM) and other times it is a
binary relation with a data type, i.e., an attribute. Their ‘mappings’ to the entity
in the ontology (green dashed arrows), Colour, indicates that agreement.

e There is no agreement among the conceptual models when it comes to the data
type used in the application, yet they may be mapped into their respective notion
in an ontology (blue dashed arrows). For instance, the Colour Region for the values
of the colour(s) in the colour spectrum is a Physical Region, and one might say
that the PantoneSystem of colour encoding is an Abstract Region.

The figure does not include names of relationships in the conceptual data model, but
they obviously can be named at will; e.g., hasColour in the ORM diagram. FEither way,
there is, from an ontological perspective, a specific type of relation between the class
and its attribute: one of dependency or inherence (roughly: that specific colour instance
depends on the existence of the flower: if that particular flower does not exist, then that
specific instance of it does not exist). An ontology can provide those generic relations,
too. In the sketch, this happens to be the gt relationship between enduring objects (like
flowers) and the qualities they have (like their colour), and from the quality to the value
regions (more precisely: qualia), the relation is called ¢l in Figure 1.4.

Although having established such links does not complete the data integration, it is

the crucial step—the rest has become, by now, largely an engineering exercise.

Generation of conceptual models for related new systems (preventing interop-
erability problems). Instead of a data integration scenario from existing applications,
one also can start with an ontology, and take it from there to develop various concep-
tual data models for specific applications [El-Ghalayini et al., 2006, Jarrar et al., 2003,
Sugumaran and Storey, 2006], a bit like the Enterprise Models you may have come across
in information system design. In this way, interoperability is guaranteed upfront because
of the shared elements in the new conceptual data models. For instance, a parthood re-
lation between objects—as is depicted in Figure 1.5—or a participation relation between
an object and a process (e.g., a surfer participates in a surfing event) is reused in the con-
ceptual data model. Either way, the ontology provides a shared common vocabulary for
interoperability among the applications. The orchestration of the principal components
will be described in more detail during the lecture, given that this is still an important
usage area. We will see more about contents of the ontologies, including foundational
ontologies, later on in the course.

Data-level data integration. While in computer science the aforementioned two ap-
proaches to data integration was under investigation, domain experts in molecular bi-
ology needed a quick and practical solution to the data integration problem urgently.
Having noticed the idea of ontologies, they came up with another approach, being in-
teroperability at the instance-level, tuple-by-tuple, or even cell-by-cell, and that with
multiple databases over the Internet instead of the typical scenario of RDBMSs within
an organisation. This is done with lightweight ontologies, or structured controlled
vocabularies. The basic idea is illustrated in Figure 1.6. There are multiple databases,
which in the figure are the KEGG and InterPro databases. In the KEGG database,

Othat in this case is linked to a foundational ontology, DOLCE, and there it is a subclass of a Non-
Agentive Physical Object; we return to this in Block IT
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Ontology: UML Class Diagram 1: | A |1—’| B |
UML Class Diagram 2: w*—’ B
SSN: String
A B Age: Integer
AN :

proper part of UML Class Diagram n:

Figure 1.5: Basic illustration of taking information from an ontology and using it for several
conceptual data models (here: UML Class Diagrams), where the constraints may be refined or
attributes added, yet sharing the semantics of A, B, proper part of, and that A is a proper part of
B.

there is a tuple with as key K01834 and it has several attributes (columns in the table
in the relational database), such as the name (gpmA), and further down in the display
there is an attribute Other DBs, which has as entry G0:0004619; i.e., there is a tuple
in the table along the line of (K01834, ..., GO:0004619). In the InterPro database, we
have a similar story but then for the entity with the key IPR005995, where there is a
section “GO Term Annotation” with an attribute function that has GO:0004619; i.e., a
tuple (IPR005995, ..., GO:0004619). That is, the two clearly distinct tuples—each with
their separate identifier from a different identifier scheme, with different attributes, one
physically stored in a database in Japan and the other in the USA—actually talk about
the same thing: G0O:0004619, or: Phosphoglycerate Mutase Activity.

The “G0:0004619” is an identifier for a third artefact: a class in the Gene Ontology
(GO) [Gene Ontology Consortium, 2000]. The GO is a structured controlled vocabulary
that contains the classes and their relationship that the domain experts agree upon
(over 20000 entities by now). The curators of the two databases each annotated their
entity with a GO term, and thereby they assert they have to do with that same thing,
and therewith have created an entity-level linking and interoperability through the GO.
Practically, on top of that, these fields are hyperlinked (in the soft copy: blue text in
KEGG and green underlined text in the screenshot of the InterPro entry), so that a
vast network of data-level interlinked databases has been created. Also the GO term
is hyperlinked to the GO file online, and in this way, you can browse from database to
database availing of the terms in the ontology without actually realising they are wholly
different databases, but instead appear like one vast network of knowledge.

There are many more such ontologies, and several thousand databases that are con-
nected in this way, not only thanks to ontologies, but where the ontology serves as the
essential ingredient to the data integration. Some scientific journals require the authors
even to use those terms from the ontologies when they write about their discoveries, so
that one more easily can find papers about the same entity!!.

1.3.2 Ontologies as part of a solution to other problems

Over the years, ontologies have been shown to be useful in a myriad of other application
scenarios; among others, negotiation between software services, mediation between soft-
ware agents, bringing more quality criteria into conceptual data modelling to develop a
better model (hence, a better quality software system), orchestrating the components in

1Tt used to be a sport among geneticists to come up with cool names for the genes they discovered
(e.g., “Sonic hedgehog”); when a gene was independently recovered, each research team typically had
given the gene a different name, which can end up as a Tower of Babel of its own that hampers progress
in science.
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with a web-based front-end, and each database has its data (each tuple in the database,

where possible) annotated with a term from the Gene Ontology.
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Figure 1.6
InterPro
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semantic scientific workflows, e-learning, ontology-based data access, top-k information
retrieval, management of digital libraries, improving the accuracy of question answer-
ing systems, and annotation and analysis of electronic health records. Some of these
applications will pass the revue later in the module and three are briefly illustrated in
this section. Note, however, that this does not mean that ontologies are the panacea for
everything, and some ontologies are better suitable to solve one or some of the problems,
but not others. Put differently, it is prudent to keep one’s approach to engineering: con-
duct a problem analysis first, collect the requirements and goals, and then assess if an
ontology indeed is part of the solution or not. If it is part of the solution, then we enter
in the area of ontology engineering.

e-Learning

The ‘old-fashioned’ way of e-learning is a so-called content-push: the lecturer sends out
softcopies of the notes, slides, answers to the solutions, and perhaps the video record-
ings of the lectures, and the student consumes it. This is a one-size-fits-all approach
regardless the student’s background with acquired knowledge and skills, and learning
preferences and habits, which cannot be assumed to be homogeneous in an e-learning
setting, or at least much less so than with respect to your fellow students in the ontology
engineering class. A more sophisticated way for e-learning is adaptive e-learning, which
tailors the contents to the student based on prior knowledge and learning habits. To
be able to automatically tailor the offering to the student, one has to develop a ‘smart’
e-learning application that can figure out what kind of student is enrolled. Put differ-
ently: students have certain properties (part-time/full-time student, age, undergraduate
degree, etc.), the learning objects have to be annotated (by skill level and topic), and
user logs have to be categorised according to type of learning pattern, and based on
that the material and presentation can be adjusted, like skipping the section on first
order logic and delve deeper into, or spend more time on, ontology engineering and
modelling if you have a mathematics background, whereas a philosopher may crave for
more content about foundational ontologies but skip reverse engineering of relational
databases, or offer a student more exercises on a topic s/he had difficulties with. This
requires knowledge representation—of the study material, questions, answers—and
automated reasoning to classify usage pattern and student, and annotated content,
i.e., using ontologies and knowledge bases to make it work solidly and in a repeatable
way. See, e.g., [Henze et al., 2004] as a start for more details on this topic.

Deep question answering

Watson'? is a sophisticated question answering engine that finds answers to trivia/gen-
eral knowledge questions for the Jeopardy! TV quiz that, in the end, did consistently
outperform the human experts of the game. For instance, a question could be “who is
the president of South Africa?’: we need algorithms to parse the question, such as that
‘who’ indicates the answer has to be a person and a named entity, it needs to be capable
to detect that South Africa is a country and what a country is, and so on, and then have
some kind of a look-up service in knowledge bases and/or natural language documents
to somehow find the answer by relating ‘president’, ‘South Africa’ and ‘Jacob Zuma’ and
that he is the current president of the country. An ontology can then be used in the
algorithms of both the understanding of the question and finding the right answer'® and

2http://en.wikipedia.org/wiki/Watson_(computer)
130n a much more modest scale, as well as easier accessible and shorter, Vila and Ferrdndez describe
this principle and demonstrated benefits for their Spanish language based question-asnwering system in
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integrating data sources and knowledge, alongside natural language processing, statistical
analysis and so on, with the ‘and so on’ comprising more than 100 different techniques'?.
Thus, a key aspect of the system’s development was that one cannot go in a linear fash-
ion from natural language to knowledge management, but have to use an integration of

various technologies, including ontologies, to make a successful tool.

Semantic Scientific Workflows

Due to the increase in a variety of equipment, their speed, and decreasing price, scientists
are generating more data than ever, and are collaborating more. This data has to be
analysed and managed. In the early days, and, to some extent, to this day, many one-off
little tools were developed, or simply scripted together with PERL or Ruby on Rails,
used once or a few times and then left for what it was. This greatly hampers repeata-
bility of experiments, insight in the provenance of the data, and does not quite follow a
methodological approach for so-called in silico biology research. Over the past 10 years,
comprehensive software and hardware infrastructures have been, and are being, built
to fix these and related problems. Those IT ‘workbenches’ (as opposed to the physical
ones in the labs) are realised in semantic scientific workflow systems. An example of
the virtual bench is Taverna [Goble et al., 2007]. This, in turn can be extended further;
e.g., to incorporate data mining in the workflow, as depicted in Figure 1.7. This contains
ontologies of both the subject domain where it is used as well as ontologies about data
mining itself that serve to find appropriate models, algorithms, datasets, and tools for
the task at hand, depicted in Figure 1.8. Thus, we have a large software system—the
virtual workbench—to facilitate scientists to do their work, and some of the components
are ontologies for integration and data analysis across the pipeline.
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Figure 1.7: Overview of the architecture of the e-Laboratory for Interdisciplinary Collaborative
Data Mining (Source: http://www.e-1lico.eu/?q=node/17).

the agricultural domain [Vila and Ferrdndez, 2009].
Y£tp://public.dhe.ibm.com/common/ssi/ecm/en/pow03061usen/POWO3061USEN . PDF
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Figure 1.8: The data mining and application layers of the e-Laboratory for Interdisciplinary
Collaborative Data Mining (Source: http://www.e-lico.eu/?q=node/17).

1.4 Success stories

To be able to talk about successes of ontologies, and its incarnation with Semantic Web
Technologies in particular, one first needs to establish when something can be deemed
a success, when it is a challenge, and when it is an outright failure. Such measures
can be devised in an absolute sense—compare technology x with an ontology-mediated
one: does it outperform on measure y?—and relative—to whom is technology x deemed
successful? During the lecture, we will illustrate some of the successes, whereas challenges
are deferred to later on in the course.

A major success story of the development and use of ontologies for data linking
and integration is the Gene Ontology [Gene Ontology Consortium, 2000], its offspring,
and subsequent coordinated evolution of ontologies [Smith et al., 2007] within the OBO
Foundry Project'®. These frontrunners from the Gene Ontology Consortium and their
colleagues in bioinformatics were adopters of some of the Semantic Web ideas even be-
fore Berners-Lee, Hendler, and Lassila wrote their Scientific American paper in 2001
[Berners-Lee et al., 2001], even though they did not formulate their needs and intentions
in the same terminology: they did want to have shared, controlled vocabularies with
the same syntax to facilitate data integration—or at least interoperability—across Web-
accessible databases, have a common space for identifiers, it needing to be a dynamic,
changing system, to organize and query incomplete biological knowledge, and, albeit not
stated explicitly, it all still needed to be highly scalable [Gene Ontology Consortium, 2000].
That is, bioinformaticians and domain experts in genomics already organized themselves
together in the Gene Ontology Consortium'®, which was set up officially in 1998, to re-
alize a solution for these requirements. The results exceeded anyone’s expectations in
its success for a range of reasons. Many tools for the Gene Ontology (GO) and its com-
mon Knowledge Representation format, .obo, have been developed, and other research

http://www.obofoundry.org/
http: //www.geneontology . org/
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groups adopted the approach to develop controlled vocabularies either by extending the
GO, e.g., rice traits, or adding their own subject domain, such as zebrafish anatomy and
mouse developmental stages. This proliferation, as well as the OWL development and
standardization process that was going on at about the same time, pushed the goal posts
further: new expectations were put on the GO and its siblings and on their tools, and
the proliferation had become a bit too wieldy to keep a good overview what was going
on and how those ontologies would be put together. Put differently, some people noticed
the inferencing possibilities that can be obtained from moving from a representation in
obo to one in OWL and others thought that some coordination among all those obo bio-
ontologies would be advantageous given that post-hoc integration of ontologies of related
and overlapping subject domains is not easy. Thus came into being the OBO Foundry
to solve such issues, proposing an approach for coordinated evolution of ontologies to
support biomedical data integration [Smith et al., 2007].

People in related disciplines, such as ecology, have taken on board experiences of these
very early adopters, and instead decided to jump on board after the OWL standardiza-
tion. They, however, were not only motivated by data(base) integration. Referring to
Madin et al’s paper [Madin et al., 2008], I highlight three points they made: “terminolog-
ical ambiguity slows scientific progress, leads to redundant research efforts, and ultimately
impedes advances towards a unified foundation for ecological science”, i.e., identification
of some serious problems they have in ecological research; “Formal ontologies provide a
mechanism to address the drawbacks of terminological ambiguity in ecology”, i.e., what
they expect that ontologies will solve for them (disambiguation); and “and fill an impor-
tant gap in the management of ecological data by facilitating powerful data discovery
based on rigorously defined, scientifically meaningful terms”, i.e., for what purpose they
want to use ontologies and any associated computation (discovery using automated rea-
soning). That is, ontologies not as a—one of many possible—‘tool’ in the engineering
infrastructure, but as a required part of a method in the scientific investigation that aims
to discover new information and knowledge about nature (i.e., in answering the who,
what, where, when, and how things are the way they are in nature). Success in inferring
novel biological knowledge has been achieved with classification of protein phosphatases
[Wolstencroft et al., 2007], precisely thanks to the expressive ontology and its automated

reasoning services!”.

1.5 Outline and usage of the lecture notes

The preceding sections already indicated several aspect would return “later in the course”.
These lecture notes are ordered according to the course outline, but they do not neces-
sarily have to be in that order.

The first option, that we will follow, is to commence with a recap of First Order Pred-
icate Logic regarding the formalisation, and add the notion of model-theoretic semantics
(what it all ‘means’, formally). Full FOL is undecidable, but there are less expressive
languages, i.e., fragments of FOL, that are decidable!® for a set of important problems
in computing in the area of ontologies and knowledge bases. One such family of lan-
guages is the Description Logics (DL) family of languages. These two topics are covered
in Chapter 2 and Chapter 3, respectively. Several DLs, in turn, form the basis of the
W3C standardized Web Ontology Language OWL (actually, a family of languages, too).

Y"What they did, and how, will be described later in the course
18The principle advantage of having a decidable language to represent the knowledge, is that it is more
amenable to computation and use in software
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OWL specifies a computer-processable serialisation of the ontology and knowledge base,
and interacts with the automated reasoners for OWL. OWL and the so-called standard
reasoning services are summarised in Chapter 4.

After these logic foundations in Block I, we shall look at how one can develop an
ontology. The first approach is a so-called ‘top-down’ approach, where we use founda-
tional ontologies with the high-level categories and relationship to get us started with
the principal choices and the modelling; this is covered in Chapter 6. However, design-
ing an ontology from scratch is rather cumbersome, and much information already has
been represented in various ways—natural language, conceptual data models, etc.—so,
one can speed up ontology development also by somehow reusing those ‘legacy’ sources,
which is described briefly in Chapter 7. Both approaches, however, are just that—mnot
a ‘cookbook recipe’ for ontology development—and there exist interdependencies, meth-
ods, tools, and methodologies that help structure and carry out the activities, which is
described in Chapter 5, therewith concluding Block II.

Blocks I and IT form the foundations of ontology engineering (at an introductory level),
and the topics that follow afterward deepen and extend that material. In one direction,
you may wish to explore further some quite involved theory and technology to realise a
practical ontology-driven information system, being querying databases by means of an
ontology, which is the topic of Chapter 8. In a different direction are fancy extensions
to the standard ontology languages, of which the temporal dimension is mentioned in
Chapter 9.3, and uncertain & fuzzy in the extra topics in Chapter 9.

People not attending this module but who would like to go at their own pace through
the material, also can start with Block II, and do Chapters 6, 7, and 5, or first Chapter 5
and then 6 and 7. Depending on one’s background, one can study Chapters 2, 3, and 4,
i.e., Block I, after Block II—unless one’s knowledge of logic is a bit rusty or limited. In
any case, both the material of Block I and Block II are prerequisites for Block III, ad-
vanced topics. Within Block III, Chapters 8, 9.3, and 9 can be done in order of preference.

This is the third version of the lecture notes, and due to time constraints, not every-
thing that should have been in the notes made it into the notes (hence, don’t take it as a
textbook on ontologies at this stage). This is the case in particular at the instances where
it mentions “we will cover this in more detail during the lecture”—which we will do, and
the lecture content and its slides are also part of the examinable course content. If you
do not attend the lectures and do not do the exercises, you are unlikely to pass the course.

As you will see, there are many references in the bibliography. You are not expected to
read all of them; instead, each chapter has a “Literature and reference material” section
with required and recommended reading. The large reference list may be useful especially
for the practical assignment (Appendix A) and the mini-project (Appendix B): there are
very many more references in computer science conference proceedings and journals,
but the ones listed, first, in the “literature and reference material” and, second, in the
bibliography, will give you a useful ‘entry point’ or may even suffice, depending on the
chosen topics. As some of the scientific papers are a bit hard to read, or you may like to
read up on some more general or more detailed material, I have listed several handbooks
at the end of the bibliography, starting on page 166.

1.6 Exercises

The following exercises are of an exploratory nature.



1.7.

1.7

Literature and reference material 17

. There are several terms in the preceding sections that were highlighted in bold in

the text. Find them, and describe them in your own words.

. If you would like to get a practical ‘feel’ of ontologies and how they look like in an

ontology development environment, you can run the Protégé ontology development
environment installed on the lab PCs and play with the pizza ontology and its
tutorial (see Vula for details) or load the AWO; if not now, you will have to do it
later anyway.

. In this year’s instalment, we also will also set up and populate a Semantic Wiki.

More detail about this will be communicated during the first lecture.

Literature and reference material

. Berners-Lee, Tim; James Hendler and Ora Lassila. The Semantic Web. Scientific

American Magazine, May 17, 2001. http://www.sciam.com/article.cfm?id=
the-semantic-web&print=true

. Nicola Guarino, Daniel Oberle, and Steffen Staab. What Is An Ontology? In: S.

Staab and R. Studer, Handbook on Ontologies, Chapter 6. Springer. 2009. ppl-17.

. Guarino, N. Formal Ontology in Information Systems. Proceedings of FOIS’98,

Trento, Italy, June 6-8, 1998. I0S Press, Amsterdam, pp. 3-15






Part 1

Logic foundations for ontologies

19






CHAPTER 2

First Order Logic recap

Although perhaps more foundations in ontologies is useful before delving into how to rep-
resent what you want to represent, having a basic grasp of logic-based ontology languages
also can help understanding the ontologies and ontology engineering better. Therefore,
we shall refresh the basics of first order logic in Section 2.1 (comprehensive introductions
can be found elsewhere, e.g., [Hedman, 2004]), which is followed by a general idea of
(automated) reasoning and two examples of tableau reasoning in Section 2.2.

2.1 First order logic syntax and semantics

Observe that logic is not the study of truth, but of the relationship between the truth of
one statement and that of another. That is, in logic, we do not care whether a statement
like “If angels exist then necessarily all of them fit on the head of a needle” (suitably
formalised) is indeed true in reality!, but if the if-part were true (resp., false), then what
does that say about the truth value of the then-part of the statement? And likewise for
a whole bunch of such sentences. Others do care what is represented formally with such
a logic language, but we will defer that to Block II of the course.

To be able to study those aspects of logic, we need a language that is unambiguous;
natural language is not. You may have encountered propositional logic already, and first
order predicate logic (FOL) is an ‘extension’ of that, which enables us to represent more
knowledge in more detail. Here, I will give only a brief glimpse of it. Eventually, you
will need to be able to recognise, understand, and be able to formalise at least a little
bit in FOL. Of all the definitions that will follow shortly, there are four important ideas
to grasp: the syntaz of a language, the model-theoretic semantics of a language, what a
theory means in the context of logic, and the notion of deduction where we apply some
rules to what we have represented to derive knowledge that was implicitly represented.

First, there are two principal components to consider for the language:

e Syntax, which has to do with what ‘things’ (symbols, notations) can we use in the

language; there is/are a(n):
— Alphabet
— Languages constructs
— Sentences to assert knowledge

Lor, for that matter, whether there is a reality and whether we have access to it

21
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e Semantics
— Formal meaning, which has to do what those sentences with the alphabet and
constructs actual are supposed to mean.

2.1.1 Syntax

The lexicon of a first order language contains the following:

e Connectives and Parentheses: -, —, <>, A, V, (‘and );
Quantifiers: V (universal) and 3 (existential);

e Variables: z,y, z, ... ranging over particulars (individual objects);

e Constants: a,b,c, ... representing a specific element;

e Functions: f,g,h, ..., with arguments listed as f(x1,...x,);

e Relations: R, .S, ... with an associated arity.
There is an (countably infinite) supply of symbols (signature): Variables, Functions,
Constants, and Relations.

In other words: we can use these things to create ‘sentences’, like we have in natural
language, but then controlled and with a few extra figurines. Let us look first at how we
can formalise a natural language sentence into first order logic.

Example 2.1. From Natural Language to First order logic (or vv.) Consider
the following three sentences:

- “Each animal is an organism”

- “All animals are organisms”

- “If it is an animal then it is an organism”
This can be formalised as:

Vz(Animal(x) — Organism(zx)) (2.1)

(there’s some explanation about this in the slides). Instead of talking about all objects
of a particular type, we also can assert there are at least some of them; e.g.,
- “Aliens exist”
could be formalised as
Jz Alien(x) (2.2)

and
- “There are books that are heavy”
(well, at least one of them is) as:

Jz(Book(z) N heavy(x)) (2.3)

A sentence—or, more precisely, its meaning—such as “Each student must be registered
for a degree programme” requires a bit more consideration. There are at least two ways
to say the same thing (we leave the arguments for and against each option for another
time):
i) Vx,y(registered_for(xz,y) — Student(x) A DegreeProgramme(y))
“if there is a registered_for relation, then the first object is a student and the
second one a degree programme”
Vz(Student(x) — Jy registered_for(z,y))
“Each student is registered for at least one 3", where the y is a degree programme
(taken from the first axiom)
ii) Va(Student(z) — Jy (registered_for(z,y) A DegreeProgramme(y)))
“’Each student is registered for at least one degree programme’
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But all this is still just syntax (it does not say what it really means), and it looks like
a ‘free for all’ on how we can use these symbols. This is, in fact, not the case, and
the remainder of the definitions will make this more precise, which will be illustrated in
Example 2.2 afterward.

Terms: A term is inductively defined by two rules, being:
e Every variable and constant is a term.
e if f is a m-ary function and ¢1,...t,, are terms, then f(¢1,...,t,,) is also a term.

Definition 2.1. (Atomic formula) An atomic formula is a formula that has the form
t1 =t2 or R(ty,...,t,) where R is an n-ary relation and ty, ..., t, are terms.

Definition 2.2. (Formula) A string of symbols is a formula of FOL if and only if it is
constructed from atomic formulas by repeated applications of rules R1, R2, and RS3.

R1. If ¢ is a formula then so is —¢.
R2. If ¢ and 1) are formulas then so is ¢ A .
R3. If ¢ is a formula then so is Jz¢ for any variable x.

A free variable of a formula ¢ is that variable occurring in ¢ that is not quantified. We
then can introduce the definition of sentence.

Definition 2.3. (Sentence) A sentence of FOL is a formula having no free variables.

2.1.2 Semantics

Whether a sentence is true or not depends on the underlying set and the interpretation of
the function, constant, and relation symbols. To this end, we have structures: a structure
consists of an underlying set together with an interpretation of functions, constants, and
relations. Given a sentence ¢ and a structure M, M models ¢ means that the sentence
¢ is true with respect to M. More precisely,

Definition 2.4. (Vocabulary) A vocabulary V is a set of function, relation, and con-
stant symbols.

Definition 2.5. (V-structure) A V-structure consists of a non-empty underlying set
A along with an interpretation of V. An interpretation of V assigns an element of A to
each constant in V, a function from A™ to A to each n-ary function in V, and a subset
of A™ to each n-ary relation in V. We say M is a structure if it is a V-structure of some
vocabulary V.

Definition 2.6. (V-formula) Let V be a vocabulary. A V-formula is a formula in which
every function, relation, and constant is in V. A V-sentence is a V-formula that is a
sentence.

Note: When we say that M models ¢, denoted with M = ¢, this is with respect to
M being a V-structure and V-sentence ¢ is true in M.

Model theory: the interplay between M and a set of first-order sentences 7 (M), which is
called the theory of M, and its ‘inverse’ from a set of sentences I' to a class of structures.

Definition 2.7. (Theory of M) For any V-structure M, the theory of M, denoted with
T (M), is the set of all V-sentences ¢ such that M = ¢.
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Student is an entity type.
DegreeProgramme is an entity type.
Student attends DegreeProgramme.

Each Student attends exactly one DegreeProgramme.

It is possible that more than one Student attends the same DegreeProgramme.
OR, in the negative:

For each Student, it is impossible that that Student attends more than one
DegreeProgramme.

It is impossible that any Student attends no DegreeProgramme.

attends
J | I { DegreeProgramme J
el Attends Tl
Student DegreeProgramme
John Computer Science
Mary Design
Fabio Design
Claudio Computer Science
Markus Biology
Inge Computer Science

Figure 2.1: A theory denoted in ORM notation, ORM verbalization, and some data in the
database. See Example 2.2 for details.

Definition 2.8. (Model) For any set of V-sentences, a model of I" is a V-structure
that models each sentence in T'. The class of all models of T is denoted by M(T).

Now we can go to the interesting notions: theory in the context of logic:

Definition 2.9. (Complete V-theory) Let I' be a set of V-sentences. Then T is a
complete V-theory if, for any V-sentence ¢ either ¢ or —¢ is in I' and it is not the case
that both ¢ and —¢ are in T.

It can then be shown that for any V-structure M, T (M) is a complete V-theory (for
proof, see e.g. [Hedman, 2004], p90).

Definition 2.10. A set of sentences I is said to be consistent if no contradiction can be
derived from T.

Definition 2.11. (Theory) A theory is a consistent set of sentences.

The latter two definitions are particularly relevant later on when we look at the typ-
ical reasoning services for ontologies.

Example 2.2. How does this work out in practice? Let us take something quasi-familiar:
a conceptual data model in Object-Role Modeling notation, depicted in the bottom-half
of Figure 2.1 (the top-half is its ‘verbalisation’ in a controlled natural language).

First, we consider it as a theory, creating a logical reconstruction of the icons in
the figure. There is one binary predicate, attends, and there are two unary predicates,
Student and DegreeProgramme. The binary predicate is typed, i.e., its domain and range
are defined, hence:

Vz,y(attends(z,y) — Student(z) A\ DegreeProgramme(y)) (2.4)

Note that x and y quantify over the whole axiom (thanks to the brackets), hence, there
are no free variables, hence, it is a sentence. There are two constraints in the figure: the
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blob and the line over part of the rectangle, and, textually, “Each Student attends exactly
one DegreeProgramme” and “It is possible that more than one Student attends the same
DegreeProgramme”. The first constraint can be formalised (in short-hand notation):

Va(Student(x) — 3=y attends(z,y)) (2.5)

So, our vocabulary is {attends, Student, Degree Programme}, and we have two sentences
(Eq. 2.4 and Eq. 2.5). The sentences form the theory, as they are not contradicting and
admit a model.
Let us now consider the structure. We have a non-empty underlying set:

A = {John, Mary, Fabio, Claudia, M arkus, Inge, ComputerScience, Biology, Design}.
The interpretation then maps the instances in A with the elements in our vocabulary; that
is, we end up with {John, Mary, Fabio, Claudio, Markus, Inge} as objects in Student,
and likewise for Degree Programme and the binary attends. Observe that this structure
does not contradict the constraints of our sentences.

Equivalences With the syntax and semantics, several equivalencies between formu-
lae can be proven. We list them for easy reference, with a few ‘informal reading’ for
illustration. ¢, v, and x are formulas.

e Commutativity:

PANP=Y NG
PV =9y Vo
P =9Y o

e Associativity:
(OAP)AX =AW AX)
(pVY)VXx=0V (YVX) // just like it doesn’t matter for subtraction
e Idempotence:
SAG=0
OV =0 //‘itself or itself is itself’
e Absorption:
PA(pV ) =9
PV (pNAY)=¢
e Distributivity:
@V (WAX)=(@VY)A(PVX)
(6N (V)= (BAY)V (HAX)
e Double negation:
e De Morgan:
~($AY) = ¢V
(¢ V) = ¢ N //negation of a disjunction implies the negation of each of
the disjuncts’
e Implication:
6 =0V
e Tautology:
pVT =T
e Unsatisfiability:
oNL =1
e Negation:
PAN-p= 1 //something cannot be both true and false
OV -p=T
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e Neutrality:

PNT =0
oVLI=¢
e Quantifiers:
—Vz.¢p = Jz.—¢
—dz.¢ = Vr.m¢ //‘if there does not exist some, then there’s always none’

Vr.p AVxap =Va.(d A1)

Az.¢V Izap = (P V)

(Vx.0) Np =Vax.(¢p A) if x is not free in ¢

(Vx.p) Vip =Va.(¢ V) if z is not free in ¢

(Fx.0) ANp = Fx.(¢ A ) if x is not free in ¢

(3x.¢) Vi =Jx.(¢p V) if x is not free in ¢
Note: The ones up to (but excluding) the quantifiers hold for both propositional logic
and first order predicate logic.

2.2 Reasoning

Having a logic language with a semantics is one thing, but, oftentimes, it is a means
to an end rather than an end in itself. From the computational angle—especially from
a logician’s perspective—the really interesting aspect of having such a language and
(someone else) having gone through formalising some subject domain, is to reason over
it. Here, we are not talking about making a truth table, which is way too costly when one
has to analyse many sentences, but deploying other techniques so that it can be scaled
up compared to the manual efforts. Automated reasoning, then, concerns computing
systems that automate the ability to make inferences by designing a formal language
in which a problem’s assumptions and conclusion can be written and providing correct
algorithms to solve the problem with a computer in an efficient way.

To this end some terminology has to be introduced first, using the notion of “formula”
that was introduced in the previous section:

e A formula is valid if it holds under every assignment. = ¢ to denote this. A valid

formula is called a tautology.
e A formula is satisfiable if it holds under some assignment.
e A formula is unsatisfiable if it holds under no assignment. An unsatisfiable formula
is called a contradiction.

How does one find out whether a formula is valid or not? How do we find out whether
our knowledge base is satisfiable? The main proof technique for DL-based ontologies
is tableaux, although there are several others. (Note: the remainder of Section 2.2 are
amended versions of my “Reasoning, automated” essay and related definitions that has
been published in Springer’s Encyclopedia of Systems Biology.)

2.2.1 Introduction
Characteristics

People employ reasoning informally by taking a set of premises and somehow arriving
at a conclusion, i.e., it is entailed by the premises (deduction), arriving at a hypothesis
(abduction), or generalizing from facts to an assumption (induction). Mathematicians
and computer scientists developed ways to capture this formally with logic languages to
represent the knowledge and rules that may be applied to the axioms so that one can
construct a formal proof that the conclusion can be derived from the premises. This can
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be done by hand [Solow, 2005] for small theories, but this does not scale up when one
has, say, 80 or more axioms even though there are much larger theories that require a
formal analysis, such as checking that the theory can indeed have a model and thus does
not contradict itself. To this end, much work has gone into automating reasoning. The
remainder of this section introduces briefly several of the many purposes and usages of
automated reasoning, its limitations, and types of automated reasoners.

Purposes

Automated reasoning, and deduction in particular, has found applications in ‘every day
life’. A notable example is hardware and (critical) software verification, which gained
prominence after Intel had shipped its Pentium processors with a floating point unit
error in 1994 that lost the company about $500 million. Since then, chips are routinely
automatically proven to function correctly according to specification before taken into
production. A different scenario is scheduling problems at schools to find an optimal
combination of course, lecturer, and timing for the class or degree program, which used
to take a summer to do manually, but can now be computed in a fraction of it using
constraint programming. In addition to such general applications domains, it is also
used for specific scenarios, such as the demonstration of discovering (more precisely:
deriving) novel knowledge about protein phosphatases by Wolstencroft and coauthors
[Wolstencroft et al., 2007]. They represented the knowledge about the subject domain of
protein phosphatases in humans in a formal bio-ontology and classified the enzymes of
both human and the fungus Aspergillus fumigatus using an automated reasoner, which
showed that (i) the reasoner was as good as human expert classification, (ii) it identified
additional p-domains (an aspect of the phosphatases) so that the human-originated clas-
sification could be refined, and (iii) it identified a novel type of calcineurin phosphatase
like in other pathogenic fungi. The fact that one can use an automated reasoner (in
this case: deduction, using a Description Logics knowledge base) as a viable method in
science is an encouragement to explore such avenues further.

Limitations

While many advances have been made in specific application areas, the main limitation
of the implementations are due to the computational complexity of the chosen represen-
tation language and the desired automated reasoning services. This is being addressed
by implementations of optimizations of the algorithms or by limiting the expressiveness
of the language, or both. One family of logics that focus principally on computationally
well-behaved languages is Description Logics, which are decidable fragments of first or-
der logic [Baader et al., 2008]; that is, they are languages such that the corresponding
reasoning services are guaranteed to terminate with an answer. Description Logics form
the basis of most of the Web Ontology Languages OWL and OWL 2 and are gaining
increasing importance in the Semantic Web applications area. Giving up expressiveness,
however, does lead to criticism from the modelers community, as a computationally nice
language may not have the features deemed necessary to represent the subject domain
adequately.

Tools

There are many tools for automated reasoning, which differ in which language they
accept, the reasoning services they provide, and, with that, the purpose they aim to
serve.
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There are, among others, generic first- and higher order logic theorem provers (e.g.,
Prover9, MACE4, Vampire, HOL4), SAT solvers that compute if there is a model for
the formal theory (e.g., GRASP, Satz), Constraint Satisfaction Programming for solv-
ing, e.g., scheduling problems and reasoning with soft constraints (e.g., Eclipse), DL
reasoners that are used for reasoning over OWL ontologies using deductive reasoning
to compute satisfiability, consistency, and perform taxonomic and instance classification
(e.g., Fact++, RacerPro, Hermit, CEL, QuOnto), and inductive logic programming tools
(e.g., PROGOL and Aleph).

2.2.2 Basic idea

Essential to automated reasoning are

i. The choice of the class of problems the software program has to solve, such as
checking the consistency of a theory (i.e., there are no contradictions) or computing
a classification hierarchy of concepts subsuming one another based on the properties
represented in the logical theory;

ii. The formal language in which to represent the problems, which may have more
or less features to represent the subject domain knowledge, such as cardinality
constraints (e.g., a member of the Arachnids has as part exactly eight legs), prob-
abilities, or temporal knowledge (e.g., that a butterfly is a transformation of a
caterpillar);

iii. The way how the program has to compute the solution, such as using natural de-
duction or resolution; and

iv. How to do this efficiently, be this achieved through constraining the language into
one of low complexity, or optimizing the algorithms to compute the solution, or
both.

Concerning the first item, with a problem being, e.g., “is my theory is consistent?”,
then the problem’s assumptions are the axioms in the logical theory and the problem’s
conclusion that is computed by the automated reasoner is a “yes” or a “no” (provided
the language in which the assumptions are represented is decidable and thus guaranteed
to terminate with an answer). With respect to how this is done (item iii), two properties
are important for the calculus used: soundness and completeness (T F 1 if and only
if M | ). If it is incomplete, then there exist entailments that cannot be computed
(hence, ‘missing’ some results), if it is unsound then false conclusions can be derived from
true premises, which his even more undesirable. An example is included in Section 2.2.4
proving the validity of a formula (the class of the problem) in propositional logic (the
formal language) using tableau reasoning (the way how to compute the solution) with
the Tree Proof Generator? (the automated reasoner), and more detail, with reflection,
and other techniques can be found in, among others, [Portoraro, 2010].

2.2.3 Deduction, Abduction, Induction
Deduction

Deduction is a way to ascertain if a theory T represented in a logic language entails an
axiom « that is not explicitly asserted in T' (written as T' = «), i.e., a can be derived from
the premises through repeated application of deduction rules. For instance, a theory that
states that “each Arachnid has as part 8 legs” and “each Tarantula is an Arachnid” then
one can deduce—it is entailed in the theory—that “Each Tarantula has as part 8 legs”.

2http://www.umsu.de/logik/trees/
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An example is included below, which formally demonstrates that a formula is entailed in
a theory T using said rules.

Thus, strictly speaking, a deduction does not reveal novel knowledge, but only that
what was already represented implicitly in the theory. Nevertheless, with large theories,
it is often difficult to oversee all implications of the represented knowledge and, hence,
the deductions may be perceived as novel from a domain expert perspective, such as
with the example about the protein phosphatases. (This is in contrast to Abduction
and Induction, where the reasoner ‘guesses’ knowledge that is not already entailed in the
theory.)

Mechanisms for deductions There are various ways how to ascertain T' = «, be it
manually or automatically. One can construct a step-by-step proof ‘forward’ from the
premises by applying the deduction rules or prove it indirectly such that 7'U {—a} must
lead to a contradiction. The former approach is called natural deduction, whereas the
latter is based on techniques such as resolution, matrix connection methods, and sequent
deduction (which includes tableauz).

Concerning deduction rules for tableaux and first order predicate logic formulae, we
have, as with the example in Section 2.2.4, the two deduction rules that if a model satisfies
a conjunction, then it also satisfies each of the conjuncts, which is written as follows:

PAY

¢

(0
and if a model satisfies a disjunction, then it also satisfies one of the disjuncts

AR

oY
In addition, there are two rules for the quantified formulas. First, if a model satisfies a
universally quantified formula (V), then it also satisfies the formula where the quantified
variable has been substituted with some term (and the prescription is to use all the terms
which appear in the tableaux),

V.o

/1)

V.o
and, second, for an existentially quantified formula, if a model satisfies it, then it also
satisfies the formula where the quantified variable has been substituted with a new Skolem
constant,

dx.¢
p{X/a}

Example 2.3. Let us take some arbitrary theory 7' that contains two axioms stat-
ing that relation R is reflexive (Vz(R(z,x)), a thing relates to itself) and asymmetric
(Va,y(R(z,y) — —R(y,z)), if a thing a relates to b through relation R, then b does
not relate back to a). We then can deduce, among others, that T'U {—Vz,y(R(z,y))} is
satisfiable. We do this by demonstrating that the negation of the axiom is unsatisfiable.
To enter the tableau, we first rewrite the asymmetry into a disjunction using equiva-
lences, i.e., V,y(R(x,y) — —R(y,x)) is equivalent to Va,y(—R(z,y) V R(y,x)), and add
a negation to {—Vz,y(R(x,y))}, which thus becomes Vz,y(R(z,y)). Then, to start the
tableau, we have three axioms (1, 2, 3) and the full tableau as in Figure 2.2. {
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Number Tableau Explanation
1 Yx.R(x,x) Reflexivity axiom in the original theory T
2 Yx,y. =R(x,y) v =R(y.x) Asymmetry axiom in the original theory T
3 Yx,y.R(x,y) The negated axiom added to theory T
4 Substitute x for term ain 1,2,3
5 R(a,a)
6 Yy. =R(a,y) v -R(y,a)
7 Vy.R(a.y)
8 Substitute y fortermain 2 and 3
9 R(a.a)
10 -R(a,a) v -R(a,a)
11 R(a.a)
12 Split the disjunction of 10
13 -R(a,a) -R(a,a) Which each generate a clash with 9 and 11,
hence, -Vx,y.R(x,y) is entailed by T.
Figure 2.2: Tableau example (using notation with a “.” not the brackets).
Abduction

Compared to deduction, there is less permeation of automated reasoning for abduc-
tion. From a scientist’s perspective, automation of abduction may seem appealing, be-
cause it would help one generate a hypothesis based on the facts put into the reasoner
[Aliseda, 2004]. Practically, it has been used for, for instance, fault detection: given the
knowledge about a system and the observed defective state, find the likely fault in the
system. To formally capture theory with assumptions and facts and find the conclusion,
several approaches have been proposed, each with their specific application areas; for in-
stance, sequent calculus, belief revision, probabilistic abductive reasoning, and Bayesian
networks.

Induction

Induction allows one to arrive at a conclusion that actually may be false even though
the premises are true. The premises provide a degree of support so as to infer a as an
explanation of b. Such a ‘degree’ can be based on probabilities (a statistical syllogism) or
analogy. For instance, we have a premise that “The proportion of bacteria that acquire
genes through horizontal gene transfer is 95%” and the fact that “Staphylococcus aureus is
a bacterium”, then we induce that the probability that S. aureus acquires genes through
horizontal gene transfer is 95%. Induction by analogy is weaker version of reasoning,
in particular in logic-based systems, and yields very different answers than deduction.
For instance, let us encode that some instance, Tibbles, is a cat and we know that all
cats have the properties of having a tail, four legs, and are furry. When we encode that
another animal, Tib, who happens to have four legs and is also furry, then by inductive
reasoning by analogy, we conclude that Tib is also a cat, even though in reality it may
well be an instance of cheetah. On the other hand, by deductive reasoning, Tib will not
be classified as being an instance of cat (but may be an instance of a superclass of cats
(e.g., still within the suborder Feliformia), provided that the superclass has declared that
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all instances have four legs and are furry. Given that humans do perform such reasoning,
there are attempts to mimic this process in software applications, most notably in the
area of machine learning and inductive logic programming. The principal approach with
inductive logic programming is to take as input positive examples + negative examples
+ background knowledge and then derive a hypothesized logic program that entails all
the positive and none of the negative examples.

2.2.4 Proof

A proof is a convincing argument expressed in the language of mathematics.

Example 2.4. A sample computation to prove automatically whether the propositional
formula ((pV (g AT)) = ((pV g A(pVr)) is valid or not is included in Figure 2.3
and Figure 2.4, using tableau reasoning (see Deduction, Section 2.2.3). The tableau
method is a decision procedure that checks the existence of a model (i.e., that it can
be instantiated). It exhaustively looks at all the possibilities, so that it can eventually
prove that no model could be found for unsatisfiable formulas (if it is satisfiable, we have
found a counterexample). This is done by decomposing the formula in top-down fashion
after it has been translated into Negation Normal Form (i.e., all the negations have been
pushed inside), which can be achieved using equivalences. Further, if a model satisfies a
conjunction, then it also satisfies each of the conjuncts (“A”), and if a model satisfies a
disjunction (“V”), then it also satisfies one of the disjuncts (this is a non-deterministic rule
and it generates two alternative branches). Last, one has to apply these completion rules
until either (a) an explicit contradiction is obtained due to the presence of two opposite
literals in a node (a clash) is generated in each branch, or (b) there is a completed branch
where no more rule is applicable. <

Tree Proof Generator 207 (2012-02-11) Help/Background

Sl MEHMIE]
Prove | (p\lor (ghland rito ((pilor g)\land (pilor r))
(pv(gan)—((pva)a(pvr))

((pv(@nr))—=((pva)n(pvr))) is valid.

1. ~((Pv(@r) ~((Pva)n(pvr)
2. (pvlann) (1)
3. ~((pva)(pve) (1)

4. p (2) 5. (gnar) (2)
12. q (5)
13. r (5)
6. ~(pva) 3) 7. ~(pvr) (3)
8.-p(6)  10.p (D)
9. q (6) 1. -r (7) 14, ~(pvq) (3) 15. ~(pvr) (3)
x x 16. -p (14) 18. -p (15)
17. -q (14) 19. -r (15)
X X

Figure 2.3: Sample computation using semantic tableau proving that the propositional formula
is valid; see Figure 2.4 for an explanation.



32 Chapter 2. First Order Logic recap

Axiom Number Explanation

Start The aim is to prove that ((p v (q ~ 1)) —=((p v Q) » (p v 1)) is valid
1 This we approach by demonstrating that its negafion (~((pv (g an))—=({(pv Q) a
(p v ))) leads to a confradiction
1a The implication (—) is rewritten following the rule that ¢ — ¢ equals -¢ v ¢, 50 that
we obtain ~(-(pv{(qa ) v ((pv g alpvr)
1b The result of 1a is rewritten to push the negation inside using the equivalence that
~{$ v g)=—-¢a —~g sothatwe obtain -—~(pvi{gar)a-{((pvq)alpvr))
ic Double negation is the same as positive, hence we obtain ((p v (Q A 1)) A ={(p v Q)
A (p v ) that continues in the tableau
2,3 For a conjunction (1c), both parts, being ((p v (g » ) and ((p v q) » (p v 1)), must
hold; hence, the axiom is split into those two part, numbered 2 and 3
4.5 Starting with 2, it has a disjunction that is splitintop and (Q ~ 1)
4a The negation in 3 is pushed inside following the rule that —(¢ A ¢) = -¢ v -,
hence we obtain ~(pv @) v —=(pwvr)
6,7 The result of 4a is disjunction and thus generates two branches that we append to
4
8,9 Rewriting & by pushing negation inside generates a conjunction so that both parts

must hold. However, with 9 we obtain -p whereas from 4 we know that p must
hold, hence, a contradiction

10, 11 Analogously, rewriting 7 by pushing negation inside generates a conjunction so
that both parts must hold, where we have again —-p that contradicts p of 4
Given that these two branches are exhausted, we continue with 5

12,13 The conjunction of 5 means that both p and r

14,15 Like with 6, 7, also here we must generate two branches to deal with -(p v q) v
=pvn

16,17 The same procedure as with 89 is repeated here, which also generates a
contradiction, between 12 and 17

18,19 Unfolding the last branch (like in 10, 11) we amive at a contradiction between 13
and 19

End Given that all branches of the negated original formula lead to a contradiction, we

have proven that the original formula is valid

Figure 2.4: FExplanation of the tableaux in Figure 2.3.

2.3 Exercises

Exercise 1. This exercise is to refresh your memory if you know propositional logic.
Is the following argument valid, a tautology, a contradiction, satisfiable, or neither?
Represent the argument formally in propositional logic and use truth tables to prove it.

Dalila travels to Johannesburg or she travels to Durban.

If she travels to Johannesburg, she takes the plane.

Therefore, Dalila does not travel to Durban.

Exercise 2. Consider the structures in Figure 2.5, which are graphs.
a. Figures 2.5-A and B are different depictions, but have the same descriptions w.r.t.
the vertices and edges. Check this.
b. C has a property that A and B do not have. Represent this in a first-order sentence.
c. Find a suitable first-order language for A (/B), and formulate at least two properties
of the graph using quantifiers.

Exercise 3. Consider the graph in Figure 2.5, and first-order language £ = (R), with
R being a binary relation symbol (edge).
a. Formalise the following properties of the graph as L-sentences: (i) (a,a) and (b,b)
are edges of the graph; (ii) (a,b) is an edge of the graph; (iii) (b,a) is not an edge
of the graph. Let T stand for the resulting set of sentences.
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=M €

Figure 2.5: Graphs for Exercise 2 (figures A-C) and Exercise 3 (figure D).

b. Prove that T U {VaVyR(x,y)} is unsatisfiable using tableaux calculus.

Exercise 4. Let us have a logical theory © with the following sentences:
o VrPizza(x), VePizzaT (z), VxPizzaB(x), which are disjoint

o Vz(Pizza(x) — —PizzaT (z)),
o Vz(Pizza(x) — —PizzaB(x)),
o Va(Pizzal (x) — —PizzaB(z)),
o Vr,y(hasT(x,y) — Pizza(x) A PizzaT (y)),
o Vz,y(hasB(x,y) = Pizza(x) A PizzaB(y)),
e Vx(ITPizza(x) — Pizza(x)), and
o Vo (ITPizza(x) — —Jy(hasT (z,y) A FruitT(y)), where
o Vo (Vegel (x) — PizzaT (z)) and
o Vo(FruitT(x) — PizzaT (z)).
Task:

a. A Pizza margherita has the necessary and sufficient conditions that it has moz-
zarella, tomato, basilicum and oil as toppings and has a pizza base. Add this to ©.
Annotate you commitments: what have you added to © and how?

Hint: fruits are not vegetables, categorise the toppings, and “necessary and suffi-
cient” is denoted with <.

b. We want to merge our new © with some other theory I' that has knowledge
about fruits and vegetables. T' contains, among other formulas, Vx(Tomato(z) —
Fruit(x)). What happens? Represent the scenario formally, and prove your an-
swer.

Actually, this is not easy to figure out manually, and there are ways to automate this,
which you will do later in Chapter 4.

2.4 Literature and reference material

The following literature is optional for this course
1. Hedman, S. A first course in logic—an introduction to model theory, proof theory,
computability, and complexity. Oxford: Oxford University Press. 2004.
2. Solow, D. How to read and do proofs. 4th Ed. Wiley. 2005.






CHAPTER 3

Description Logics

A Description Logic (DL) is a structured fragment of FOL; more precisely: any (basic)
Description Logic language is a subset of L3, i.e., the function-free FOL using only at
most three variable names, and its representation is at the predicate level: no variables
are present in the formalism. DLs provide a logical reconstruction and (claimed to be a)
unifying formalism for other knowledge representation languages, such as frames-based
systems, object-oriented modelling, Semantic data models, etc. They provide the lan-
guage to formulate theories and systems declaratively expressing structured information
and for accessing and reasoning with it, and they are used for, among others, terminolo-
gies and ontologies, formal conceptual data modelling, and information integration.
Figure 3.1 shows a basic overview of the principal components of a DL knowledge
base, with the so-called T'Box containing the knowledge at the class-level and the A Box
containing the data (individuals). Sometimes you will see added to the figure an RBoxz,
which is used to make explicit there are relationships and the axioms that hold for them.

v TBox ™~

Description | | Reasoning |

Languagy\ /\

™~ ABox #

KB

Application
Programs

Rules

Figure 3.1: A Description Logic knowledge base (Source: [Baader et al., 2008]).

The remainder of this section contains, first, a general introduction to DL (Sec-
tion 3.1), which are the first five sections of the DL Primer [Krétzsch et al., 2012], and
is reproduced here with permission of its authors Markus Krotzsch, Frantisek Simanéik,
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and Ian Horrocks. This is followed by a shorter notation style for the DL language ALC
in Section 3.2, which one encounters typically in the literature (based on Section 3.1,
this should be understandable, and it will pass the revue during the lectures); slightly
more detailed introductory notes with examples can be found in the first 8 pages of
[Turhan, 2010] and the first 10 pages of [Sattler, 2007]. We close with describing and
illustrating the standard reasoning services for DLs in Section 3.3. Note that DLs and its
reasoning services return in Chapter 4 about OWL 2, building upon these foundations.

3.1 DL primer

Description logics (DLs) are a family of knowledge representation languages that are
widely used in ontological modelling. An important practical reason for this is that
they provide one of the main underpinnings for the Web Ontology Language OWL as
standardised by the World Wide Web Consortium (W3C). However, DLs have been used
in knowledge representation long before the advent of ontological modelling in the context
of the Semantic Web, tracing back to first DL modelling languages in the mid 1980s.

As their name suggests, DLs are logics (in fact they are decidable fragments of first-
order logic), and as such they are equipped with a formal semantics: a precise specifica-
tion of the meaning of DL ontologies. This formal semantics allows humans and computer
systems to exchange DL ontologies without ambiguity as to their intended meaning, and
also makes it possible to use logical deduction to infer additional information from the
facts stated explicitly in an ontology — an important feature that distinguishes DLs from
other modelling languages such as UML.

The capability of inferring additional knowledge increases the modelling power of
DLs but it also requires some understanding on the side of the modeller and, above all,
good tool support for computing the conclusions. The computation of inferences is called
reasoning and an important goal of DL language design has been to ensure that reasoning
algorithms of good performance are available. This is one of the reasons why there is not
just a single description logic: the best balance between expressivity of the language and
complexity of reasoning depends on the intended application.

In this paper we provide a self-contained first introduction to description logics. We
start by explaining the basic way in which knowledge is modelled in DLs in Section 3.1.1
and continue with an intuitive introduction to the most important DL modelling features
in Section 3.1.2. This leads us to the rather expressive DL called SROZQ, the syntax of
which we summarise in Section 3.1.3. In Section 3.1.4, we explain the underlying ideas
of DL semantics and use it to define the meaning of SROZQ ontologies. Many DLs can
be obtained by omitting some features of SROZQ and in Section 3.1.5 we review some
of the most important DLs obtained in this way. In particular, this includes various
light-weight description logics that allow for particularly efficient reasoning.

3.1.1 Basic Building Blocks of DL Ontologies

Description logics (DLs) provide means to model the relationships between entities in a
domain of interest. In DLs there are three kinds of entities: concepts, roles and individual
names.! Concepts denote sets of individuals, roles denote binary relations between the
individuals, and individual names denote single individuals in the domain. Readers
familiar with first-order logic will recognise these as unary predicates, binary predicates
and constants.

'In OWL concepts and roles are respectively known as classes and properties; see Chapter 4.
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For example, an ontology modelling the domain of people and their family relation-
ships might use concepts such Parent to denote the set of all parents and Female to
represent the set of all female individuals, roles such as parentOf to denote the (binary)
relationship between parents and their children, and individual names such as julia and
john to denote the individuals Julia and John.

Unlike a database, a DL ontology does not fully describe a particular situation or
“state of the world”; rather it consists of a set of statements, called axioms, each of
which must be true in the situation described. These axioms typically capture only
partial knowledge about the situation that the ontology is describing, and there may
be many different states of the world that are consistent with the ontology. Although,
from the point of view of logic, there is no principal difference between different types of
axioms, it is customary to separate them into three groups: assertional (ABox) axioms,
terminological (TBox) axioms and relational (RBox) axioms.

Asserting Facts with ABox Axioms ABox axioms capture knowledge about named
individuals, i.e., the concepts to which they belong and how they are related to each other.
The most common ABox axioms are concept assertions such as

Mother(julia), (3.1)

which asserts that Julia is a mother or, more precisely, that the individual named julia is
an instance of the concept Mother.
Role assertions describe relations between named individuals. The assertion

parentOf (julia, john), (3.2)

for example, states that Julia is a parent of John or, more precisely, that the individual
named julia is in the relation that is denoted by parentOf to the individual named john.
The previous sentence shows that it can be rather cumbersome to explicitly point out that
the relationships expressed by an axiom are really relationships between the individuals,
sets and relations that are denoted by the respective individual names, concepts and
roles. Assuming that this subtle distinction between syntactic identifiers and semantic
entities is understood, we will thus often adopt a more sloppy and readable formulation.
Section 3.1.4 below explains the underlying semantics with greater precision.

Although it is intuitively clear that Julia and John are different individuals, this fact
does not logically follow from what we have stated so far. DLs do not make the unique
name assumption, so different names might refer to the same individual unless explicitly
stated otherwise. The individual inequality assertion

julia % john (3.3)

is used to assert that Julia and John are actually different individuals. On the other
hand, an individual equality assertion, such as

john = johnny, (3.4)
states that two different names are known to refer to the same individual. Such situations

can arise, for example, when combining knowledge about the same domain from several
different sources, a task that is known as ontology alignment.
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Expressing Terminological Knowledge with TBox Axioms TBox axioms de-
scribe relationships between concepts. For example, the fact that all mothers are parents
is expressed by the concept inclusion

Mother C Parent, (3.5)

in which case we say that the concept Mother is subsumed by the concept Parent. Such
knowledge can be used to infer further facts about individuals. For example, (3.1) and
(3.5) together imply that Julia is a parent.

Concept equivalence asserts that two concepts have the same instances, as in

Person = Human. (3.6)

While synonyms are an obvious example of equivalent concepts, in practice one more
often uses concept equivalence to give a name to complex expressions as introduced in
Section 3.1.2 below. Furthermore, such additional concept expressions can be combined
with equivalence and inclusion to describe more complex situations such as the disjoint-
ness of concepts, which asserts that two concepts do not share any instances.

Modelling Relationships between Roles with RBox Axioms RBox axioms refer
to properties of roles. As for concepts, DLs support role inclusion and role equivalence
axioms. For example, the inclusion

parentOf C ancestorOf (3.7)

states that parentOf is a subrole of ancestorOf, i.e., every pair of individuals related by
parentOf is also related by ancestorOf. Thus (3.2) and (3.7) together imply that Julia is
an ancestor of John.

In role inclusion axioms, role composition can be used to describe roles such as
uncleOf. Intuitively, if Charles is a brother of Julia and Julia is a parent of John, then
Charles is an uncle of John. This kind of relationship between the roles brotherOf,
parentOf and uncleOf is captured by the complex role inclusion axiom

brotherOf o parentOf C uncleOf. (3.8)

Note that role composition can only appear on the left-hand side of complex role in-
clusions. Furthermore, in order to retain decidability of reasoning (see the end of Sec-
tion 3.1.4 for a discussion on decidability), their use is restricted by additional structural
restrictions that specify whether or not a collection of such axioms can be used together
in one ontology.

Nobody can be both a parent and a child of the same individual, so the two roles
parentOf and childOf are disjoint. In DLs we can write disjoint roles as follows:

Disjoint(parentOf, childOf). (3.9)
Further RBox axioms include role characteristics such as reflexivity, symmetry and

transitivity of roles. These are closely related to a number of other DL features and we
will discuss them again in more detail in Section 3.1.2.
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3.1.2 Constructors for Concepts and Roles

The basic types of axioms introduced in Section 3.1.1 are rather limited for accurate
modelling. To describe more complex situations, DLs allow new concepts and roles
to be built using a variety of different constructors. We distinguish concept and role
constructors depending on whether concept or role expressions are constructed. In the
case of concepts, one can further separate basic Boolean constructors, role restrictions
and nominals/enumerations. At the end of this section, we revisit the additional kinds
of RBox axioms that have been omitted in Section 3.1.1.

Boolean Concept Constructors Boolean concept constructors provide basic Boolean
operations that are closely related to the familiar operations of intersection, union and
complement of sets, or to conjunction, disjunction and negation of logical expressions.

For example, concept inclusions allow us to state that all mothers are female and that
all mothers are parents, but what we really mean is that mothers are ezactly the female
parents. DLs support such statements by allowing us to form complex concepts such as
the intersection (also called conjunction)

Female 1 Parent, (3.10)

which denotes the set of individuals that are both female and parents. A complex con-
cept can be used in axioms in exactly the same way as an atomic concept, e.g., in the
equivalence Mother = Female M Parent.

Union (also called disjunction) is the dual of intersection. For example, the concept

Father LI Mother (3.11)

describes those individuals that are either fathers or mothers. Again, it can be used in
an axiom such as Parent = Father LI Mother, which states that a parent is either a father
or a mother (and vice versa).

Sometimes we are interested in individuals that do not belong to a certain concept,
e.g., in women who are not married. These could be described by the complex concept

Female M —Married, (3.12)

where the complement (also called negation) —Married denotes the set of all individuals
that are not married.

It is sometimes useful to be able to make a statement about every individual, e.g., to
say that everybody is either male or female. This can be accomplished by the axiom

T C Male L Female, (3.13)

where the top concept T is a special concept with every individual as an instance; it can
be viewed as an abbreviation for C'U —=C for an arbitrary concept C. Note that this
modelling is rather coarse as it presupposes that every individual has a gender, which
may not be reasonable for instances of a concept such as Computer. We will see more
useful applications for T later on.

To express that, for the purposes of our modelling, nobody can be both a male
and a female at the same time, we can declare the set of male and the set of female
individuals to be disjoint. While ontology languages like OWL provide a basic constructor
for disjointness, it is naturally captured in DLs with the axiom

Male M Female C L, (3.14)
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where the bottom concept L is the dual of T, that is the special concept with no individ-
uals as instances; it can be seen as an abbreviation for C' M —C' for an arbitrary concept
C. The above axiom thus says that the intersection of the two concepts is empty.

Role Restrictions So far we have seen how to use TBox and RBox axioms to express
relationships between concepts and roles, respectively. The most interesting feature of
DLs, however, is their ability to form statements that link concepts and roles together.
For example, there is an obvious relationship between the concept Parent and the role
parentOf, namely, a parent is someone who is a parent of at least one individual. In DLs,
this relationship can be captured by the concept equivalence

Parent = JparentOf.T, (3.15)

where the existential restriction JparentOf.T is a complex concept that describes the
set of individuals that are parents of at least one individual (instance of T). Similarly,
the concept dparentOf.Female describes those individuals that are parents of at least one
female individual, i.e., those that have a daughter.
To denote the set of individuals all of whose children are female, we use the universal
restriction
VparentOf.Female. (3.16)

It is a common error to forget that (3.16) also includes those that have no children at
all. More accurately (and less naturally), the axiom can be said to describe the set of
all individuals that have “no children other than female ones,” i.e., no “no children that
are not female.” Following this wording, the concept (3.16) could indeed be equivalently
expressed as —JparentOf.—Female. If this meaning is not intended, one can describe the
individuals who have at least one child and with all their children being female by the
concept (IparentOf.T) M (VparentOf.Female).

Existential and universal restrictions are useful in combination with the top concept
for expressing domain and range restrictions on roles; that is, restrictions on the kinds
of individual that can be in the domain and range of a given role. To restrict the domain
of sonOf to male individuals we can use the axiom

JsonOf. T C Male, (3.17)
and to restrict its range to parents we can write
T C VsonOf.Parent. (3.18)

In combination with the assertion sonOf(john, julia), these axioms would then allow us to
deduce that John is male and Julia is a parent. Note how this contrasts with the meaning
of constraints in databases, which would also allow us to state, e.g., that all sons must
be male. However, given only the fact that John is the son of Julia, such a constraint
would simply be violated (leading to an error) rather than implying that John is male.
Mistaking DL axioms for constraints is a very common source of modelling errors.

Number restrictions allow us to restrict the number of individuals that can be reached
via a given role. For example, we can form the at-least restriction

>2 childOf.Parent (3.19)

to describe the set of individuals that are children of at least two parents, and the at-most
restriction
<2 childOf.Parent (3.20)
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for those that are children of at most two parents. The axiom Person C >2 childOf.Parent
M <2 childOf.Parent then states that every person is a child of exactly two parents.

Finally, local reflexivity can be used to describe the set of individuals that are related
to themselves via a given role. For example, the set of individuals that are talking to
themselves is described by the concept

JtalksTo.Self . (3.21)

Nominals As well as defining concepts in terms of other concepts (and roles), it may
also be useful to define a concept by simply enumerating its instances. For example,
we might define the concept Beatle by enumerating its instances: john, paul, george, and
ringo. Enumerations are not supported natively in DLs, but they can be simulated in
DLs using nominals. A nominal is a concept that has exactly one instance. For example,
{john} is the concept whose only instance is (the individual denoted by) john. Combining
nominals with union, the enumeration in our example could be expressed as

Beatle = {john} U {paul} U {george} LI {ringo}. (3.22)

It is interesting to note that, using nominals, a concept assertion Mother(julia) can be
turned into a concept inclusion {julia} C Mother and a role assertion parentOf(julia, john)
into a concept inclusion {julia} C JparentOf.{john}. This illustrates that the distinction
between ABox and TBox does not have a deeper logical meaning.

Role Constructors In contrast to the variety of concept constructors, DLs provide
only few constructor for forming complex roles. In practice, inverse roles are the most
important such constructor. Intuitively, the relationship between the roles parentOf and
childOf is that, for example, if Julia is a parent of John, then John is a child of Julia
and vice versa. More formally, parenfOf is the inverse of childOf, which in DLs can be
expressed by the equivalence

parentOf = childOf ™, (3.23)

where the complex role childOf™ denotes the inverse of childOf.

In analogy to the top concept, DLs also provide the universal role, denoted by U,
which always relates all pairs of individuals. It typically plays a minor role in modelling,?
but it establishes symmetry between roles and concepts w.r.t. a top element. Similarly,
an empty role that corresponds to the bottom concept is also available in OWL but has
rarely been introduced as a constructor in DLs; however, we can define any role R to be
empty using the axiom T C —=3R.T (“all things do not relate to anything through R”).
Interestingly, the universal role cannot be defined by TBox axioms using the constructors
introduced above, and in particular universal role restrictions cannot express that a role
is universal.

More RBox Axioms: Role Characteristics In Section 3.1.1 we introduced three
forms of RBox axioms: role inclusions, role equivalences and role disjointness. OWL pro-
vides a variety of others, namely role transitivity, symmetry, asymmetry, reflexivity and
irreflexivity. These are sometimes considered as basic axiom types in DLs as well, using
some suggestive notation such as Trans(ancestorOf) to express that the role ancestorOf
is transitive. However, such axioms are just syntactic sugar; all role characteristics can
be expressed using the features of DLs that we have already introduced.

2 Although there are a few interesting things that could be expressed with U, such as concept products
[Rudolph et al., 2008a], tool support is rarely sufficient for using this feature in practice.
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Transitivity is a special form of complex role inclusion. For example, transitivity of
ancestorOf can be captured by the axiom ancestorOf o ancestorOf C ancestorOf. A role
is symmetric if it is equivalent to its own inverse, e.g., marriedTo = marriedTo™, and it
is asymmetric if it is disjoint from its own inverse, as in Disjoint(parentOf, parentOf ™).
If desired, global reflexivity can be expressed by imposing local reflexivity on the top
concept as in T C dknows.Self. A role is irreflexive if it is never locally reflexive, as in
the case of T C —dmarriedTo.Self.

3.1.3 The Description Logic SROZQ

In this section, we summarise the various features that have been introduced informally
above to provide a comprehensive definition of DL syntax. Doing so yields the description
logic called SROZQ, which is one of the most expressive DLs commonly considered today.
It also largely agrees in expressivity with the ontology language OWL 2 DL, though there
are still some differences as explained in Section 4.

Formally, every DL ontology is based on three finite sets of signature symbols: a set
N7 of individual names, a set Ng of concept names and a set Ng of role names. Usually
these sets are assumed to be fixed for some application and are therefore not mentioned
explicitly. Now the set of SROZQ role expressions R (over this signature) is defined by
the following grammar:

R:::U|NR|NRf

where U is the universal role (Section 3.1.2). Based on this, the set of SROZQ concept
expressions C is defined as:

C == N¢ | (CMC) | (CUC) | -C | T | L|3IRC |YRC | >nRC | <nRC | IR.Self | {N;}

where n is a non-negative integer. As usual, expressions like (C M C) represent any
expression of the form (C' M D) with C,D € C. It is common to omit parentheses
if this cannot lead to confusion with expressions of different semantics. For example,
parentheses do not matter for ALI BLIC whereas the expressions ANNBUC and dR.ANB
are ambiguous.

Using the above sets of individual names, roles and concepts, the azioms of SROZQ
can be defined to be of the following basic forms:

ABox: C(N[) R(N[,N[) N[%N[ N[’%JLN[
TBox: cCccC c=¢C
RBox: RCR R=R RoRCR Disjoint(R,R)

with the intuitive meanings as explained in Section 3.1.1 and 3.1.2.

Roughly speaking, a SROZQ ontology (or knowledge base) is simply a set of such
axioms. To ensure the existence of reasoning algorithms that are correct and terminating,
however, additional syntactic restrictions must be imposed on ontologies. These restric-
tions refer not to single axioms but to the structure of the ontology as a whole, hence
they are called structural restrictions. The two such conditions relevant for SROZQ
are based on the notions of simplicity and regularity. Notably, both are automatically
satisfied for ontologies that do not contain complex role inclusion axioms.

A role R in an ontology O is called non-simple if some complex role inclusion axiom
(i.e., one that uses role composition o) in O implies instances of R; otherwise it is called
simple. A more precise definition of the non-simple role expressions of the ontology O is
given by the following rules:
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e if O contains an axiom S o7 C R, then R is non-simple,
e if R is non-simple, then its inverse R~ is also non-simple,?

e if R is non-simple and O contains any of the axioms RC S, S = Ror R= S5, then
S is also non-simple.

All other roles are called simple.* Now for a SROZQ ontology it is required that the
following axioms and concepts contain simple roles only:

Restricted axioms: Disjoint(R,R)
Restricted concept expressions: JR. Self >nR.C <nR.C.

The other structural restriction that is relevant for SROZQ is called regularity and is
concerned with RBox axioms only. Roughly speaking, the restriction ensures that cyclic
dependencies between complex role inclusion axioms occur only in a limited form. For
details, please see the pointers given in Section ?7. For the introductory treatment in this
paper, it suffices to note that regularity, just like simplicity, is a property of the ontology
as a whole that cannot be checked for each axiom individually. An important practical
consequence is that the union of two regular ontologies may no longer be regular. This
must be taken into account when merging ontologies in practice.

3.1.4 Description Logic Semantics

The formal meaning of DL axioms is given by their semantics. In particular, the seman-
tics specifies what the logical consequences of an ontology are. The formal semantics
is therefore the main guideline for every tool that computes logical consequences of DL
ontologies, and a basic understanding of its working is vital to make reasonable mod-
elling choices and to comprehend the results given by software applications. Luckily, the
semantics of description logics is not difficult to understand provided that some common
misconceptions are avoided.

Intuitively speaking, an ontology describes a particular situation in a given domain
of discourse. For example, the axioms in Sections 3.1.1 and 3.1.2 describe a particular
situation in the “families and relationships” domain. However, ontologies usually cannot
fully specify the situation that they describe. On the one hand, there is no formal rela-
tionship between the symbols we use and the objects that they represent: the individual
name julia, for example, is just a syntactic identifier with no intrinsic meaning. Indeed,
the intended meaning of the identifiers in our ontologies has no influence on their formal
semantics: what we know about them stems only from the ontological axioms. On the
other hand, the axioms in an ontology typically do not provide complete information. For
example, (3.3) and (3.4) in Section 3.1.1 state that some individuals are equal and that
others are unequal, but in many other cases this information might be left unspecified.

Description logics have been designed to deal with such incomplete information.
Rather than making default assumptions in order to fully specify one particular interpre-
tation for each ontology, the DL semantics generally considers all the possible situations
(i.e., states of the world) where the axioms of an ontology would hold (we also say:
where the axioms are satisfied). This characteristic is sometimes called the Open World

3If R = S~ already is an inverse role, then R~ should be read as S. We do not allow expressions like
ST.

4Whether the universal role U is simple or not is a matter of preference that does not affect the
computational properties of the logic [Rudolph et al., 2008b]. However, the universal role in OWL 2 is
considered non-simple.
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Table 3.1: Syntax and semantics of SROZQ constructors.
Syntax Semantics

Individuals:
individual name a at

Roles:
atomic role R R?
inverse role R~ {{z,y) | (y,z) € RT}
universal role U AT x AT

Concepts:
atomic concept A AT
intersection cnb ctnD?
union cub ctuDp?
complement -C' AT\ C*
top concept T AT
bottom concept L 0
existential restriction = JR.C {x | some RZ-successor of z is in CT}
universal restriction VR.C {z | all RT-successors of = are in C}
at-least restriction >nR.C {x | at least n R%-successors of z are in C7}
at-most restriction <nR.C {x | at most n R%-successors of = are in C7}
local reflexivity IR.Self {z | (v,2) € RT}
nominal {a} {aT}

where a,b € Nj are individual names, A € N¢ is a concept name, C, D € C are concepts,
and R € R is a role

Assumption since it keeps unspecified information open.> A logical consequence of an
ontology is an axiom that holds in all interpretations that satisfy the ontology, i.e., some-
thing that is true in all conceivable states of the world that agree with what is said in the
ontology. The more axioms an ontology contains, the more specific are the constraints
that it imposes on possible interpretations, and the fewer interpretations exist that sat-
isfy all of the axioms. Conversely, if fewer interpretations satisfy an ontology, then more
axioms hold in all of them, and more logical consequences follow from the ontology. The
previous two sentences imply that the semantics of description logics is monotonic: ad-
ditional axioms always lead to additional consequences, or, more informally, the more
knowledge we feed into a DL system the more results it returns.

An extreme case is when an ontology is not satisfied in any interpretation. The
ontology is then called unsatisfiable or inconsistent. In this case every axiom holds
vacuously in all of the (zero) interpretations that satisfy the ontology. Such an ontology
is clearly of no utility, and avoiding inconsistency (and checking for it in the first place)
is therefore an important task during modelling.

We have outlined above the most important ideas of DL semantics. What remains
to be done is to define what we really mean by an “interpretation” and which conditions
must hold for particular axioms to be satisfied by an interpretation. For this, we closely
follow the intuitive ideas established above: an interpretation Z consists of a set AT
called the domain of T and an interpretation function -Z that maps each atomic concept
A to a set AT C AT, each atomic role R to a binary relation R C AT x AZ, and each

SA Closed World Assumption “closes” the interpretation by assuming that every fact not explicitly
stated to be true is actually false. Both terms are not formally specified and rather outline the general
flavour of a semantics than any particular definition.
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Table 3.2: Syntax and semantics of SROZQ axioms.

Syntax Semantics
ABox:
concept assertion C(a) at € C*
role assertion R(a,b) (a?,b1) € RT
individual equality a=~b al =’
individual inequality a®b at # bt
TBox:
concept inclusion ccbhD ctcpt
concept equivalence C=D ct =Dt
RBoz:
role inclusion RCS RT cC 5%
role equivalence R=S Rt =67
complex role inclusion RjoRyC S R{ o R% c st
role disjointness Disjoint(R,S) RInNST =1

individual name a to an element aZ € AZ. The interpretation of complex concepts and
roles follows from the interpretation of the basic entities. Table 3.1 shows how to obtain
the semantics of each compound expression from the semantics of its parts. By “RZ-
successor of 2”7 we mean any individual y such that (x,3) € RZ. The definition should
confirm the intuitive explanations given for each case in Section 3.1.2. For example, the
semantics of Female M Parent is indeed the intersection of the semantics of Female and
Parent.

Since an interpretation Z fixes the meaning of all entities, we can unambiguously say
for each axiom whether it holds in Z or not. An axiom holds in Z (we also say Z satisfies
a and write Z |= «) if the corresponding condition in Table 3.2 is met. Again, these
definitions fully agree with the intuitive explanations given in Section 3.1.1. If all axioms
in an ontology O hold in Z (i.e., if 7 satisfies O, written Z = O), then Z is a model of
0. Thus a model is an abstraction of a state of the world that satisfies all axioms in
the ontology. An ontology is consistent if it has at least one model. An axiom « is a
consequence of an ontology O (or O entails « written O | «) if « holds in every model
of O. In particular, an inconsistent ontology entails every axiom.

A noteworthy consequence of this semantics is the meaning of individual names in
DL ontologies. We already remarked that DLs do not usually make the Unique Name
Assumption, and indeed our formal definition allows two individual names to be inter-
preted as the same individual (element of the domain). Possibly even more important
is the fact that the domain of an interpretation is allowed to contain many individuals
that are not denoted by any individual name. A common confusion in modelling arises
from the implicit assumption that interpretations must only contain individuals that are
denoted by individual names (such individuals are also called named individuals). For
example, one could wrongly assume the ontology consisting of the axioms

parentOf (julia, john) manyChildren(julia) manyChildren T >3 parentOf. T

to be inconsistent since it requires Julia to have at least 3 children when only one (John) is
given. However, there are many conceivable models where Julia does have three children,
even though only one of them is explicitly named. A significant number of modelling
errors can be traced back to similar misconceptions that are easy to prevent if the general
open world assumption of DLs is kept in mind.
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Another point to note is that the above specification of the semantics does not provide
any hint as to how to compute the relevant entailments in practical software tools. There
are infinitely many possible interpretations, each of which may have an infinite domain
(in fact there are some ontologies that are satisfied only by interpretations with infinite
domains). Therefore it is impossible to test all interpretations to see if they model a
given ontology, and impossible to test all models of an ontology to see if they entail a
given axiom. Rather, one has to devise concrete deduction procedures and prove their
correctness with respect to the above specification. The interplay of certain expressive
features can make reasoning algorithms more complicated and in some cases it can even
be shown that no correct and terminating algorithm exists at all (i.e., that reasoning is
undecidable). For our purposes it suffices to know that entailment of axioms is decid-
able for SROZQ (with the structural restrictions explained in Section 3.1.3) and that a
number of free and commercial tools are available. Such tools are typically optimised for
more specific reasoning problems, such as consistency checking, the entailment of con-
cept subsumptions (subsumption checking) or of concept assertions (instance checking).
Many of these standard inferencing problems can be expressed in terms of each other, so
they can be handled by very similar reasoning algorithms.

3.1.5 Important Fragments of SROZQ

Many different description logics have been introduced in the literature. Typically, they
can be characterised by the types of constructors and axioms that they allow, which
are often a subset of the constructors in SROZQ. For example, the description logic
ALC is the fragment of SROZQ that allows no RBox axioms and only M, U, =, 3 and
V as its concept constructors. It is often considered the most basic DL. The extension
of ALC with transitive roles is traditionally denoted by the letter S. Some other letters
used in DL names hint at a particular constructor, such as inverse roles Z, nominals
O, qualified number restrictions Q, and role hierarchies (role inclusion axioms without
composition) H. So, for example, the DL named ALCHZQ extends ALC with role
hierarchies, inverse roles and qualified number restrictions. The letter R most commonly
refers to the presence of role inclusions, local reflexivity Self, and the universal role
U, as well as the additional role characteristics of transitivity, symmetry, asymmetry,
role disjointness, reflexivity, and irreflexivity. This naming scheme explains the name
SROIQ.

In recent years, fragments of DLs have been specifically developed in order to ob-
tain favourable computational properties. For this purpose, ALC is already too large,
since it only admits reasoning algorithms that run in worst-case exponential time. More
light-weight DLs can be obtained by further restricting expressivity, while at the same
time a number of additional SROZQ features can be added without loosing the good
computational properties. The three main approaches for obtaining light-weight DLs are
EL, DLP and DL-Lite, which also correspond to language fragments OWL EL, OWL RL
and OWL QL of the Web Ontology Language.

The £L family of description logics is characterised by allowing unlimited use of
existential quantifiers and concept intersection. The original description logic ££ allows
only those features and T but no unions, complements or universal quantifiers, and
no RBox axioms. Further extensions of this language are known as ££7 and £L£7T.
The largest such extension allows the constructors M, T, 1, 3, Self, nominals and the
universal role, and it supports all types of axioms other than role symmetry, asymmetry
and irreflexivity. Interestingly, all standard reasoning tasks for this DL can still be solved
in worst-case polynomial time. One can even drop the structural restriction of regularity
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that is important for SROZQ. E£L-type ontologies have been used to model large but
light-weight ontologies that consist mainly of terminological data, in particular in the
life sciences. A number of reasoners are specifically optimised for handling £L-type
ontologies, the most recent of which is the ELK reasoner for OWL EL.5

DLP is short for Description Logic Programs and comprises various DLs that are
syntactically restricted in such a way that axioms could also be read as rules in first-order
Horn logic without function symbols. Due to this, DLP-type logics can be considered as
kinds of rule languages (hence the name OWL RL) contained in DLs. To accomplish this,
one has to allow different syntactic forms for subconcepts and superconcepts in concept
inclusion axioms. We do not provide the details here. While DLs in general may require
us to consider domain elements that are not denoted by individual names, for DLP one
can always restrict attention to models in which all domain elements are denoted by
individual names. This is why DLP is often used to augment databases (interpreted as
sets of ABox axioms), e.g., in an implementation of OWL RL in the Oracle 11g database
management system.

DL-Lite is a family of DLs that is also used in combination with large data collections
and existing databases, in particular to augment the expressivity of a query language that
retrieves such data. This approach, known as Ontology Based Data Access, considers
ontologies as a language for constructing views or mapping rules on top of existing data.
The core feature of DL-Lite is that data access can be realised with standard query
languages such as SQL that are not aware of the DL semantics. Ontological information is
merely used in a query preprocessing step. Like DLP, DL-Lite requires different syntactic
restrictions for subconcepts and superconcepts. We do not present the details here.

3.2 A basic DL: ALC

Section 3.1.5 mentioned that there are “important fragments” of SROZQ, one of them
being ALC, which will be introduced now. The two reasons for this are that it is less
complicated for illustrating the tableau algorithm for (automated) reasoning later on
regarding Exercise 6 about vegetarians and vegans, and to practice a bit with the DL
notation in a more condensed notation. The terminology used in this section has been
introduced either in the previous section or the previous chapter.

The DL language ALC (Attributive Language with Concept negation) contains the
following elements:
- Concepts denoting entity types/classes/unary predicates/universals, including top
T and bottom 1;
Roles denoting relationships/associations/n-ary predicates/properties;
Constructors: and I, or L, and not —; quantifiers forall V and exists 3
Complex concepts using constructors: Let C' and D be concept names, R a role
name, then
— =C, CnD, and CUD are concepts, and
— VR.C and 3R.C are concepts
Individuals

Some examples that can be represented in ALC are:
- Concepts (primitive, atomic): Book, Course
- Roles: ENROLLED, READS

Shttp://elk-reasoner.googlecode.com/
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- Complex concepts:
— Student C JENROLLED.(Course LI DegreeProgramme)
(this is a primitive concept)
— Mother C Woman M JPARENTOF.Person
— Parent = (Male Ll Female) 1 JPARENTOF.Mammal M JCARESFOR.Mammal
(this is a defined concept)
- Individuals in the ABox: Student(Andile), Mother(Katniss), -Student(Katniss),
ENROLLED(Andile, COMP101)

Again, the meaning is defined by the semantics of ALC. First, we have a domain of
interpretation, and an interpretation (recollect FOL and model-theoretic semantics from
Section 2.1), where:

e Domain A is a non-empty set of objects

e Interpretation: - is the interpretation function, domain AT

— T maps every concept name A to a subset AT C AT

— L maps every role name R to a subset R C AT x AT

— T maps every individual name a to elements of AZ: o € AT

e Note: TZ =AZ and 1T =10

Using the typical notation where C' and D are concepts, R a role, and a and b are
individuals, then they have the following meaning, with on the left-hand side of the “="
the syntax of ALC under an interpretation and on the right-hand side its semantics:
_ (—|C)I — AI\CI
- (cnD)Y =ctnD*
- (CuD)Y =ctuD?
(VR.C): = {z | Vy.R*(z,y) — C*(y)}
(BR.C)F = {x | 3y.R*(z,y) A CT(y)}
Then, we also can specify the notion of satisfaction:
- An interpretation Z satisfies the statement C C D if ctc pt
An interpretation 7 satisfies the statement C' = D if CZ = D?
C(a) is satisfied by T if a* € C*
- R(a,b) is satisfied by Z if (a?,b?) € R?
An interpretation Z = (AZ,-7) is a model of a knowledge base KB if every axiom
of KB is satisfied by Z
- A knowledge base KB is said to be satisfiable if it admits a model

Many DLs have be defined over the past 25 years and their complexity proved. For in-
stance, one could add Znverses to ALC, giving ALCZ, or a Hierarchy of roles, ALCH, or
Qualified cardinality restrictions; the appendix of the DL Handbook [Baader et al., 2008]
has the full list of letters and the features they denote. You also may like to have a look
at the DL Complexity Navigator”. In the next chapter about OWL 2 we shall introduce
a few more expressive languages, whereas ontology-based data access in Chapter 8 intro-
duces DL-Lite, that is less expressive than ALC (but more complicated for modelling).

3.3 Reasoning services

The reasoning services for DLs can be divided into so-called ‘standard’ reasoning services
and ‘non-standard’ reasoning services, where the former are more common and provided

"http://www.cs.man.ac.uk/ezolin/logic/complexity.html
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by all extant DL reasoners, whereas for the latter new problems had been defined, and
therewith needing specific algorithms, extensions, and interfaces. We will see an example
of the latter in Section 7.4.

3.3.1 Standard reasoning services

The standard reasoning services are as follows (generally, all DL-focussed automated
reasoners offer these services).
e Consistency of the knowledge base (KB¥ T C 1)

— Is the KB = (T,.A) consistent (non-selfcontradictory), i.e., is there at least
one model for KB, i.e.: can all concepts and roles be instantiated without
leading to a contradiction?

Concept (and role) satisfiability (KBFE C C 1)

— is there a model of KB in which C' (resp. R) has a nonempty extension, i.e.,
‘can have instances without leading to contradictions’?

Concept (and role) subsumption (KB |= C C D)

— i.e., is the extension of C' (resp. R) contained in the extension of D (resp. S)
in every model of T, i.e., ‘are all instances of C' also instances of D?

Instance checking (KB = C(a) or KB = R(a,b))

— is a (resp. (a,b)) a member of concept C' (resp. R) in KB, i.e., is the fact
C(a) (resp. R(a,b)) satisfied by every interpretation of XB?

Instance retrieval ({a | KB = C(a)})

— find all members of C'in KB, i.e., compute all individuals a s.t. C(a) is satisfied
by every interpretation of KB

You have used the underlying idea of concept subsumption both with EER and UML
class diagrams, but then you did it all manually. Now, instead of you having to model
a hierarchy of entity types/classes, we let the automated reasoner do it for us thanks to
the properties we have represented for the DL concepts.

The following two examples illustrate logical implication and concept subsumption.

Example 3.1. Logical implication Let us first look at logical implication—i.e., B =
¢ if every model of KB is a model of ¢p—with the following example:

e TBox: dTEACHES.Course C —Undergrad LI Professor

“The objects that teaches a course are not undergrads or professors”

e ABox: TEACHES(Thembi,cs101), Course(cs101), Undergrad(Thembi)
This is depicted graphically in Figure 3.2. What does it entail, if anything? The only
possibility to keep this logical theory consistent and satisfiable is to make Thembi a
professor, i.e., KB |= Professor(Thembi), because anything that teaches a course must be
either not an undergrad or a professor. Given that Thembi is an undergrad, she cannot
be not an undergrad, hence, she has to be a professor.

What will happen if we have the following knowledge base?
e TBox: dJTEACHES.Course C Undergrad LI Professor
e ABox: TEACHES(Thembi,cs101), Course(cs101), Undergrad(Thembi)
That is, do we obtain B = Professor(Thembi) again? No.
Perhaps the opposite, that KB = —Professor(Thembi)? No. Can you explain why?

Example 3.2. Concept subsumption As an example of concept subsumption, con-
sider the following knowledge based K, which is depicted graphically in Figure 3.3:
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TEACHES

~Undergrad v Professor Course

-— —-—.

Undergrad teaches(Thembi, cs101) Course

- -

Figure 3.2: Top: Depiction of the TBox according to the given axiom; bottom: depiction of
the ABox.

HonsStudent = Student M IENROLLED.BScHonsDegree
X = Student M JENROLLED.BScHonsDegree M JHASDUTY . TeachingAssistantShip
Y = Student M JENROLLED.BScHonsDegree 1 AHASDUTY .ProgrammingTask
X(John), BScHonsDegree(cs12), TeachingAssistantShip(COMP314-W12),
ENROLLED(John, cs12), HASDUTY (John, COMP314-W12)
K = X C HonsStudent, i.e.: is the extension of X contained in the extension of HonsStu-
dent in every model of K? Yes. Why? We know that both HonsStudent and X are
subclasses of Student and that both are ENROLLED in an BScHonsDegree programme.
In addition, every instance of X also has a duty performing a TeachingAssistantShip for
an undergrad module, whereas, possibly, not all honours students work as a teaching
assistant. Thus, all X’s are always also an instance of HonsStudent in every possible
model of I, hence K = X T HonsStudent. And likewise for K =Y C HonsStudent. This
deduction is depicted in green in Figure 3.4. The overall situation is perhaps clearer
when we remove all the duplications, as shown in Figure 3.5.

Let us modify this a bit by adding the following two axioms to K:

e 7 = Student M JENROLLED.BScHonsDegree 11

JHASDUTY.(ProgrammingTask 1 TeachingAssistantShip)

e TeachingAssistantShip C —ProgrammingTask
What happens now? The first step is to look at Z: it has the same properties as HonsStu-
dent, X, and Y, but now we see that each instance of Z has as duty both a Programming-
Task and TeachingAssistantShip; hence, it must be a subconcept of both X and Y, because
it refines them both. So far, so good. The second axiom tells us that the intersection
of ProgrammingTask and TeachingAssistantShip is empty, or: they are disjoint, or: there
is no object that is both a teaching assistantship for some module and a programming
task. But each instance of Z has as duty to carry out a duty that is both a teaching
assistantship and a programming task! This object cannot exist, hence, there cannot be
a model where Z is instantiated, hence, Z is an unsatisfiable concept. <

3.3.2 Techniques

The description of the deductions illustrated in the previous paragraph is an informal,
high-level way of describing what the automated reasoner does when computing the
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HonsStudent BScHonsDegree

ENROLLED

X BScHonsDegree Y BScHonsDegree
ENROLLED ENROLLED

TeachmgASS|stantSh|p

. HASDUTY °
~. -V COMP314-W12

Figure 3.3: Graphical depiction of I before checking concept subsumption.

ProgrammingTask
HASDUTY

HonsStudent BScHonsDegree
ENROLLED

BScHonsDegree

ENROLLED O

ProgrammingTask
HASDUTY
>

Figure 3.4: Graphical depiction of K after checking concept subsumption; content in green is
deduced.

HonsStudent

BScHonsDegree

ENROLLED

Figure 3.5: Graphical depiction of I after checking concept subsumption, condensed version
and Y not shown.

concept hierarchy and checking for satisfiability. Clearly, such an informal way will
not work as an algorithm to be implemented in a computer. There are several proof
techniques both in theory and in practice to realise the reasoning service. The most
widely used technique at the time of writing (within the scope of DLs and the Semantic
web) is tableau reasoning, and is quite alike what we have seen with tableau with full
FOL. In short, it:

1. Unfolds the TBox

2. Converts the result into negation normal form

3. Applies the tableau rules to generate more Aboxes

4. Stops when none of the rules are applicable
Then:

e 7T+ C C D if all Aboxes contain clashes
o T ¥ CLC D if some Abox does not contain a clash
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First, recall that one enters the tableau in Negation Normal Form (NNF), i.e., “=” only

in front of concepts. For DLs and C' and D are concepts, R a role, we use equivalences
to obtain NNF:

- =~C gives C

- =(CMn D) gives =C U =D

- =(Cu D) gives =C 1 =D

- =(VR.C) gives AR.-C

- =(3R.C) gives VR.-C
(This look familiar to you from the logic you had in previous courses.)

Second, there are the tableau rules:

M-rule: If (C1 M C%)(a) € S but S does not contain both C1(a) and Cy(a), then
5 =S5U{Ci(a),Ca(a)}

U-rule: If (C; U C3)(a) € S but S contains neither Ci(a) nor Cs(a), then

S=5U{Ci(a)}
S =5U{C(a)}

V-rule: If (VR.C')(a) € S and S contains R(a,b) but not C(b), then
S=5u{C(b)}

J-rule: If (3R.C)(a) € S and there is no b such that C'(b) and R(a,b), then
S =5U{C(b), R(a,b)}

With these ingredients, you can construct a tableau to prove that the aforementioned
deductions hold. There will be an exercise about it, and we will see more aspects of
automated reasoning in the lectures and exercises about OWL.

3.4 Exercises

Exercise 5. Explain in your own words what the following ALC reasoning tasks involve
and why they are important for reasoning with ontologies:

a. Instance checking.

b. Subsumption checking.

c. Checking for concept satisfiability.

Exercise 6. Consider the following TBox T
Vegan = Person MVYeats.Plant
Vegetarian = Person MYeats.(Plant U Dairy)
We want to know if 7 - Vegan C Vegetarian.
This we convert to a constraint system S = {(Vegan M =Vegetarian)(a)},
which is unfolded (here: complex concepts on the left-hand side are replaced with their
properties declared on the right-hand side) into:

S = {Person MVYeats.Plant N —(Person MVYeats.(Plant Ll Dairy))(a)} (3.24)

Tasks:
a. Rewrite (Eq. 3.24) into negation normal form
b. Enter the tableau by applying the rules (see lecture slides/previous section) until

either you find a completion or only clashes.
c. TEVegan C Vegetarian?
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3.5 Literature and reference material

This material is listed mainly for the curious, not that you have to read it all.

1. Ulrike Sattler. Reasoning in description logics: Basics, extensions, and relatives.
In G. Antoniou et al., editors, Reasoning Web 2007, volume 4636 of LNCS, page
154182. Springer, 2007. OR Anni-Yasmin Turhan. Reasoning and explanation
in EL and in expressive Description Logics. In U. Assmann, A. Bartho, and C.
Wende, editors, Reasoning Web 2010, volume 6325 of LNCS, pages 127. Springer,
2010.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider
(Eds). The Description Logics Handbook. Cambridge University Press, 2009.
Chapters 1 and 2.






CHAPTER 4

The Web Ontology Language OWL 2

The FOL and DLs we have seen hasn’t gotten us close to implementations. This is going
to change in this chapter, where we will look at ‘implementation versions’ of DLs that
have rich tooling support. We will take a look at the computational use of DLs with
the so-called serialization to obtain computer-processable versions of an ontology and
automated reasoning over it. The language that we will use to serialise the ontology is the
most widely used ontology language for computational purposes, being the Web Ontology
Language OWL. It has been standardised first in 2004 and a version 2 in 2009, which has
fuelled tool development and deployment of ontologies in ontology-driven information
systems. The once thing is that step toward implementation, but it also ends up in a
situation where, as mentioned in Section 1.1—what does an ontology look like—, there
are various ways of representing the an ontology, and a myriad of syntaxes to cater for a
range of preferences and tools.

OWL does not exist in isolation, but is part of the Semantic Web stack—also called
the (in)famous ‘layer cake’—to make the Semantic Web work. This layer cake is shown
in Figure 4.1: at the bottom of the stack, we have XML, which is a surface syntax that
has no semantics, and then XML Schema, which describes structure of XML documents.
RDF is intended for describing data and facilitating data exchange; it is a datamodel
for “relations” between “things”, which also has a RDF Schema and an RDF Vocabu-
lary Definition Language. RDF data can be queried with the SPARQL query language
(one can draw an analogue with SQL for relational databases, but then tailored to the
Internet). On top of that, we have the ontology language for the Web, OWL, to handle
the knowledge and reasoning, and rules (RIF). The details of the “trust” and “crypto”
are still sketchy, but there are plentiful user interfaces and Semantic Web applications.
This chapter focuses on OWL only; however, because it is built upon RDF and XML, we
will come across some of that notation as well, as OWL ontologies are serialised (made
machine-processable) in those languages.

OWL actually constitutes a family of languages consisting of so-called OWL “species”,
and we will focus on those species that are based on DLs, which are all fragments of the
most expressive one, OWL 2 DL. OWL 2 DL is based on SROZQ with data types, which
we already have come across in Chapter 3. To understand how OWL 2 DL came about
in the way it is, with these features and not others, we will touch upon OWL and focus
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User Interface & applications

| Trust
Proof
| Unifying Logic |
ontology: Rules:
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Figure 4.1: The Semantic Web layer cake.

on OWL 2%

4.1 Standardizing an ontology language

Before OWL, there were a plethora of ontology languages, such as the obo format (di-
rected acyclic graphs) initiated by the Gene Ontology Consortium? and is still used widely
for bio-ontologies, KL-ONE, and F-logic (frames, and older versions of the Protégé on-
tology development environment). Unsurprisingly, this caused ontology interoperation
problems even at the syntactic level and hampered development and use of ontology tools.
To solve those issues, researchers set out to standardise a logic language. RDFS was al-
ready in the layer cake of the Semantic Web (Figure 4.1), but appeared to have some
problems to function as ontology language—expressiveness limitations, and syntactic and
semantic issues [Horrocks et al., 2003]—which is what OWL also aimed to address so as
to provide a comprehensive ontology language for the Semantic Web. Further, several
predecessors to OWL had a considerable influence on the final product, most notably the
SHOE, DAML-ONT, OIL, and DAML+OIL languages, and, more generally, the fruits of
20 years of research on languages and prototyping of automated reasoners by the Descrip-
tion Logics (DL) community. A document of requirements and objectives was devised to
specify what such an ontology language for the Semantic Web should meet; the “making
of an ontology language” article [Horrocks et al., 2003] gives a general historical view. It
also summarises OWL with its three species (OWL lite, OWL-DL, and OWL full) and
the details of the standard are freely available?.

What makes OWL a Semantic Web language compared to the regular DL languages
as we have seen in the previous chapter, is that:

— OWL uses URI references as names (like used in RDF); e.g., http://www.mysite.co.

za/UniOnto.owl#Student is the URI of the class Student in the ontology UniOnto.owl

!There are many learning resources for OWL and OWL2 and therefore Sections 4.1 and 4.2 are
kept short. A general non-technical overview is provided in the OWL primer: http://www.w3.org/TR/
owl2-primer/. The first part of Section 4.3 is also brief; more material is available upon request.

Zhttp://www.geneontology.org; recall also Figure 1.6.

*nttp://wuw.u3.org/TR/owl-ref/
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that is online available from http://www.mysite.co.za;

it gathers information into ontologies stored as documents written in RDF /XML
including things like owl : imports to import one ontology into another; e.g. another
ontology, HigherEd.owl can import the UniOnto.owl so that the class
http://www.mysite.co.za/UniOnto.owl#Student becomes, in a way, part of
HigherEd.owl (though it still exists independently as well);

it adds RDF data types and XML schema data types for the ranges of data prop-
erties (attributes), so one can use, e.g., string and integer in a similar way as
you are familiar with in UML class diagrams and databases.

OWL and OWL 2 will be summarized in the lecture; the following subsections are,
roughly, a fragment of the lecture (a next version of the lecture notes will describe more
detail in a nicer layout).

4.1.1 The OWL family of languages

Purely for legacy purposes, I include here the first three ‘species’ of OWL (version 1):

e OWL Lite, with a classification hierarchy and (relative to OWL DL) simple con-

straints. While OWL Lite has strong syntactic restrictions, it has only limited
semantics restrictions compared to OWL DL*. OWL Lite corresponds to the DL
SHZF(D). Putting the DL symbols to the names of the features, we have:

- Named classes (A)

- Named properties (P)

- Individuals (C(0))

- Property values (P(o0,a))

- Intersection (C'M D)

- Union (C'U D)

- Negation (—C)

- Existential value restrictions (3P.C)

- Universal value restrictions (VP.C)

- Unqualified (0/1) number restrictions (> nP, <nP,=nP),0<n <1
OWL DL had, at the time, ‘maximal’ expressiveness while maintaining tractabil-
ity, and has, as the name suggestion, an underlying DL. It has all the features of
OWL-lite, and, in addition: Negation, Disjunction, (unqualified) Full cardinality,
Enumerated classes, and hasValue. OWL DL corresponds to the DL SHOZN (D).
It has the following features:
all of OWL Lite features
Arbitrary number restrictions (> nP, < nP, =nP), with 0 <n
Property value (3P.{o})

Enumeration ({01, ...,0n})

e OWL Full, has a very high expressiveness (losing tractability) and all syntactic

freedom of RDF (self-modifying). OWL full has Meta-classes and on can modify

4More specifically regarding the latter: negation can be encoded using disjointness and with negation
an conjunction, you can encode disjunction. Take, for instance:

Class(C complete unionOf(B C))
This is equivalent to

DisjointClasses(notB B)

DisjointClasses(notC C)

Class(notBandnotC complete notB notC)

DisjointClasses(notBandnotC BorC)

Class(C complete notBandnotC)
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Table 4.1: Some examples of OWL’s construct, the same in DL notation, and an example.

Chapter 4. The Web Ontology Language OWL 2

OWL Construct ‘ DL notation ‘ Example ‘

intersectionOf | C1M...MNC, | Human Male
unionOf Ci1U...uC, | Doctor LI Lawyer
complement0f -C —Male

oneOf {o01,...,0n} {giselle, juan}
allValuesFrom | VP.C VhasChild.Doctor
someValuesFrom | dP.C JhasChild.Lawyer
value dP.{o} JeitizenOf .{RSA}
minCardinality | > nP > 2 hasChild
maxCardinality | < nP < 6 enrolledIn

Table 4.2: Some examples of OWL’s axioms, the same in DL notation, and an example.

’ OWL Axiom ‘ DL ‘ Example
SubClass0f C1 C Oy Human C Animal M Biped
EquivalentClasses Ci=..=C, | Man = Human 1 Male
SubProperty0f PC P hasDaughter C hasChild
EquivalentProperties P =..=PF, | cost = price
SameIndividual 01 = ... = 0Op President_Zuma = J_Zuma
DisjointClasses C; C =C; Male C —Female
DifferentIndividuals 0; # 0; Thabo # Andile
inverseOf P =P, hasChild = hasParent™
transitiveProperty PTCP ancestor™ C ancestor,

denoted also as Trans(ancestor)

symmetricProperty P=pP- Sym(connectedTo) (common notation)
functionalProperty TCL1P T C< 1hasPresident
inverseFunctionalProperty | T C< 1P~ T C< 1hasIDNo™

the language. Note that OWL Full is not a Description Logic, and we do’t look
into its details in this course.
As mentioned earlier, OWL and DLs are tightly related, in particular OWL Lite and
OWL DL. They have, just like their base DLs, a model theoretic semantics. Like with
SROZQ, one can build up more complex representations for the knowledge that has to
be represented. Table 4.1 shows a few examples of OWL syntax and its DL counterpart
notation.

Compared to most DLs, OWL also incorporates XML Schema datatypes, such as int,
string, real, and others; check out the ‘data properties’ tab in Protégé or the OWL
standard to see which ones are supported. Work is under way to incorporate data types
better into DL.

While some examples may be familiar by now, let’s look at two object property
characteristics, being transitivity and reflexivity. Transitivity of a relation R formally
means Vz,y, z(R(z,y) AR(y, z) — R(z, z)). For instance, when we have the following two
assertions, we can derive the third, provided “part of” is declared transitive (typically
abbreviated as Trans(partOf)).

* your toe is part of your foot

* your foot is part of your body

= your toe is part of your body
When a relation R is symmetric, it means that ‘if a is related to b through relationship
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R, then b has the same relation to a’; formally: Vz,y(R(z,y) — R(y,z)). For instance,
with connectedTo being symmetric, then:

* Mapungubwe National Park is connected to Northern Thuli Game Reserve

= Northern Thuli Game Reserve is connected to Mapungubwe National Park
We will discuss some other features during the lectures.

4.1.2 OWL syntaxes

There are multiple syntaxes for OWL to meet a variety of requests. Lets start with a
few DL axioms and then look at how it turns out in the DL syntaxes:

firstYearCourse C VisTaughtBy.Professor

mathCourse C JisTaughtBy.{949352}
academicStaffMember C 3 teaches.undergraduateCourse
course C > 1 isTaughtBy

department = > 10 hasMember M < 30 hasMember

This is inconvenient for writing emails, webpages, and some people just do not like the
symbols. To make it slightly more natural language-like (and easier machine-processable),
there is a functional style syntax. The same axioms as above then may look like this:

Class(firstYearCourse partial restriction(isTaughtBy allValuesFrom
(Professor)))

Class(mathCourse partial restriction(isTaughtBy hasValue (949352)))

Class(academicStaffMember partial restriction(teaches someValuesFrom
(undergraduateCourse)))

Class(course partial restriction(isTaughtBy minCardinality(1)))

Class(department partial restriction(hasMember minCardinality(10))
restriction(hasMember maxCardinality(30)))

Then there is the actual RDF/XML serialization, i.e., the default computer-processable
flavour that is specifically for machine consumption, not human consumption. This is
how the beginning of the owl file of the example from the OwlGuide looks like:

<!ENTITY vin
"http://wuw.w3.org/TR/2004/REC-owl-guide-20040210/wine#" >
<!ENTITY food
"http://www.w3.org/TR/2004/REC-owl-guide-20040210/food#" > ...
<rdf :RDF
xmlns:vin="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"
xmlns:food="http://www.w3.org/TR/2004/REC-owl-guide-20040210/food#"
.

<owl:Class rdf:ID="Wine"> <rdfs:subClass0f
rdf :resource="&food;PotableLiquid"/> <rdfs:label
xml:lang="en">wine</rdfs:label> <rdfs:label
xml:lang="fr">vin</rdfs:label> ... </owl:Class>

<owl:Class rdf:ID="Pasta"> <rdfs:subClassOf
rdf :resource="#EdibleThing" /> ... </owl:Class> </rdf:RDF>

You are not expected to be able to manually write an ontology in this syntax—there are
other syntaxes and tools that generate this serialization—but, depending on the mini-
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project and any subsequent work in this area, you may have to be able write software
that can handle such files.
More examples are included in the lecture slides.

4.2 OWL 2

Over the past 10 years, OWL has been used across subject domains, but in the early
years in particular in the health care and life sciences disciplines. Experimentation with
the standard revealed expected as well as unexpected shortcomings in addition to the
ideas mentioned in the “Future extensions” section of [Horrocks et al., 2003], so that a
successor to OWL was deemed to be of value. Work towards a standardization of an
OWL 2 took shape after the OWL Experiences and Directions workshop in 2007 and a
final draft was ready by late 2008. On October 27 2009 it has become the official OWL
2 W3C recommendation®. So, what does OWL 2 consists of, and what does it fix with
respect to the OWL standard of 20047

Limitations of OWL

OWL 2 aims to address the issues described in section 2 of [Cuenca Grau et al., 2008] to a
greater or lesser extent, which is neither a superset nor subset of [Horrocks et al., 2003]’s
ideas for possible extensions. For instance, the consideration to cater for the Unique
Name Assumption did not make it into OWL 2, despite that it has quite an effect on the
complexity of a language [Artale et al., 2009]. We briefly summarise the issues; refer to
[Cuenca Grau et al., 2008] for details.

Expressivity limitations. In OWL, it is not possible to express qualified cardinality
restrictions (e.g., no Bicycle C > 2 hasComponent.Wheel), some relational properties were
perceived to be missing (notably reflexivity, irreflexivity), limitations on data types (e.g.,
to be able to express restrictions to a subset of datatype values (ranges) and relationships
between values of data properties on one object), and some ‘housekeeping’ features were
missing, such as annotations, imports, versioning, and species validation (see p315 of the
paper).

Syntax problems. OWL has both a frame-based legacy (Abstract syntax) and axioms
(DL), which was deemed too confusing. For instance, take the following axiom:

Class(A partial restriction(hasB someValuesFrom(C))

What type of ontology elements do we have? Is hasB is data property and C a datatype,
or is hasB an object property and C a class? OWL-DL has a strict separation of the
vocabulary, but the specification does not precisely specify how to enforce this separation
at the syntactic level. In addition, RDF’s triple notation is difficult to read and process.

Problems with the semantics. We shall not cover this issue. (For the curious: this
has to do with RDF’s blank nodes, but unnamed individuals not directly available in
SHOIN (D), and frames and axioms).

Overview of OWL 2

First, take a look at the ‘orchestration’ of the various aspects of OWL 2 in Figure 4.2. The
top section indicates several syntaxes that can be used to serialize the ontology, where
RDF /XML is required and the other four are optional. There are mappings between an
OWL ontology and RDF graph in the middle, and the lower half depicts that there is
both a direct semantics (“OWL 2 DL”) and an RDF-based one (“OWL 2 full”).

"http://wuw.u3.org/TR/2009/REC-owl2-overview—20091027/
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Figure 4.2: Orchestration of syntax and semantics of OWL 2. (Source:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/).

Second, the OWL 2 DL species is based on the DL language called SROZQ(D)
[Horrocks et al., 2006], which is more expressive than the base language of OWL-DL
(SHOZN (D)) and therewith meeting some of the ontology modellers’ requests, such
as more properties of properties and qualified number restrictions. There is cleaner
support for annotations, debatable (from an ontological perspective, that is) punning
for metamodelling, and a ‘key’ that is not a key in the common and traditional sense
of keys in conceptual models and databases. Also, it irons out some difficulties that
tool implementers had with the syntaxes of OWL and makes importing ontologies more
transparent. To name but a few things, which will be discussed in more detail during
the lecture.

Third, in addition to the OWL 2 DL version, there are three OWL 2 profiles®
[Motik et al., 2009a], which are, strictly speaking, sub-languages of (syntactic restrictions
on) OWL 2 DL so as to cater for different purposes of ontology usage in applications. At
the time of standardization, they already enjoyed a considerable user base. This choice
has its consequences that very well can, but may not necessarily, turn out to be a positive
one; this will be explored further in the block on ontology engineering.

The three profiles are:

e OWL 2 EL, which is based on the ££1" language [Baader et al., 2005], intended

for use with large relatively simple type-level ontologies

e OWL 2 QL, which is is based on the DL-Liter language [Calvanese et al., 2007],

intended for handling and querying large amounts of instances through the ontology,
and

e OWL 2 RL, which is inspired by Description Logic Programs and pD

Shttp://www.w3.org/TR/owl2-profiles/
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[Grosof et al., 2003], intended for ontologies with rules and data in the form of

RDF triples”.
Like with OWL 2 DL, each of these languages has automated reasoners tailored to the
language so as to achieve the best performance for the application scenario. Indirectly, the
notion of the profiles and automated reasoners says you cannot have it all—i.e., very many
modelling features—together in one language and expect to have good performance with
the ontology and ontology-driven information system. Such is life with the limitations
of computers (why this is so, is taught in a theory of computation course), but one
can achieve quite impressive results with the languages and its tools that are practically
not really doable with paper-based manual efforts or OWL 2 DL. If you are a novice in
computational complexity, you may want to consult an informal explanation of trade-offs
between ontology languages and language features [Keet and Rodriguez, 2007], and the
brief recap in Section 4.3 on the general notion of complexity.

During the lecture, we discuss the OWL 2 features and profiles more comprehensively

and provide context to the rationale how and why things ended up the way they did.

4.2.1 OWL 2 features

OWL 2 DL is based on SROZQ(D) [Horrocks et al., 2006], which we have seen in the
DL primer (Section 3.1), which is 2NExpTime-complete [Kazakov, 2008], hence more
expressive than OWL-DL (SHOZN, which is NExpTime-complete [Tobies, 2001]). In
short, and compared to OWL DL, it has fancier metamodelling and annotations, im-
proved ontology publishing, imports and versioning control. It has a variety of syntaxes,
RDF serialization (but no RDF-style semantics). In addition to all the OWL-DL features
(recall Section 4.1.1), one can use the following ones in OWL 2 DL as well:
e Qualified cardinality restrictions, > nR.C and < nR.C, semantics:
= >nRCY ={z|t{y | (z,y) e Rf Ny € C*} > n}
In OWL ObjectMinCardinality(n OPE CE); an example in DL notation
> 3 hasPart.Door
— (£nRCY ={z|#{y | (z,y) e RF Ny € CT} < n}
In OWL ObjectMaxCardinality(n OPE CE), with DL notation and example
< 2 enrolledIn.UGDegree
e Properties of roles:
— Reflexive (globally): Ref(R), with semantics:
Vo : x € AT implies (z,7) € (R)?
— Reflexive (locally): JR.Self, with semantics:
{z|(z,z) € R}
In OWL ObjectHasSelf (OPE); e.g., dknows.Self to state you know yourself.
— Irreflexive: Irr(R), with semantics:
Vr : x € AT implies (z,7) ¢ (R)?
For instance, proper parthood is irreflexive: if you heart is a proper part of
your body, your body cannot be a proper part of your heart.
— Asymmetric: Asym(R), with semantics:
Yo,y : (z,y) € (R)? implies (y,z) ¢ (R)*
For instance, Asym(parentOf): if John is the parent of Divesh, then Divesh
cannot be the parent of John.

"There are slides with more details and examples of OWL 2 RL, which are from the ESWC’09 tutorial
given by Hitzler, Krotzsch, and Rudolf; available at http://www.semantic-web-book.org/w/images/4/
42/0WL2-Rules-Part-2-ESWCO09.pdf
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e Limited role chaining: e.g., Ro S C R, with semantics:

Yy, .yt (y1,y2) € (R)YT and (ys,94) € (S)T imply (y1,v4) € (R)%, and regu-

larity restriction (strict linear order (“<”) on the properties—more details will be

discussed in the lecture). For instance: childOf o childOf C grandchildOf so that one

can deduce that the child of a child is that person’s grandchild.
The tricky part especially in practical ontology development is that some object property
features and axioms work only on simple object properties, ‘simple’ meaning that it has no
direct or indirect subproperties that are either transitive or are defined by means of prop-
erty chains; see section 11.1 of the OWL Structural Specification and Functional-Style
Syntax® [Motik et al., 2009b] for the exact specification of this limitation. Practically,
this means that the following features can be used only on simple object properties:
ObjectMinCardinality, ObjectMaxCardinality, ObjectExactCardinality, ObjectHasSelf,
FunctionalObjectProperty, InverseFunctionalObjectProperty, IrreflexiveObject Property,
AsymmetricObjectProperty, and DisjointObjectProperties. (The ontology development
environment will warn you about it if you use them on a non-simple object property
nevertheless, and will prevent you from running the reasoner.)

4.2.2 OWL 2 Profiles

The main rationale for the profiles are computational considerations (see Section 4.3)
and robustness of implementations with respect to scalable applications. Note: you are
not expected to learn the following lists of features by heart (it can be used as a quick
‘cheat sheet’), but you do need to know, at least, their intended purpose. The more you
practice developing ontologies, the easier it becomes to remember them.

OWL 2 EL

OWL 2 EL is intended for large ‘simple’ ontologies and focuses on type-level knowledge
(TBox). It has a better computational behaviour than OWL 2 DL (polynomial vs.
exponential /open). It is based on the DL language ££1" (PTime complete), and it is
used for the large medical terminology SNOMED CT. Supported class restrictions:

— existential quantification to a class expression or a data range

— existential quantification to an individual or a literal
self-restriction

— enumerations involving a single individual or a single literal
— intersection of classes and data ranges
Supported axioms, restricted to allowed set of class expressions:
— class inclusion, equivalence, disjointness
— object property inclusion (w. or w.o. property chains), and data property inclusion
— property equivalence
— transitive object properties
— reflexive object properties
— domain and range restrictions
assertions
— functional data properties
— keys
NOT supported in OWL 2 EL (with respect to OWL 2 DL):
— universal quantification to a class expression or a data range
— cardinality restrictions

®http://wuw.u3.org/TR/owl2-syntax/
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— disjunction

— class negation

— enumerations involving more than one individual

disjoint properties

— irreflexive, symmetric, and asymmetric object properties

— inverse object properties, functional and inverse-functional object properties

OWL 2 QL

OWL 2 QL aims at scenarios for query answering over a large amount of instances with
the same kind of performance as relational databases (Ontology-Based Data Access; see
Chapter 8). Its expressive features cover several used features of UML Class diagrams
and ER models. It is based on DL-Liteg (more is possible with the Unique Name
Assumption and in some implementations).

The supported axioms in OWL 2 QL take into account what one can use on the
left-hand side of the inclusion operator (C, SubClassOf) and what on the right-hand
side:

e Subclass expressions restrictions:

— a class

— existential quantification (ObjectSomeValuesFrom) where the class is limited

to owl: Thing
— existential quantification to a data range (DataSomeValuesFrom)
e Super expressions restrictions:

— a class

— intersection (ObjectIntersectionOf)

— negation (ObjectComplementOf)
existential quantification to a class (ObjectSomeValuesFrom)
existential quantification to a data range (DataSomeValuesFrom)
Supported Axioms in OWL 2QL:

— Restrictions on class expressions, object and data properties occurring in function-

ality assertions cannot be specialized

— subclass axioms

— class expression equivalence (involving subClassExpression), disjointness

— inverse object properties

— property inclusion (not involving property chains and SubDataPropertyOf)

— property equivalence

— property domain and range

— disjoint properties

— symmetric, reflexive, irreflexive, asymmetric properties

— assertions other than individual equality assertions and negative property assertions
(DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion, and DataPropertyAsser-
tion)

NOT supported in OWL 2 QL (with respect to OWL 2 DL):

— existential quantification to a class expression or a data range in the subclass posi-
tion

— self-restriction

— existential quantification to an individual or a literal

— enumeration of individuals and literals

— universal quantification to a class expression or a data range

— cardinality restrictions
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— disjunction
— property inclusions involving property chains
functional and inverse-functional properties

— transitive properties
— keys
— individual equality assertions and negative property assertions

OWL 2 RL

OWL 2 RL’s development was motivated by what fraction of OWL 2 DL can be expressed
by rules (with equality) and scalable reasoning in the context of RDF(S) application. It
uses rule-based technologies (forward chaining rule system, over instances) and is inspired
by Description Logic Programs and pD*. Reasoning in PTime.
Supported in OWL 2 RL:
e More restrictions on class expressions (see table 2 of [Motik et al., 2009a], e.g. no
SomeValuesFrom on the right-hand side of a subclass axiom)
e All axioms in OWL 2 RL are constrained in a way that is compliant with the
restrictions in Table 2.
e Thus, OWL 2 RL supports all axioms of OWL 2 apart from disjoint unions of
classes and reflexive object property axioms.
e No V and — on the left-hand side, and 3 and LI on right-hand side of C

4.2.3 OWL 2 syntaxes

As mentioned in Section 4.1.2, there are more syntaxes for OWL 2 than for OWL. Let
us take as example the DL axiom

FirstYearCourse C VisTaughtBy.Professor
Rendering this in RDF /XML yields:

<!—— http://www.semanticweb.org/ontologies/2011/10/exOKB12.owl#First YearCourse ——>

<owl:Class rdf:about="&exOKB12;First YearCourse” >
<rdfs:subClassOf rdf:resource="&owl;Thing” />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="&exOKB12;isTaughtBy” />
<owl:allValuesFrom rdf:resource="&exOKB12;Professor” />
< /owl:Restriction>
< /rdfs:subClassOf>
< /owl:Class>

This RDF/XML fragment tells us that the ontology is called ex0KB12 (abbreviated
name for the full URI), FirstYearCourse is a subClassOf the root-class Thing, and
of the restriction on FirstYearCourse, being that the restriction is owl:onProperty
object property isTaughtBy and the ‘filler’, i.e., to which the restriction applies, is
allValuesFronm (i.e., V) Professor.

In OWL/XML (also not intended for human consumption), we have the same as
follows:

<SubClassOf>

<Class IRI="#FirstYearCourse” />
<Class abbreviatedIRI="owl:Thing” />
</SubClassOf>

<SubClassOf>

<Class IRI="#FirstYearCourse” />
<ObjectAllValuesFrom>
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<ObjectProperty IRI="+#isTaughtBy” />
<Class IRI="#Professor” />
< /ObjectAllValuesFrom>
</SubClassOf>

The functional syntax equivalent is as follows:

Declaration(Class (: First YearCourse))
SubClassOf(:First YearCourse owl: Thing)
SubClassOf(:First YearCourse ObjectAllValuesFrom(:isTaughtBy :Professor))

The Manchester syntax rendering is intended exceedingly for human reading, for non-
logicians, and for ease of communication in, say, emails that do not render mathematical
symbols well. On the one hand, there is a Protégé-generated Manchester syntax render-
ing:

Class: <http://www.semanticweb.org/ontologies/2011/10/exOKB12.owl#FirstYearCourse>

SubClassOf:
owl: Thing,
<http://www.semanticweb.org/ontologies/2011/10/exOKB12.owl#isTaughtBy> only
<http://www.semanticweb.org/ontologies/2011/10/exOKB12.owl#Professor>

But this usually gets abbreviated as follows:

Class: FirstYearCourse
SubClassOf:

owl: Thing,

isTaughtBy only Professor

or, even shorter:

First YearCourse SubClassOf isTaughtBy only Professor

There are several really non-standard representations of OWL ontologies for various
reasons, such as interface design and making it easier for non-logicians to contribute to
ontology development. For instance, in pseudo-natural language with ACE (which we

will look at later in Chapter 7), and graphical renderings, like with Ontograf and depicted
in Figure 4.3, where the axiom shows when hovering over the coloured line representing

the object property.

.

| Thi "
" _ FirstYearCourse - isTaughtBy(Subclass all) —= Professor
. ..._‘_‘__ ! .

{ FirstYearCourse

Figure 4.3: Screenshot of the “ FirstYearCourse C VisTaughtBy.Professor” in the Ontograf plugin
for the Protégé ontology development environment; the axiom appears when hovering over the
coloured dashed line representing the object property.

4.3 Computational Properties

We have seen different ‘species’ of OWL, which have more or less language features, and
that this was motivated principally by scalability issues of the very expressive languages.
Different languages/problems have different complexity (NP-complete, PSPACE, EXP-
TIME etc.). Section 4.3.1 contains a very brief recap on complexity, and the specifics for
OWL are summarised in Section 4.3.2.
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4.3.1 Complexity recap

Theory of computation concerns itself with, among other things, languages and its dual,
problems. A problem is the question of deciding whether a given string is a member of
some particular language; more precisely: if ¥ is an alphabet, L is a language over 3,
then the problem L is “given a string w € ¥*, decide whether or not w is in L”. The
usage of ‘problem’ and ‘language’ is interchangeable. When we focus on strings for their
own sake (e.g., in the set {0"1" | n > 1}), then we tend to think of the set of strings as
a language. When we focus on the ‘thing’ that is encoded as a string (e.g., a particular
graph, a logical expression, satisfiability of a class), we tend to think of the set of strings
as a problem. Within the context of ontologies, we typically talk of the representation
languages and reasoning problems.

There are several classes of languages; see Figure 4.4. The regular free languages
have their counterpart with finite automata; the context-free languages with push-down
automata; the recursive languages is the class of languages accepted by a Turing machine
(TM) that always halts; the recursively enumerable languages is the class of languages
defined by a TM; the non-recursively enumerable languages is the class of languages for
which there is no TM (e.g., the diagonalization language). The recursive languages, and,
to a lesser extent, the recursively enumerable languages, are by far the most interesting
ones for ontologies.

regular free ™\ context-free
languages languages

recursively
enumerable
languages

recursive
languages

non-recursively
enumerable languages

Figure 4.4: Graphical depiction of the main categories of languages.

Turing machines are used as a convenient abstraction of actual computers for the no-
tion of computation. A TM that always halts = algorithm, i.e., the TM halts on all inputs
in finite time, either accepting or rejecting; hence, the recursive languages are decidable
problems/languages. Problems/languages that are not recursive are called undecidable,
and they do not have an algorithm; if they are in the class of recursively enumerable
languages (but not recursive), then they have a procedure that runs on an arbitrary TM
that may give you an answer but may very well never halt; see also Figure 4.5. First order
predicate logic in its full glory is undecidable. Description logics are decidable fragments
of first order predicate logic, i.e., they are recursive languages and (can) have algorithms.

input w yes (winL)
Algorithm (Recursive) PEW o A i
no (w notin L)

. es (winL
Procedure (Recursively  input w L —= Y ( )
—_— > P
Enumerable)
non-Recursively input w
2?7
Enumerable

Figure 4.5: Graphical depiction of the main categories of languages; the rectangle denotes a
Turing Machine; w is a string and L is a language.
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Figure 4.6: General idea of time complexity of an algorithm, as function of the size of the input.
e.g.: All basic arithmetic operations can be computed in polynomial time; evaluating a position
in generalized chess and checkers on an n X n board costs exponential time.

Not all algorithms are alike, however, and some take up more time (by the CPU)
or space (in the form of memory size) to compute the answer than others. So, we want
to know for a given problem, the answer to “how much time [/space] does it take to
compute the answer, as a function of the size of the input?”. If the computation takes
many years with the top-of-the-range hardware, then it is still not particularly interesting
to implement (from a computer science viewpoint, that is). To structure these matters,
we use the notion of a complezity class. There are very many of them, but we only refer to
a few in the context of ontologies. For instance, it may take a polynomial amount of time
to compute class subsumption for an OWL 2 EL-formalised ontology and exponential
time to compute satisfiability of an EER diagram (represented in the DL DLR;sy) and
the bigger the diagram (more precisely: the logical theory), the longer it takes. The
intuition is depicted in Figure 4.6: for small ontologies, there is but a minor difference in
performance, but one really starts to notice it with larger logical theories. Looking ahead
at the complexity classes relevant for OWL, we list here a description of the meaning of
them (copied from the OWL 2 Profiles Standard page [Motik et al., 2009al):

- Decidability open means that it is not known whether this reasoning problem is

decidable at all.

- Decidable, but complexity open means that decidability of this reasoning prob-
lem is known, but not its exact computational complexity. If available, known lower
bounds are given in parenthesis; for example, (NP-Hard) means that this problem
is at least as hard as any other problem in NP.

- X-complete for X one of the complexity classes explained below indicates that
tight complexity bounds are known—that is, the problem is known to be both in
the complexity class X (i.e., an algorithm is known that only uses time/space in X)
and hard for X (i.e., it is at least as hard as any other problem in X). The following
is a brief sketch of the classes used in this table, from the most complex one down
to the simplest ones.

- 2NEXPTIME is the class of problems solvable by a nondeterministic algo-
rithm in time that is at most double exponential in the size of the input (i.e.,
roughly 22", for n the size of the input).

- NEXPTIME is the class of problems solvable by a nondeterministic algo-
rithm in time that is at most exponential in the size of the input (i.e., roughly
2" for n the size of the input).

- PSPACE is the class of problems solvable by a deterministic algorithm using
space that is at most polynomial in the size of the input (i.e., roughly n¢, for
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n the size of the input and ¢ a constant).

- NP is the class of problems solvable by a nondeterministic algorithm using
time that is at most polynomial in the size of the input (i.e., roughly n¢, for
n the size of the input and ¢ a constant).

- PTIME is the class of problems solvable by a deterministic algorithm using
time that is at most polynomial in the size of the input (i.e., roughly n¢, for
n the size of the input and ¢ a constant). PTIME is often referred to as
tractable, whereas the problems in the classes above are often referred to as
intractable.

- LOGSPACE is the class of problems solvable by a deterministic algorithm
using space that is at most logarithmic in the size of the input (i.e., roughly
log(n), for n the size of the input and ¢ a constant). NLOGSPACE is the
nondeterministic version of this class.

- AC?Y is a proper subclass of LOGSPACE and defined not via Turing Machines,
but via circuits: ACP is the class of problems definable using a family of
circuits of constant depth and polynomial size, which can be generated by a
deterministic Turing machine in logarithmic time (in the size of the input).
Intuitively, AC? allows us to use polynomially many processors but the run-
time must be constant. A typical example of an ACY problem is the evaluation
of first-order queries over databases (or model checking of first-order sentences
over finite models), where only the database (first-order model) is regarded
as the input and the query (first-order sentence) is assumed to be fixed. The

undirected graph reachability problem is known to be in LogSpace, but not in
ACY.

4.3.2 OWL and computational complexity

In this setting, we are interested in the following reasoning problems: ontology consis-
tency, class expression satisfiability, class expression subsumption, instance checking, and
(Boolean) conjunctive query answering (recall Section 3.3). When evaluating complexity,
the following parameters are considered (copied from section 5 of the OWL 2 Profiles
standard [Motik et al., 2009a):

e Data Complexity: the complexity measured with respect to the total size of the
assertions in the ontology.

e Taxonomic Complexity: the complexity measured with respect to the total size
of the axioms in the ontology.

e Query Complexity: the complexity measured with respect to the total size of
the query.

e Combined Complexity: the complexity measured with respect to both the size
of the axioms, the size of the assertions, and, in the case of conjunctive query
answering, the size of the query as well.

Table 4.3 summarizes the known complexity results for OWL 2 under both RDF and
the direct semantics, OWL 2 EL, OWL 2 QL, OWL 2 RL, and OWL 1 DL. The results
refer to the worst-case complexity of these reasoning problems and, as such, do not
say that implemented algorithms necessarily run in this class on all input problems, or
what space/time they use on some/typical/certain kind of problems. For X-complete
problems, these results only say that a reasoning algorithm cannot use less time/space
than indicated by this class on all input problems, where “X” is one of the complexity
classes listed in the previous section.
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The interested reader may want to have a look at the Description Logic Complexity
Navigator? to see how other combinations of language features fare in the complex-
ity (of concept satisfiability and ABox consistency), and more details can be found in
[Baader et al., 2008].

4.4 Exercises

Exercise 7. Install Protégé 4.x from the Protégé website at http://protege.stanford.
edu/overview/protege-owl.html, if not already installed on your computer, and ac-
quaint yourself with the software by going through the Pizza Ontology Tutorial (can
be downloaded online, or from the course’s Vula page). Note that the Pizza tutorial is
mainly intended to acquaint yourself with the tool, not that it is a cookbook for best
practices in ontology development.

Exercise 8. Create a new ontology, add the vegan and vegetarian from last week’s
exercise, and check both O F Vegan C Vegetarian and O F Vegetarian E Vegan.
Describe the outcomes.

Exercise 9. Have a look at another ontology development environment: MoKi (at
https://moki.fbk.eu), which uses a semantic wiki.
1. Repeat the previous exercise.
2. Compare the tools by considering, among others: do they both support OWL 2 DL?
Which one is easier to navigate? Which one has the most features to help ontology
development? Which one is easier for a collaborative ontology development project?

Exercise 10. Describe in your own words the motivations to develop OWL 2.
Exercise 11. What are the new features in OWL 2 DL compared to OWL-DL?
Exercise 12. What are the new features in OWL 2 DL compared to OWL-DL?

Exercise 13. Complete Table 4.4: Verify the question marks in the table (tentatively
all “=”), fill in the dots, and any “+” should be qualified at to what the restriction is.
You may prefer to distribute this exercise among your class mates.

Exercise 14. Consider some medical ontology. You know that an injury (a cut, a
fracture) to a bone in your hand is also an injury to your hand. How can you model
this, and similar, information in an OWL 2 DL ontology such that it infers this not only
for injuries to hands, but for any injury to any anatomical body part to an injury to its
(direct/indirect) whole? Which OWL 2 DL feature do you need for this?

Exercise 15. Load universityl.owl (note the OWL species) in Protégé and try to
represent:
a. A Joint Honors Maths & Computer Science Student, who is one who takes both
Computer Science and Mathematics modules.
b. A Single Honours Maths Student (or [Computer Science, Economics]) is one who
takes only Maths [Computer Science, Economics] modules.
Is it possible? If yes, how, if not, why not?

Exercise 16. Classify the ontology of the previous question, and describe what happened
and changed.

%http://www.cs.man.ac.uk/~ezolin/d1/
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Table 4.4: Partial comparison of some OWL features

Language = OWL 1 OWL 2 | OWL 2 Profiles
Feature | Lite | DL | DL |EL|QL| RL

Role hierarchy + T I ] +
N-ary roles (where n > 2) — — — . ?
Role chaining — — + ] _
Role acyclicity - — _ ] _
Symmetry + I
Role values - - _ ] _

_|_
_|_

Qualified number restrictions

One-of, enumerated classes

Covering constraint over concepts

5
Functional dependency +
5
7

Complement of concepts
Complement of roles — —
Concept identification — - — . —
Range typing — +
Reflexivity - -

| [+

+|+

Antisymmetry - - - . -
Transitivity + +
Asymmetry ? ?

+ 4|+
|
+
+

Irreflexivity - -

Exercise 17. The university has a regulation that each undergraduate student must
take exactly 2 modules. How might you model this restriction the the ontology of the
previous question?

Exercise 18. Student 9 takes MT101, CS101, and CS102. Do you think your ontology
is consistent? Describe why. Check your answer by adding the student and his courses,
run the reasoner and examine the inferences (in yellow).

Exercise 19. Student 10 takes MT101, CS101, and EC101. Do you think your ontology is
consistent? Describe why. Check your answer by adding the data, running the reasoner,
and examining the inferences.

Exercise 20. Open the computerscience.owl, find the principal errors in the ontology,
and distinguish them from the ‘knock-on’ errors that are merely a consequence of the
principal errors.

Exercise 21. What would you propose to a modeller how to fix it, and why? Note that
“fixing” is to be understood as obtaining a satisfiable ontology other than just deleting
the unsatisfiable classes.

4.5 Literature and reference material

1. Tan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7, 2003.
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CHAPTER b

Methods and Methodologies

In the previous block we looked at languages for representing ontologies, and got expe-
rience in reading existing ontologies, adding and removing some axioms, and the auto-
mated reasoner. But how exactly did someone come up with the whole ontology in the
first place? What can, or should, you do when you have to develop your own ontology?
Just like in software engineering, there are methods and methodologies to guide you
through it, or at least help out with one of the steps in the development of an ontology.

There is, however, not just one way of doing it or a single up-to-date comprehen-
sive methodology for ontology development that covers everything you possibly probably
need. There are several leaner proposals along the line of generic ‘waterfall’ and ‘agile’
approaches, inspired by software development methodologies, which are at the level of
general guidelines and more and less detailed stages, which we shall cover in this chap-
ter. Diagrammatically, such (generalised!) methodologies have the tasks as shown in
Figure 5.1: this one may look like a ‘waterfall’, but practically, it can be an iterative not
only within the ontology development, but also that “maintenance” may involve sub-
stantial redesign or adding a new module that follows those development steps again.

There are also many methods and guidelines, which to a greater or lesser extent
can form part of a comprehensive ontology development process. A main reason for this
state of affairs is that there is still much to be done, and there are many different use-case
scenarios.

We will build up from methods to methodologies in this chapter, and go into some
detail of the ‘top-down’ and ‘bottom-up’ approaches in the next two chapters. Practically,
this means we start with high-level methodologies in Section 5.1, then a sampling of a few
methods that can be used as a component within those methodologies (Section 5.2), and
then point out there are dependencies along the process, looking at some consequences
choices one can make (Section 5.3).

5.1 Methodologies for ontology development

Several specific methodologies for ontology development exist following more or less the
general idea depicts din Figure 5.1, notably METHONTOLOGY [Fernéndez et al., 1999],
MOKI [Ghidini et al., 2009], On-To-Knowledge

7
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Feasibility study (problems, opportunities, potential solutions,
economic feasibility)

Domain analysis (motivating scenarios, competency questions,
existing solutions)

Conceptualization (conceptualization of the model, integration and
extension of existing solutions)
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plementation (implementation of the formal model
in a representation language)
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Maintenance {adaptation of the ontology according to
new requirements)

Use (ontology based search, integration, negotiation)

Figure 5.1: Main tasks in ontology engineering (Source: [Simperl et al., 2010])

[Staab et al., 2001], the NeON methodology [Suarez-Figueroa et al., 2008], Melting Point
methodology [Garcia et al., 2010], OntoSpec [Kassel, 2005], DiDOn [Keet, 2012b], and
the “Ontology Development 101”7 (OD101) [Noy and McGuinness, 2001]. They are not
simply interchangeable in that one could pick any one of them and it will work out
well. Besides that some are older (outdate, perhaps, by now) than others, they can be
distinguished in core approach, being between:

e micro-level ontology authoring versus a macro-level systems-view of ontology de-
velopment;

e isolated, single, stand-alone, ontology development versus collaborative develop-
ment of ontologies and ontology networks.

Micro-level methodologies focus on the viewpoint of the details emphasising formalisation
aspects, which goes into ontology authoring, for it is about writing down the actual axioms
and design choices sometimes even driven by the language. Macro-level methodologies, on
the other hand, emphasise the processes from an information systems and IT viewpoint,
such as depicted in Figure 5.1. They may merge into comprehensive methodologies in
the near future, but are not yet at present.

Regarding the second difference, this reflects a division between ‘old’ and ‘new’
methodologies in the sense that the older ones assume a setting that was typical of
10-20 years ago: the development of a single monolithic ontology by one or a few peo-
ple in one location. The more recent ones take into account the changing landscape
in ontology development over the years, being towards collaboratively building ontology
networks that cater for characteristics such as dynamics, context, collaborative, and dis-
tributed development. For instance, domain experts and knowledge engineers may work
on an ontology simultaneously from two different locations, and the automated reasoning
may well be distributed over other locations with more powerful machines.

The remainder of this section provides an overview of these two types of guidelines,
and closes with a few notes on tools.
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5.1.1 Macro-level development methodologies

The macro-level methodologies all will get you started with domain ontology development
in a structured fashion, albeit not all in the exact same way, and sometimes that is even in-
tended like that. For instance, one may commence with a feasibility study and assessment
of potential economic benefits of the ontology-driven approach to solving the problem(s)
at hand, or assume that is sorted out already or not necessary and commence with the
actual development methodology by conducting a requirements analysis of the ontology
itself and/or find and describe case studies. A well-known instantiation of the generic
notions of the development process depicted in Figure 5.1, is the comparatively compre-
hensive Methontology methodology [Gémez-Pérez et al., 2004], which has been applied
to various subject domains since its development in the late 1990s (e.g., the chemicals
[Fernandez et al., 1999] and legal domain [Corcho and Mariano Fernandez-Lépez, 2005]).
This methodology is for single ontology development and while several practicalities are
superseded with more recent [Corcho et al., 2003] and even newer languages, tools, and
methodologies [Suarez-Figueroa et al., 2008], the core procedure still holds. The five
main steps are:

1) specification,

2) conceptualization with intermediate representations such as in text or diagrams

3) formalization,

4) implementation, and

5) maintenance

In addition, there are various supporting tasks, such as documentation and version con-
trol. Ontology management may vary somewhat across the methodologies, such as help-
ing with development of a Gantt chart for several ontology development scenarios. A
refinement over the years is, among others, the better provision of ‘intermediate repre-
sentations’; e.g., the MOdelling wiKI MoKi' has a specific feature for automatic transla-
tion between formal and semi or informal specifications by the different experts, and is
even tailored to provide an intermediate representation interface to let domain experts,
ontologists, and logicians work together on a single project.

METHONTOLOGY is, practically, superseded by the NeON methodology. Instead of
the neat, straight-forward five steps, there are many steps; see Figure 5.2. Various
development scenarios are then specified by combining a subset of those steps and in
some order, which then results in different planning of the ontology activities.

Not even the NeON methodology covers all options—i.e., all the possible permutations
at each step—that should be in an ontologist’s ‘tool box’, though. For instance, some
mention “non-ontological resource reuse” for bottom-up ontology development (number
2 in Figure 5.2), and note NLP and reuse of thesauri, but lack detail on how this is
to be done—for that, one has to search the literature and look up specific methods
and tools and the other bottom-up routes mentioned in Chapter 7 that can or have
to be ‘plugged in’ the methodology actually being applied. A glaring absence from
the methodologies is that none of them incorporates a ‘top-down’ step on foundational
ontology use [Garcia et al., 2010] to enforce precision and interoperability with other
ontologies and reuse generic classes and object properties to facilitate domain ontology
development. We will look at this in some detail Chapter 6. For the older methodologies
this may be understandable, give that at the time they were hardly available, but it is a
missed opportunity for the more recent methodologies.

Lthe MOdelling wiKI MOKI http://moki.fbk.eu/ was developed during the APOSDLE project? for
work-integrated learning [Ghidini et al., 2009])
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Figure 5.2: Graphical depiction of several different steps in ontology development, where each
step has its methods and interactions with other steps (Source: [Suarez-Figueroa et al., 2008])

A useful recent addition to the ontology development methodology landscape is the

Ontology Summit 2013 Communiqué’s® take on the matter with the ontology lifecycle
model; see Figure 5.3. Each stage has its own set of questions that ought to be answered
satisfactorily. To give you a flavour of those questions that need to be answered in an
ontology development project, I include here random selection of such questions at each
stage, which also address evaluation of the results of that stage (see the communiqué for
more of such question):

e Requirements development phase
— Why is this ontology needed? (What is the rationale? What are the expected
benefits)?
— Are there existing ontologies or standards that need to be reused or adopted?
— What are the competency questions? (what questions should the ontology
itself be able to answer?)
e Ontological analysis phase
— Are all relevant terms from the use cases documented?
— Are all entities within the scope of the ontology captured?
e System design phase
— What operations will be performed, using the ontology, by other system com-
ponents? What components will perform those operations? How do the busi-
ness requirements identified in the requirements development phase apply to
those specific operations and components?

*nttp://ontolog.cim3.net/cgi-bin/wiki.pl?0ntologySummit2013_Communique



5.1. Methodologies for ontology development 81

— How will the ontology be built, evaluated, and maintained? What tools are
needed to enable the development, evaluation, configuration management, and
maintenance of the ontology?

Evaluation
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Figure 5.3: Ontology Summit 2013’s lifecycle model (Source: http://ontolog.cim3.net/
cgi-bin/wiki.pl?0ntologySummit2013_Communique)

It is beyond the current scope to provide a comparison of the methodologies (see for
a recent overview [Garcia et al., 2010]). Either way, it is better to pick one of them to
structure your activities for developing a domain ontology than using none at all. Using
none at all amounts to re-inventing the wheel and stumbling upon the same difficulties
and making the same mistakes developers have made before, but a good engineer has
learned from previous mistakes. The methodologies aim to prevent common mistakes and
omission, and lets you to carry out the tasks better than otherwise would have occurred
without using one.

5.1.2 Micro-level development

OntoSpec, OD101, and DiDOn can be considered ‘micro-level’ methodologies: they focus
on guidelines to formalise the subject domain, i.e., providing guidance how to go from an
informal representation to a logic-based one. While this could be perceived to be part
of the macro-level approach, as it happens, such a ‘micro-level view’ actually does affect
some macro-level choices and steps. It encompasses not only axiom choice, but also other
aspects that affects that, such as:
1) Requirements analysis, with an emphasis on purpose, use cases regarding expres-
siveness (temporal, fuzzy, n-aries etc.), types of queries, reasoning services needed;
2) Design an ontology architecture, such as modular, and if so, in which way, dis-
tributed or not, which (logic-based) framework to use;
3) Choose principal representation language and consider encoding peculiarities;
4) Consider and choose a foundational ontology and make modelling decisions (e.g.,
on attributes and n-aries as relations or classes);
5) Consider domain, top-domain level, ontology design pattern ontology reuse, if ap-
plicable, and any ontology matching technique required as a result of that;
6) Consider semi-automated bottom-up approaches, tools, and language transforma-
tions, and remodel if needed to match the decisions in steps 3 and 4;
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7) Formalization (optionally with intermediate representations), including:
a) examine and add the classes, object properties, constraints, rules taking into
account the imported ontologies;
b) use an automated reasoner for debugging and detecting anomalous deductions
in the logical theory;
c) use ontological reasoning services for ontological quality checks (e.g., Onto-
Clean and RBox Compatibility);
d) add annotations;
8) Generate versions in other ontology languages, ‘lite’ versions, etc, if applicable;
9) Deployment, with maintenance, updates, etc.
Some of them are incorporated also in the macro-level methodologies, but do not yet
clearly feature in the detail required for authoring ontologies. There is much to say
about these steps, and even more yet to be investigated and developed (and they will be
revised and refined in due time), and some more detail and an example can be found in
[Keet, 2012b]. Let us look briefly at the language choice and some modelling choices on
formalising it, in order to demonstrate that the ‘micro’ is not as as micro ‘single step’ as
it initially might seem, and that the micro aren’t simply small trivial choices to make in
the development process.

The representation language

Regarding formalisation, the first aspect is to choose a suitable logic-based language,
which ought to be the optimal choice based on the language and automated reasoning
requirements (if any), that, in turn, ought to follow from the overall purpose of the
ontology (due to computational limitations), if there is a purpose at all [Keet, 2010a).
Generalising a bit, they fall broadly into two main categories: light-weight ontologies—
hence, languages—to be deployed in systems for, among others, annotation, natural lan-
guage processing, and ontology-based data access, and there are ‘scientific ontologies’ for
representing the knowledge of a subject domain (e.g., the Foundational Model of (human)
Anatomy [Rosse and Mejino Jr, 2003], BioPax for biological pathways [Demir et al., 2010],
data mining and optimisation [Hilario et al., 2011, Keet et al., 2015]). More importantly
for choosing the suitable language, is that the first group of ontologies require support
for navigation, simple queries to retrieve a class in the hierarchy, and scalability. Thus,
a language with low expressiveness suffices, such as the Open Biological and biomedical
Ontologies’ obo-format, the W3C standardised Simple Knowledge Organisation System
(SKOS) language (essentially RDF) [Miles and Bechhofer, 2009], and the OWL 2 EL or
OWL 2 QL profile [Motik et al., 2009a]. For a scientific ontology, on the other hand, we
need a very expressive language to capture fine-grained distinctions between the entities.
This also means one needs (and can use fruitfully) more reasoning services, such as satis-
fiability, classification, and complex queries. One can choose any language, be it full first
order predicate logic with or without an extension (e.g., a temporal extension), or one of
the very expressive OWL species to guarantee termination of the reasoning services and
foster interoperability and reuse with other ontologies. The basic idea is summarised in
Figure 5.4, which is yet to be refined further with more ontology languages, such as the
OWL 2 RL profile or SWRL for rules and the DLR family of DL languages that can
handle n-ary relationships (with n > 2) properly.

The analysis of the language aspects can be pushed further, and one may wish to
consider the language in a more fine-grained way and prefer one semantics over another
and one ontological commitment over another. For instance, assessing whether one needs
access to the components of a relationship, the need for n-aries, or whether asymmetry is
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Use OWL (2) DL

Figure 5.4: A preliminary decision diagram to choose a suitable ontology language for one’s
prospective ontology (with indications of current typical usage and suggestions for use).

essential, and, e.g., graph-based versus model-theoretic semantics, and e.g., the position-
alist or standard view commitments. This is interesting from a logic and philosophical
perspective at a more advanced level of ontology engineering and research, which we will
not cover in this introductory course to a practically usable detail.

Encoding Peculiarities

This is tricky to grasp at the start: there may be a difference between what the domain
expert sees in the tool—what it is ‘understood to represent’—and what you, as the
computer scientist, know how it works regarding the computational representation at the
back-end that a domain expert need not know about. For instance, a modeller sees an
ontology in the interface of a software application, but it is actually stored in a database,
or sees an n-ary relationship, but this is encoded as 3 binaries behind the scenes. The
former has to do with the notion of representing classes as instances in the system (not
classes-as-instances in the ontology!). For instance, Chair is a universal, class, or concept
that is represented in the OWL ontology as class Chair, but one equally well can store
Chair in a database table, by which it mathematically has become an instance, yet it is
‘thought of’ and pretended to be a universal, class, or concept in the graphical interface.
This is primarily relevant for SKOS and OBO ontologies. Take the Gene Ontology, among
others, which is downloadable in OBO or OWL format—i.e., its taxonomy consists of,
mathematically, classes—and is available in database format—i.e., mathematically it is
a taxonomy of instances. This does not have to be a concern of the subject domain
experts, but it does affect how the ontology can be used in ontology-driven information
systems. A motivation for storing the ontology in a database, is that databases are much
better scalable, which is nice for querying large ontologies. The downside is that data in
databases are much less usable for automated reasoning. As an ontology engineer, you
will have to make such trade-offs.

There is no such choice for SKOS ‘ontologies’, because each SKOS concept is always
serialised as an instance, as we shall see in Chapter 7.
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One also could avail of “punning” as a way to handle second-order logic rules in a
first-order setting and use the standard reasoners instead of developing a new one (that
is, not in the mode of confusing class as instance, but for engineering reasons). This can
be done by converting the TBox into an ABox, encode the second-order rules in the TBox
and classify the classes-converted-into-individuals accordingly. We will come across one
such example with OntoClean in the next chapter in Section 5.2.2.

In short: one has to be careful with the distinction between the ‘intended meaning’
and the actual encoding.

On formalizing it

The ‘how to formalise it? question is not new at all, neither in IT and Computing
[Halpin, 2001, Hofstede and Proper, 1998] nor in logic [Barwise and Etchemendy, 1993],
and perhaps more of those advances made elsewhere should be incorporated in ontol-
ogy development methodologies. Some preliminary recent efforts for micro-level ontol-
ogy development that also includes usage of a foundational ontology are presented in
[Keet, 2012b].

Step 7a in the above-mentioned outline for micro-level development concerns formal-
ising the domain adhering to the modelling choices made, such as n-aries as classes or as
object properties, how to handle the ‘attributes’, any approximations used in the less ex-
pressive language, typing of the object properties, and use of other modelling aides, such
as ONTOPARTS, sample populations, and so forth. For instance, one can can formalise
the statement that a person runs a marathon as two classes, Person and Marathon, and
one object property, runs. We can’t say that each person runs a marathon, but it is true
that each marathon is run by at least one persons, so we could add to our ontology:

Marathon T Jdruns™.Person
Another option is to make a whole class hierarchy of processes, including Running, add
the two classes, and relate them through tow new object properties: a person participates
in a Running process, and the Running process is part of a Marathon. The latter option
may make more sense after going through the next chapter. Whichever way you choose,
do try to do it consistently throughout.

5.2 Methods to improve an ontology’s quality

The methodologies we have seen in the previous section may include methods at a partic-
ular stage. Methods that help the ontologist in certain tasks of the ontology engineering
process include, but are not limited to, assisting the modelling itself, how to integrate
ontologies, and supporting software tools. From a modeller’s viewpoint, the compara-
tively ‘easy’ tool support is that of explanations and root justifications, which we only
touch upon in the next section. The more challenging aspect is to model some piece of
knowledge in a ‘good’ way, and have tool support to help you with it that is based on
solid modelling principles, an example of which we shall look at afterward.

5.2.1 Explanation and justification

People make errors with respect to what they intend to represent in the ontology, or
do it correctly, but are somewhat surprised by one or more deductions. The automated
reasoners can help explain that, or: ‘justify’ the deduction. The more recent versions
of ontology development environments have this feature already implemented, and you
have come across it during the exercises (by having clicked on the “?” on the right of
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the yellow deduction in Protégé). Put differently: you have been using an automated
reasoner to ‘debug’ the ontology.

The explanation feature uses the standard reasoning services and new reasoning ser-
vices tailored to pinpointing the errors and explaining the entailments. Such ‘debug-
ging’ goes under terms like glass box reasoning [Parsia et al., 2005], (root) justification
[Horridge et al., 2008], explanation [Borgida et al., 2008], and pinpointing errors. While
they are useful topics, we will spend comparatively little time on it, because it requires
some more, and more in-depth, knowledge of Description Logics and its (mostly tableaux-
based) reasoning algorithms. Those techniques use the automated reasoner to at least
locate modelling issues—Ilimited to logic alone, not ontological issues—and use additional
algorithms to explain each deduction in the most succinct way, instead of just returning
a bunch of inconsistent classes, near-‘magical’ reclassifications of classes, and several jus-
tifications. Proposing possible fixes automatically is yet a step further and work is under
way to address that.

Despite brushing over the technical details, it may be useful anyhow to have a quick
look at common mistakes and surprising consequences. Parsia et al. [Parsia et al., 2005]
observed the following ones (in OWL DL ontologies) regarding unsatisfiable classes, un-
desirable inferred subsumptions, and inconsistent ontologies. The basic set of clashes for
concepts (w.r.t. tableaux algorithms) are:

e Atomic: An individual belongs to a class and its complement

e Cardinality: An individual has a max cardinality restriction but is related to more
distinct individuals

e Datatype: A literal value violates the (global or local) range restrictions on a
datatype property

The basic set of clashes for knowledge bases (ontology + instances) are:

e Inconsistency of assertions about individuals, e.g., an individual is asserted to be-
long to disjoint classes or has a cardinality restriction but related to more individ-
uals

e Individuals related to unsatisfiable classes

e Defects in class axioms involving nominals (owl:oneOf, if present in the language)
Knowing this should also help you with understanding the automatically generated ex-
planations, especially when the ontology is large and the explanation as well, and, hence,
figuring out a suitable repair for the defect.

More detailed information about typical misconceptions can also be found in, among
others, [Rector et al., 2004] (who use the pizza ontology to describe them).

5.2.2 OntoClean to correct a taxonomy

OntoClean* [Guarino and Welty, 2009] helps the ontologist to find errors in a taxonomy,
and explains why. One might ask oneself: who cares, after all we have the reasoner to
classify our taxonomy anyway, right? Indeed, but that works only if you have declared
many properties for the classes so that the reasoner can sort out the logical issues (rec-
ollect Section 3.3). However, it is not always the case that many property expressions
have been declared and those reasoners does not detect any ontological issues.

OntoClean fills this gap for taxonomies. It uses several notions from philosophy, such
as rigidity, identity criteria, and wunity (based on [Guarino and Welty, 2000a]
[Guarino and Welty, 2000b]) to provide modelling guidelines. Let’s take rigidity as brief
example (we go into the details during the lecture and tutorial). There are four different
ones, but here we use just two: rigid and anti-rigid, defined as follows:

‘http://www.ontoclean.org/
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Definition 5.1 (+R). A rigid property ¢ is a property that is essential to all its instances,
i.e., Veo(z) — Oo(x).

Definition 5.2 (~R). An anti-rigid property ¢ is a property that is not essential to all
its instances, i.e., Ved(r) — —Oo(x).

We use definitions like these two to annotate each class in the ontology. For instance,
a modeller may want to assert that Apple is rigid (each instance remains an apple during
its entire existence) and being a Professor is anti-rigid (all individuals that are professors
now were at some time not a professor).

Subsequently, we apply the meta-rules to reclassify the classes. For our rigid and
anti-rigid meta-property, the applicable rule is as follows:

e Given two properties, p and g, when q subsumes p the following constraint hold:

1. If q is anti-rigid, then p must be anti-rigid

Or, in shorthand: +R ¢~ R, i.e., it cannot be the case that a class that is annotated as
being rigid is subsumed by a class that is annotated as being anti-rigid.

For instance, if we have, say, both Student and Person in our ontology, then the former
is subsumed by the latter, not vice versa, because Person is rigid and Student anti-rigid.
If Person C Student were asserted, it would say that each person is a student, which we
know not to be the case. Put differently, 1) it is not the case that all persons come into
existence as students and die as students, and 2) it is not the case that if a student cease
to be a student (e.g., graduates), then that object also ceases to be a person.

The machinery of OntoClean that we will cover in the lecture also provides us with the
theory and machinery to solve the “red apple issue” we encountered in the first lecture:
Apple is rigid (and a sortal), but its redness is not (see [Guarino and Welty, 2009] for a
recent written account).

Besides manual analyses, currently, there are two approaches how to incorporate the
ideas of OntoClean in OWL ontologies. One is to develop a separate application to handle
the annotations of the classes and the rules, another is to leverage the capabilities of the
standard reasoning services of the OWL reasoners, which is done by [Glimm et al., 2010,
Welty, 2006]. Glimm et al.’s [Glimm et al., 2010] and Welty’s [Welty, 2006] approach
differ in detail, but they have in common the high-level approach:

1) develop the domain ontology (TBox);
) push it into the ABox (i.e., convert everything from the TBox into ABox assertions);
) encode the OntoClean ‘meta rules’ in the TBox;
)
)

=W N

run the standard OWL reasoner and classify the ‘instances’;

transfer the reclassifications in the taxonomy back into the domain-ontology-in-
TBox.

The lecture will go into some detail of OntoClean (but not the details of the integration
into OWL; you can choose to do so as a topic for a mini-project).

ot

5.2.3 Detecting and revising modelling flaws

OntoClean does little to help solving so-called undesirable deductions, be they logically
consistent or not, and the justifications computed may not always point to the root
problem form a modelling viewpoint. Early works aiming at identifying typical mod-
elling mistakes in OWL are described in [Rector et al., 2004], and, more recently, there
are so-called “anti-patterns” of the ‘don’t do this’ variety [Roussey et al., 2009], and a
growing catalogue of pitfalls [Poveda-Villalén et al., 2012], of which 21 can be scanned
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automatically online with the OntOlogy Pitfall Scanner! (OOPS!)®. A recent evaluation
of the presence of those 21 pitfalls showed that it does not make much difference whether
the ontology is one developed by novices, an arbitrary ontology, or is a well-known on-
tology [Keet et al., 2013¢c]®. It may well be that the notion of a good quality ontology is
not tightly related to absence of pitfalls, or maybe the modelling pitfalls are propagated
from the well-known ones by novice modellers; whichever be the case, it is fertile ground
for research. Notwithstanding this, the ontology can be scanned quickly with OOPS! and
the results provides pointers where the ontology may be improved.

The error, anti-pattern, and pitfall efforts look more at quality of ontology from
the negative side—i.e., what are the mistakes?—whereas, e.g., OntoClean looks at the
positive side (when is some representation good?). The SubProS and ProChainS com-
patibility services fall in the category of looking at the positive side (SubProS is an
extension of the RBox Compatibility service, Section 6.2.2). They check for meaningful
object property hierarchies and property chains. First, one has to know when object
property expressions are good and safe (i.e., guaranteed not lead to an undesirable de-
duction), then test for violations of those principles, and finally have guidance on how a
mistake can be revised, which is described in [Keet, 2012a].

A broader setting of ontology quality is described in [Vrandeci¢, 2009], which includes
aspects such as accuracy, adaptability, clarity, completeness, computational efficiency,
conciseness, consistency/coherence and organizational fitness, and it contains a review
of domain and task-independent evaluation methods that cover, among others, syntax,
semantics, representation, and context aspects.

Let us consider two examples of (typical) modelling flaws that you should try to avoid;
more examples can be found in the literature referenced above.

Example 5.1. Say, you have to represent “a pizza Hawaii has as topping ham and
pineapple””. A modeller may be inclined to take the natural language description of the
toppings quite literally, and add

JhasTopping.(Ham 11 Pineapple) (5.1)

However, this is not what the modeller really wants to say. The “I” means ‘and’, i.e., we
have some intersection, and thus the “(Ham M Pineapple)” is the OWL class with those
objects that are both ham and pineapple. However, nothing is both, for meat and fruit
are disjoint, so the pizza Hawaii in our ontology has a topping that is Nothing. What we
want to represent, is that from PizzaHawaii there are at least two outgoing relations for
the toppings, being one to Ham and one to Pineapple, i.e.,

JhasTopping.Ham M JhasTopping.Pineapple (5.2)

In addition, one may want to add a so-called ‘closure axiom’ to say that all pizzas Hawaii
“have as topping only ham and pineapple”,

VhasTopping.(Ham LI Pineapple) (5.3)

Note also here that there is not a one-to-one mapping between the imprecise natural
language and the logic constructs: ham and pineapple, but using an ‘or’ LI, which becomes
clearer when we rephrase it as “all toppings are either ham or pineapple”.

Shttp://www.oeg-upm.net/oops

SPut differently: when you ant to justify some modelling decision, the “argument of authority”,
unfortunately, does not always hold

"and we ignore the fact that, according to Italians, pizzas are not supposed to have any fruit on a
pizza—other than tomatoes—so the pizza Hawaii is not really an Italian pizza.
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To the best of my knowledge, there is no tool yet that helps you sift through such
issues. For the following example there is a, thus far, only manual procedure, but at least
there is a clear set of tests to carry out.

Example 5.2. We are going to detect flaws in OWL property chains; the complete
test to check for a safe chain is described in [Keet, 2012a]. Basically, the domain and
range class from left to right in the chain on the left-hand side of the inclusion has
to be equal or a superclass, and likewise for the outer domain (resp. range) on the
left-hand side and range of the object property on the right-hand side of the inclu-
sion. For instance, take the property chain hasMainTable o hasFeature C hasFeature in
the Data Mining and OPtimisation (DMOP) ontology, which is depicted in Figure 5.5.
The two properties have domain and range axioms hasMainTable C DataSet x DataTable
and hasFeature C DataTable x Feature. The range of hasMainTable and domain of has-
Feature match neatly, i.e., both are DataTable. However, the domain of hasMainTable is
DataSet and the domain of hasFeature is DataTable, and DataSet and DataTable are non-
disjoint sibling classes. The reasoner infers DataSet C DataTable because of the property
chain, which is undesirable, because a set is not a subclass of a table. The ProChainS
tests helps detecting such issues, and proposals how to revise such a flaw are also de-
scribed in [Keet, 2012a]. Note that in this case, there was not a logical inconsistency
according to the language and the automated reasoning services, but instead it was a
modelling issue (more examples can be found in the paper).

= DataTable
DataSet DataTable DataTable Feature

\/

hasFeature

b hasFeature

hasMainTable

hasFeature

Figure 5.5: The property chain hasMainTable o hasFeature C hasFeature with the domain and
range axioms of the two object properties. (Source: [Keet, 2012a))

5.2.4 Tools

There are many tools around that help you with one method or with a methodology.
Finding the right tool to solve the problem at hand (if it exists) is a skill of its own and it
is a necessary one to find a feasible solution to the problem at hand. From a technologies
viewpoint, the more you know about the goals, features, strengths, and weaknesses of
available tools (and have the creativity to develop new ones, if needed), the higher the
likelihood you bring a potential solution of a problem to successful completion.

Software-supported methodologies. WebODE? provides software support for Methon-
tology, the NeOn toolkit? aims to support distributed development of ontologies, and
likewise the MOdelling wiKI MOKI'? (a Semantic Wiki'!). The recent tools also reflect
the afore-mentioned changes in typical ontology development settings, and it has been
shown, for instance, that wiki-enhanced collaborative development is beneficial compared
to not having such functionality [Franscescomarino et al., 2012].

8http://webode.dia.fi.upm.es/

“http://neon-toolkit.org/wiki/Main_Page

DOhttp://moki.fbk.eu/

"¥or a range of semantic wiki projects, engines and features, check http://semanticweb.org/wiki/
Semantic_wiki_projects
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Ontology Development Environments (ODEs). Clearly, the tools listed under the
‘Software-supported methodologies’ are ODEs, but there are also ODEs that do not cater
for a particular methodology. They mainly lack project management features, and/or
the possibility to switch back and forth between informal, intermediate, and formal rep-
resentation, or do not have features for project documentation. It may well be the case
that such functionality is available in part or in whole as a set of plug-ins to the ODE.
Some of those tools are stand-alone tools, such as Protégé and RacerPlus'?, others have
a web interface for modeling and/or browsing, such as the DMOP-browser of the e-LICO
project'3. Most ODEs are packaged with one or more automated reasoners, but one also
can use another one, given that there is a plethora of ontology reasoners and editors'?.
There are also various tool that have a pseudo-natural language interface or a graphical

interface to adding axioms to an ontology.

Software-supported methods and other features. Most of the additional features and
implemented methods exist as plugins for the ODEs or, thanks to the widespread uptake,
have been integrated in the ODEs already upon installation. For instance, RacerPlus has
extensive features for sophisticated querying, Protégé’s PROMPT plugin'® was one of
the earlier tools for ontology integration, OWL ontology visualization with Ontograf
is already included in the standard installation of Protégé, OntoClean with Protégé!6
(but recollect [Glimm et al., 2010, Welty, 2006]). There are many more other plug-ins
for Protégé in its library!”, though before installing any of then, one has to verify the
versioning of the plugins and the ODE.

Some recent tools that are focussed on improving the quality of the ontology are the
Possible World Explorer'®,  which helps with adding disjointness axioms
[Ferré and Rudolph, 2012], and the OntOlogy Pitfall Scanner!® (OOPS!) that implements
an automated check of your ontology with 21 common modelling pitfalls
[Poveda-Villalén et al., 2012].

Other features that can make an ontology developer’s life easier, are the portals to
search across ontologies, such as SWOOGLE?® and the BioPortal?!, and those that also
analyse the characteristics of the ontology, such as the TONES Ontology Repository.

Then there are tools for interaction with ‘peripheral’ usage of ontologies, most notably
a conversion from OWL to latex so as to obtain the—to some, more readable—DL
notation of the ontology (see “save as” in Protégé, select latex), and to automatically
generate documentation alike software documentation—to others, more readable—Ilike in
LiveOWL [Peroni et al., 2012], and natural language verbalization (such as ACE, whig
will be discussed in Chapter 7.)

For much longer listings of tools, see the list of semantic web development tools??,
and an updated list?3.

2http://www.racer-systems.com/products/plus . phtml
Bhttp://www.e-1lico.eu
Yhttp://www.w3.org/2007/0WL/wiki/Implementations
http://protege.stanford.edu/plugins/prompt/prompt . html
http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology. html
"http://protegewiki.stanford.edu/index.php/Protege_Plugin_Library
Bhttp://www.irisa.fr/LIS/softwares/pew
http://oeg-1ia3.dia.fi.upm.es/oops/index. jsp
Onttp://swoogle.umbc . edu/

2http: //bioportal .bioontology.org
Zhttp://esw.u3.org/topic/SemanticWebTools
http://www.w3.org/2001/sw/wiki/Tools
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Developing your own tool. Use the OWL API or Jena toolkit. More TBA.

5.3 Design parameters and their dependencies

Ontology development methodologies provide one or more scenarios, but they do not
address the dependencies between the permutations at the different stages in the devel-
opment process. As a first step towards methodologies that gives a general scope, we will
look at a range of parameters that affect ontology development in one way or another,
and which, thus, should appear somewhere in the methodology deployed when creating
an ontology. Analyzing the dependencies between helps one to answer questions such as:

1. If the purpose of my ontology is to access lots of data, then does that constrain the

language I can use, and if so, how?

2. What reasoning services do I have if I choose as language OWL DL?

3. I have this ontology in OWL 2DL that I want to import into mine that I will use

for ontology-driven natural language processing; can I reuse that ontology as is?

The parameters considered are: the typical main purpose(s) that the ontology is to
serve, reuse of ontologies, what your ‘starting material’ was (i.e., a notion of bottom-up
ontology development), the ontology languages we have seen in the previous chapters, and
reasoning services, including those we used in the previous chapter. They are described
in more detail in [Keet, 2010a] and summarised in the first column and row in Figure 5.6.
All dependencies between these parameters have been assessed and useful combinations
are motivated [Keet, 2010a]?4; the table with the outcome is included here as Figure 5.6,
which was assessed against a set of ontologies and a survey among ontology developers,
whose results concur with the theoretical assessment.

You will gain practice with it in the exercises. As for the three questions in the text,
what do you think? 1) Indeed, it does constrain your language. 2) Can you recall from
the previous chapter what the so-called “standard reasoning services” are? In addition,
the table has a “+” sign for non-standard and ontological reasoning services; we will see
those in the next section. 3) no. The dependencies are due to, primarily, computational
challenges and types and subject domain of the ontologies. For instance, if one wants to
query lots of data by means of an ontology (or: have a large ABox), then the ontology
language has to be scalable and have a low data complexity to keep it tractable (recall
Section 4.3); practically, this limits one to using OWL 2 QL as ontology language. In
addition, most foundational ontologies (which we’ll discuss in detail in the next chapter)
use a rather expressive ontology language so as to be as precise as possible, which is then
in conflict with the scalability requirement. But a comprehensive foundational ontology
fits well when one wants to develop an ontology to represent a scientific theory (assuming
the ontology does not become too large).

Once we have covered more about ontology development, you may want to have a
look at the table again, or even add more parameters and dependencies.

5.4 Exercises
Exercise 22. Figure 5.6 summarises dependencies between ontology development pa-

rameters, which are discussed in more detail in [Keet, 2010a]. Discuss the feasibility of
the following combinations, and make an informed guess about the unknowns:

24for a shorter and lighter version applied to agri-ontologies, see [Keet, 2009c].
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OWL Language Ontology reuse
SKOS [ 2QL | 2EL | 2DL | DL | Exten- | founda- | refe- | domain
sions tional | rence
Purpose |
1. Query data + + +
2. Database integration + + + + + + +
3. Integration [/ record + + + + +
navigation
4. Part of scientific + + + + + +
discourse
5. Web services + + + + + +
orchestration
6. ODIS + + + + + + + +
7. ontoNLP + + + + + + +
8. Science + + + + +
9. Tutorial ontology + + + +
Reasoning services ||
1. Standard + 4 — - —
2. Non-standard + + + +
3. Querying + + +
4. Ontological + + + + + —+
Bottom-up ||
1. Other KR /CM - 4 + +
2. DB reverse + + + +
3. Textbook models + + + +
4. Thesauri + + +
5. Other semi-structured + + +
6. Text mining + + +
7. Terminologies + + +
&, Tagging + + +
Ontology reuse |
1. Foundational + +
2. Reference + + + +
3. Domain + + + + +

Figure 5.6: Basic cross-matching between realistic combinations of parameters. The more com-
plex dependencies, such as the interaction between purpose, language, and reasoning service, can
be obtained from traversing the table (purpose <> language and language <> reasoning services),
likewise for, e.g., the dependencies between purpose and bottom-up development, assessing pur-
pose <> language and then bottom-up < language. ‘= indicates ‘discouraged or not possible’, ‘4’
a ‘might work’, and ‘+’ as a ‘workable or good combination’. (Source: [Keet, 2010a])

a. Purpose: science; Language: OWL 2 DL, or an extension thereof; Reuse: foun-
dational; Bottom up: form textbook models; Reasoning services: standard and
non-standard.

b. Purpose: querying data through an ontology; Language: some OWL 2; Reuse:
reference; Bottom up: physical database schemas and tagging; Reasoning services:
ontological and querying.

c. Purpose: ontoNLP; Language: OWL 2 EL; Reuse: unknown; Bottom up: a the-
saurus and tagging experiments; Reasoning services: mainly just querying.

d. Apply it to the ontology you are developing for the Practical Assignment (see
Appendix A).

Exercise 23. Ontology development methodologies have evolved over the past 20 years.
Compare the older METHONTOLOGY with the newer NeON methodology.

Exercise 24. Describe and apply the OntoClean rules to the flawed ontology depicted
in Figure 5.7, i.e., try to arrive at a ‘cleaned up’ version of the taxonomy by using the
rules.



92 Chapter 5. Methods and Methodologies

Exercise 25. Take the Pizza ontology, and submit it to the OOPS! portal. Based on its
output, what would you change in the ontology, if anything?

Exercise 26. Work on your own ontology for the Practical Assignment (see Appendix A).

Entity

___———F—___'_A—'__—f_ _\
Location Amount of matter

/ Red Agent Group

Physical object

Living being

Group of people

Fruit Social entity

Animal Legal agent

Vertebrate

Organization

Caterpillar
Red apple Buttertly

Country Person

Figure 5.7: An ‘unclean’ taxonomy. (Source: OntoClean teaching material by Guarino)
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CHAPTER O

Top-down Ontology Development

Having an ontology language is one thing, but what to represent, and how, is quite
another. In the previous chapter, we looked at answering “Where do you start?” with
methodologies, but, to some extent, we are still left with answering: How can you avoid
reinventing the wheel? What can guide you to make the process easier to carry it out
successfully? How can you make the best of ‘legacy’ material? There are two principal
approaches, being the so-called top-down and bottom-up ontology development with their
own set of methods, tools, and artefacts; in this chapter, we focus on the former and in the
next chapter on the latter, where each can be seen as a refinement of some aspects of an
overall methodology like introduced in Chapter 5. In this chapter we look at ‘avoiding to
reinvent the wheel’ and ‘what can guide you to make the process of adding those axioms
easier’ by reusing some generic principles. Those generic modelling aspects are typically
represented in foundational ontologies and, to a lesser extent, ontology design patterns.

6.1 Foundational ontologies

The basic starting point for top-down ontology development is to consider several core
principles of Ontology for ontologies; or: some philosophical guidance for the prospective
engineering artefact'. Although we will not enter in deep debates about philosophical
theories in this course, it is useful to know it has something to offer to the development
of ontologies, and we will see several examples where it has had influence.

A few of such examples where results from philosophy can be useful in deciding what
is going to be represented in your ontology, and, to some extent, how, are as follows.
One can commit to a 3-Dimensional view of the world with objects persisting in time or,

! As philosophy enters, a note about terminology may be in order, because some ideas are borrowed
and changed, and some terms that are the same do mean different things in different disciplines. In the
literature, you will come across material ontology and formal ontology. The former (roughly) concerns
making an ‘inventory’ of the things in the universe (we have the vase, the clay, the apple, etc.), whereas
the latter concerns laying bare the formal structure of (and relation between) entities, which are assumed
to have general features and obey some general laws that hold across subject domains, like identity,
constitution, and parthood (the latter will be introduced in Section 6.2). So, in ontology engineering the
‘formal’ may refer to logic-based but also to the usage of ‘formal’ in philosophy, which concerns the topic
of investigation and does not imply there is a formalisation of it in a logic language. In most computer
science and IT literature, when ‘formal’ is written, it generally refers to logic-based.
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instead, a perdurantist one (4-Dimensional) with space-time worms; e.g., are you con-
vinced that you after reading this sentence is a different you than you before reading this
sentence? If so, then you may well be a perdurantist, if you consider yourself to be the
very same entity before and after, then you lean toward the 3D, endurantist, commitment
(but before proclaiming to be one or the other based on this single example, do read up on
the details and the implications). Other philosophical distinctions concern whether you
are concerned with (in OWL terminology) classes or individuals, with universals and/or
concepts, and whether your ontology intended to be descriptive or prescriptive. Then
there more detailed decision to make, such as whether you are convinced that there are
entities that are not in space/time (i.e., that are abstract), whether two entities can be
co-located (the vase and the amount of clay it is made of), what it means that one entity
is [dependent on/constituted by/part of/...] another? And many more of such questions
and decision to make. Fortunately, if you do not want to entertain yourself with these
questions, you can take someone else’s design decisions and use that in ontology devel-
opment. Someone else’s design decision for a set of such questions typically is available
in a foundational ontology, and the different answers to such questions end up as
different foundational ontologies (even with the same answers they may be different; see,
e.g. beyond concepts [Smith, 2004], the WonderWeb deliverable [Masolo et al., 2003],
and a synopsis of the main design decisions for DOLCE [Borgo and Masolo, 2009]). The
intricacies of, and philosophical debates about, the more subtle details and differences
are left to another course, as here the focus is one why to use one, where, and how;
differences will be discussed in the lecture insofar as they affect foundational ontology
choice and usage.

6.1.1 Typical content of a foundational ontology

Foundational ontologies provide a high-level categorization about the kinds of things you
will represent in the ontology, such as process and physical-object, relations that are useful
across subject domains, such as participates-in and part-of, and (what are and) how to
represent ‘attributes’ such as Colour and Height (recall Section 1.3), e.g., as qualities or
some kind of dependent continuant or trope. To make sense of this, let us start with the
two main ingredients: the ‘class’ taxonomy and the relationships.

Universals, categories, class hierarchy

Just like with other ontologies we have seen, also a foundational ontology represented in
OWL has a hierarchy in the ‘TBox’. However, there are some differences with that of a
domain ontology such as the Pizza ontology. The hierarchy in a foundational ontology
does not contain subject domain classes such as Boerewors and PizzaHawaii, but categories
(or, loosely, ‘conceptual containers’) of kinds of things. For instance, all instances of
PizzaHawaii can be considered to be physical objects, and are those sausages that are
an instance of Boerewors. If we assume there to be physical objects, then presumably,
there can also be entities that can be categorised as non-physical objects. Organisations,
such as UCT, fall in the category of social object, which are a type of non-physical
object. Likewise, one can categorise kinds of processes. For instance, ‘writing an exam’
is something that unfolds in time and has various sub-activities, such as thinking, writing,
erasing pencil marks, and so on; taken together, writing an exam is an accomplishment.
Contrast this with Sitting: for the whole duration you sit, each part of it is still an instance
of sitting, which thereby can be categorised as a state. None of the things mentioned in
italics in this paragraph actually are specific entity types that you would encounter in an
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ontology about subject domain entities only, yet we would want to be able to categorise
the kinds of things we represent in our domain ontology (the ‘why’ is explained further
below). It is these and other categories that are represented in a foundational ontology?.

The categories introduced above actually are from the the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) foundational ontology, and a screenshot
of its hierarchy is shown in Figure 6.1-B; behind this simple taxonomy is a comprehensive
formalisation in first order predicate logic that was introduced in [Masolo et al., 2003].

Being a pedantic ontologist, one could go as far as saying that if a category is not
in the foundational ontology, then its developers are of the opinion it does not exist in
reality.

A. BFO taxonomy B. DOLCE taxonomy
v @Thing v @©Thing
v ©Entity v @ Particular
v ©Continuant v @ Abstract
v ©DependentContinuant Fact
GenericallyDependentContinuant v @ Region
v ©SpecificallyDependentContinuant AbstractRegion
Quality v ©PhysicalRegion
v ©RealizableEntity » @ SpaceRegion
Disposition v @ TemporalRegion
Function Timelnterval
Role Set
v ©lIndependentContinuant v ©Endurant
v ©MaterialEntity ArbitrarySum
FiatObjectPart v @ NonPhysicalEndurant
Object v @ NonPhysicalObject
ObjectAggregate MentalObject
ObjectBoundary v ©SocialObject
Site v @ AgentiveSocialObject
v ©SpatialRegion SocialAgent
OneDimensionalRegion Society
ThreeDimensionalRegion NonAgentiveSocialObject
TwoDimensionalRegion v @ PysicalEndurant
ZeroDimensionalRegion AmountOfMatter
v © Occurrent v O Feature
v ©ProcessualEntity DependentPlace
FiatProcessPart RelevantPart
Process v ©PhysicalObject
ProcessAggregate AgentivePhysicalObject
ProcessBoundary NonAgentivePhysicalObject
ProcessualContext v @ Perdurant
v ©SpatiotemporalRegion v O Event
v ©ConnectedSpatiotemporalRegion Accomplishment
Spatiotemporallnstant Achievement
Spatiotemporalinterval v O Stative
ScatteredSpatiotemporalRegion Process
v ©TemporalRegion State
v ©ConnectedTemporalRegion v ©Quality
Temporallnstant AbstractQuality
Temporalinterval v ©PhysicalQuality
ScatteredTemporalRegion SpatialLocation

v @ TemporalQuality
TemporalLocation

Figure 6.1: Screenshots of the OWLized BFO and DOLCE taxonomies; for indicative purpose:
Perdurant =~ Occurrent, Endurant ~ IndependentContinuant.

Relations in foundational ontologies

In analogy to the ‘subject domain classes’ in domain ontologies versus categories in
foundational ontologies, one can identify generic relations/relationships/object properties
that are different from those in domain ontologies. For instance, a domain ontology about

2Some call such categories universals, but that debate is beyond the scope of the course.
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universities may have a relation enrolled to relate Student to Course, or in a sports ontology
that a runner runs a marathon. These relations are specific to the subject domain, but
there are several that re-appear across domains, or: they are subject domain-independent.
Such subject domain-independent relations are represented in a foundational ontology.
Notable relations are part-of (which we shall look at in some detail in Section 6.2), that
an object participates-in an event, that some object (e.g., a vase) is constituted-of an
amount of matter (such as clay), and dependency, for when the existence of one entity
depends on the existence of another. The characterisation of such relations go hand in
hand with the categories, for we can assert that, say, participates-in holds only between
an endurant (an entity that is more general than object, wholly present at a time) and a
perdurant (an entity that is more general than event; those things that unfold in time).

For the sake of example of foundational ontologies as well as visualizations of ontolo-
gies, a screenshot of the top-level entities and relationships is shown in Figure 6.2: the
dashed (non-purple) lines in Figure 6.2 graphically represent such relations between the
entities.
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Figure 6.2: Screenshots of the Ontograf rendering of the top-level categories and their relations
of the GFO (solid lines: subsumption; dashed lines: various object properties).
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Attributions

The third main component of representing knowledge are attributions, as, just like in
conceptual data modelling, ‘attributes’ have to be represented somehow. There is a
domain-specific component to it and there are general, recurring, principles of attribu-
tions, and it is the latter than are captured in an foundational ontology—to some extent
at least. However, this is done quite differently from attributes you have modelled in
UML Class Diagrams.

Let us first revisit the ‘attribute’ Colour we have seen in Section 1.3. We could
decide to make it a data property in OWL, declare its domain to be Rose and choose the
data type String, i.e., hasColour — RosexString in ontology Oq, or, in OWL functional
syntax style notation:

DataPropertyDomain(ex:hasColour ex:Rose)

DataPropertyRange (ex:hasColour xsd:string)

That is, a binary relationship, which is the same approach as in UML class diagrams.
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Physical Object Quality Region
Non-agentive Physical Quality Physical Region
Physical Object
Color Region
.Color space
Rose
Col Pl .
olor red color
qt qt(c#l, rose#l) ql;
[ >& >0
rosettl ct#tl=the color color#l color#2  color#3
of rosettl ql(color#l, c#l, 1)
Red Object

Figure 6.3: DOLCE’s approach for qualities (‘attributes’) (Source: [Masolo et al., 2003])

If another ontology developer decides to record the values in integers in Os, then the
hasColour properties in O; and O3 are incompatible in the representation, albeit not
in ‘conceptualization’, because the notion of colour is the same throughout. Another
option, which is rather typical of foundational ontologies and their OWL-ized version, is
to represent such ‘attributes’ as unaries somewhere in the class hierarchy of the OWL
ontology, such as a subclass of Quality in DOLCE? [Masolo et al., 2003] or as (specifically)
dependent continuant in the Basic Formal Ontology (BFO*). An example of the approach
taken in DOLCE is depicted in Figure 6.3: rosel is an instance of Rose, which is a subclass
of Non-Agentive Physical Object, and it is related by the gt relation to its colour property,
cl, which is an instance of the quality Colour that is a subclass of Physical Quality. The
actual value—the [measured] redness—of the colour of the rose at a given time is a region
red colour as instance of the Colour Region, which is a subclass of Physical Region, and
they are related by means of the gl relation.

You may wonder what is the point of fussing about this distinction, let alone choosing
the more cumbersome second option. To go into the argument, recall first that an im-
portant purpose of ontologies is system interoperability and integration (see Figure 1.4).
Consider the scenario where ontology O; = AW0.owl has a data property hasWeight for
any object, but then with its XML data type set to integer. Ome can declare, e.g.,
Elephant C =1 hasWeight.integer. Perhaps a hasWeightPrecise with as data type real
may be needed elsewhere; e.g., in ontology O about animals in the zoo. Implicitly, it
was assumed by the developers that the weight would be measured in kg. Now someone
comes along and wants to use the ontology, but wants to record the weight in lbs, which
then amounts to adding, say, hasWeightlmperial, and so on, all about weights. Put dif-
ferently, what happens is a replication of the very same issues encountered in database
integration. But this was precisely what ontologies were supposed to solve! Copying the
problem from conceptual data modelling into the ontologies arena, just because you're
more familiar with that way of modelling things, is not going to solve the interoperability
problem. Thus, we need something else than sneaking application decisions about how
to store the data into the ontology. The idea is to generalise (more precisely: reify) the
attribute into a class so that we can reuse the core notion that is the same throughout
(Weight in our example), and this new entity is then related to the endurants and perdu-

3http://www.loa-cnr.it/DOLCE.html
‘http://www.ifomis.org/bfo
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rants on the one side and instead of datatypes, we use value regions. Thus, an unfolding
from one attribute/OWL data property into at least two properties: there is one OWL
object property from the endurant/perdurant to the reified attribute—a quality property,
represented as an OWL class—and a second object property to the value(s). In this way,
the shared understanding can be shared, and any specifics on how one has to store the
data is relegated to the implementation, therewith solving the problem of the limited
reusability of attributes and preventing duplication of data properties.

The only remaining step is that the foundational ontologies are silent about the case
when one really has to represent some values in the ontology itself. One option is pre-
sented in [Keet et al., 2013b] for the data mining optimization ontology: from the Region
class, a data property hasDataValue was added with as XML data type anyType. This
allows one to use the attributions across ontologies and data mining tools, yet leaves the
flexibility to the implementer to choose the data type.

This concludes the brief idea of what is in a foundation ontology. As you may have
observed from Figures 6.1 and 6.2, there are several foundational ontologies, which may
be confusing or looking like me overcomplicating things, so we spend a few words on that
Nnow.

On multiple foundational ontologies

You may wonder what else is contained in DOLCE, and whether there are other founda-
tional ontologies besides DOLCE, which can be answered in the affirmative; e.g., General
Formal Ontology (GFO?) [Herre and Heller, 2006], natural language focused GUMS, and
SUMO? [Nikitin et al., 2003]. The top-level taxonomic structure of DOLCE and BFO is
depicted in Figure 6.1, but note that DOLCE (as well as the GFO) has a rich axiomati-
sation with plenty of object properties, which at some point clutters the graphics, as can
be seen for a section of the GFO in Figure 6.2. The respective documentation has further
details about their formalisation and the rationale for having modelled it in the way they
did. For instance, DOLCE takes a multiplicative approach, GFO lets you represent both
universals and individuals in the same ontology, BFO claims a realist approach, and so
on. Their properties have be structured and are included in the ONSET tool® that helps
you selecting one for one’s own domain ontology based on the requirements the user
selects [Khan and Keet, 2012]. You will experiment with this during the exercises in the
lab: it saves you reading the foundational ontology literature to large extent, and all of
those new terms that have been introduced (like “multiplicative”) have brief informal
explanations.

One can wonder whether such foundational ontologies just use different names for the
same kind of entities, but are essentially all the same anyway. Only very few detailed
comparisons have been made. If we ignore some intricate philosophical aspects, such as
whether universals and properties exist or not, then only few entity-by-entity alignments
can be made, and even less mappings. An alignment is a mapping only if asserting the
alignment in the new ontology containing the (foundational) ontologies does not lead to
an inconsistency. Table 6.1 lists the common alignments among DOLCE, BFO, and GFO.
More alignments and mappings are described and discussed in [Khan and Keet, 2013a,
Khan and Keet, 2013c] and a searchable version is online in the foundational ontology

*http://www.onto-med.de/ontologies/gfo/
Shttp://www.fb10.uni-bremen.de/anglistik/langpro/webspace/jb/gum/index.htm
"http://www.ontologyportal .org/

Shttp://www.meteck.org/files/onset/
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library ROMULUS? [Khan and Keet, 2013b)].
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Table 6.1: Common alignments between DOLCE-Lite, BFO and GFO; the ones numbered in
bold can also be mapped. (Source: [Khan and Keet, 2013a])

| | DOLCE-Lite | BFORO | GFO
Class
1. | endurant Independent Continuant | Presential
2. | physical-object Object Material _object
3. | perdurant Occurrent Occurrent
4. | process Process Process
5. | quality Quality Property
6. | space-region SpatialRegion Spatial_region
7. | temporal-region Temporal-Region Temporal _region
Relational property
1. | proper-part has_proper_part has_proper_part
2. | proper-part-of proper_part_of proper_part_of
3. | participant has_participant has_participant
4. | participant-in participates_in participates_in
5. | generic-location located_in occupies
6. | generic-location-of location_of occupied_by

In closing, note that there are different versions of each foundational ontology, not only
differentiating between a formalisation on paper versus what is representable in OWL,
but also more and less detailed version of an ontology. In addition, while DOLCE contains
several relations it deems necessary for a foundational ontology, BFO-in-OWL has only
a taxonomy, a separate theory of parthood relations, and an extension including the
Relation Ontology. The Relation Ontology [Smith et al., 2005] was developed to assist
ontology developers in avoiding errors in modelling and assist users in using the ontology
for annotations, and such that several ontologies would use the same set of agreed-
upon defined relations to foster interoperability among the ontologies. Philosophically,
it is still a debate what then the ‘essential’ relations are to represent reality, and if
those included are good enough, are too many, or too few. Currently, several extensions
to the RO are under consideration'® and refinements have been proposed, such as for
RO’s transformation_of [Keet, 2009a] that avails of theory underlying OntoClean (that
we address in a later lecture) and the derived_from relation [Brochhausen, 2006].

The lecture will go into some detail of the foundational ontologies.

6.1.2 Using a foundational ontology

Having some idea of what a foundational ontology is, is one thing, but how to use them
is a different story, and one that is not fully resolved yet. In this subsection, we start
first with answering why one would want to use one at all, and some examples where it
helps a modeller in making modelling decisions for the overall (domain) ontology. We
then turn to some practical aspects, such as their files, language used, and how (where)
to link one’s domain entities to those generic categories in a foundational ontology.

“http://www.thezfiles.co.za/ROMULUS/home . html
http://www.bioontology.org/wiki/index.php/R0:Main_Page
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Why use a foundational ontology?

Foundational ontologies exist, but does that means one necessarily must use one? Not
everybody agrees on the answer. There are advantages and disadvantages to it. The
principal reasons for why it is beneficial are:
e one does not have to ‘reinvent the wheel’ with respect to the basic categories and
relations to represent the subject domain,
e it improves overall quality, and
e it facilitates interoperability among ontologies.
In addition, a foundational ontology is useful when subtle distinctions, recognizing dis-
agreement, rigorous referential semantics, general abstractions, careful explanation and
justification of ontological commitment, and mutual understanding are important!!.
A subset of domain ontology developers do not see a benefit:
e they consider them too abstract, too expressive and comprehensive for the envi-
sioned ontology-driven information system, and
e it takes excessive effort to understand them in sufficient detail such that it would
not weigh up to the benefits.
A controlled experiment has been carried out with 52 novice ontology developers, which
showed that, on average, using a foundational ontology resulted in an ontology with more
new classes and class axioms, and significantly less new object properties than those
who did not, there were no part-of vs. is-a mistakes, and, overall, “the ‘cost’ incurred
spending time getting acquainted with a foundational ontology compared to starting
from scratch was more than made up for in size, understandability, and interoperability
already within the limited time frame of the experiment” [Keet, 2011b]. There is room
for further experimentation, but results thus far point clearly to a benefit.

Modelling guidance: examples of some principal choices

An immediate practical benefit is that Ontology and foundational ontologies help pre-
venting making novice ontology developer’s mistakes, such as confusing parthood with
subsumption and class vs instance mix-ups. The former will become clear in the next
lecture and in Section 6.2 (e.g., a province is part of a country, not a subclass). Regarding
the latter, ontologically, instances/individuals/particulars are, roughly, those things that
cannot be instantiated, whereas classes (or universals or concepts) can. For instance, the
chair you are sitting on is an instance whereas the class Chair can be instantiated (the
one you are sitting on is one such instance). Likewise, MacBookPro is a type of laptop,
which in an OWL ontology would be added as a subclass of Laptop, not as an instance
of Laptop—the MacBook I have with serial number #123456 is an instance, and, likewise,
GoldenDelicious is a subclass of Apple, not an instance (the actual instances grow on the
tree and are on the shelves in the supermarket).

The example on choosing how to represent relations is described in the next example

Example 6.1. A relation, i.e., an n-ary with n > 1, can be represented as an unary
entity (a class in OWL) or as a n-ary relation (object property in OWL). It is certainly
more intuitive to keep the n-aries as such, because it indicates a close correspondence with
natural language. For instance, in formalising “Person runs marathon”, it is tempting to
represent the “runs” as an object property runs.

The foundational ontologies take a different approach. Such perdurants, like running,
and the verbs we use to label them, are included as an unary (OWL class) suitably

"http://ontolog.cim3.net/file/resource/presentation/NicolaGuarino_20060202/
DOLCE--NicolaGuarino_20060202.pdf
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positioned as a subclass of ‘processes’, being Perdurant in DOLCE and Occurrent in BFO,
which are then related with a new relation to ‘objects’, which are suitably positioned
subclasses of Endurant in DOLCE (Continuant in BFO), in such a way that an endurant
is a participant in a perdurant. For instance, still with the TBox-level knowledge that
“Person runs marathon”, then Running (being a subclass of Process) has_participant some
Person and another binary to Marathon, but there is no 1-to-1 formalisation with an
object property runs that has as domain and range Person and Marathon.

The latter results in a more compact representation, is intuitively closer to the domain
expert’s understanding, and makes it easier to verbalise the ontology, and therefore is
likely to be more useful in praxis. The former is more generic, and thereby likely to
increase reusability of the ontology. No scientific experiments have been conducted to
test which way would be ‘better’ to represent such knowledge, and current mapping
tools do not deal with such differences of representing roughly the same knowledge in
syntactically very different ways. Whichever way you choose, sticking to that choice
throughout the ontology makes the ontology easier to process and easier to understand
by the human reader.

A longer and practical example with the African Wildlife Ontology is included in the
next section.

Practical aspects on using a foundational ontology

It was already mentioned that there are OWL-ised versions of several foundational on-
tologies, but there is more to it. Once the most appropriate foundational ontology is
selected, the right version needs to be imported either in full or a module thereof, and it
has to be linked to the entities in your ontology. The latter means you will have to find
out which category each of your entity is and which object properties to use.

Within the Wonderweb Project!?, the participants realized it might not be feasible
to have one singe foundational ontology that pleases everybody; hence, the idea emerged
to create a library of foundational ontologies with appropriate mappings between them
so that each modeller can choose her pet ontology and the system will sort out the rest
regarding the interoperability of ontologies that use different foundational ontologies.
The basis for this has been laid with the Wonderweb deliverable D183, but an imple-
mentation was yet to be done and new foundational ontology developments have taken
place since 2003. A first step in the direction of such a foundational ontology library
has been laid recently with the Repository of Ontology for MULtiple USes, ROMULUS
[Khan and Keet, 2013b]. ROMULUS focuses on OWL ontologies in particular, but one
should not forget that DOLCE also has a more comprehensive paper-based formalisation
in a first order predicate logic, and that BFO also has a version of it in first order logic
in the Isabelle theorem prover syntax.

The leaner OWL versions of DOLCE and BFO have been made available and are
intended to be used for development of ontologies in one’s domain of interest. These
files can be found on their respective websites at the LOA'* and IFOMIS' (which also
lists domain ontologies that use them). Observe that DOLCE-Lite is encoded in the
DL language that is characterized by SHZ, BFO is simpler (in ALC); that is, neither
one uses all OWL-DL capabilities of SHOZN (D), let alone of OWL 2 DL. Another
difference is that BFO-in-owl is only a bare taxonomy (an extension with the Relation

2http://wonderweb.semanticweb.org/
Bhttp://wonderweb.semanticweb.org/deliverables/documents/D18.pdf
“http://www.loa-cnr.it/DOLCE. html

Bhttp://www.ifomis.org/bfo
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Ontology [Smith et al., 2005] does exist), whereas DOLCE-Lite makes heavy use of object
properties. More aspects of both foundational ontologies will be addressed in the lecture,
and, time permitting, GFO.

To make reuse easier, ‘clever modules’ of foundational ontologies may be useful, such
as light /basic and full versions according to the developers’ taste, a separate major branch
of the ontology (e.g., using only Endurants), and a computationally better behaved frag-
ment with the best semantic approximation of the full version (i.e., not merely dropping
the violating axioms), such as an OWL 2 EL compliant fragment of DOLCE.

Once the foundational ontology is imported into yours, the task is to find the right
classes for your domain classes. This is illustrated in the following example, starting
with a very basic African Wildlife Ontology, and gradually extending it and improving
its quality.

Example 6.2. The African Wildlife Ontology (AWO) is a very basic tutorial ontology
of the “A Semantic Web Primer” book by Grigoris Antoniou and Frank van Harmelen
[Antoniou and van Harmelen, 2003].  An OWL version of it, AfricanWildlife-
Ontology0.owl, has 10 classes and 3 object properties concerning animals such as Lion,
Giraffe, Plant, and object properties eats and is-part-of, and has plenty of annotations that
give an idea of what should be modelled (else: see 4.3.1 pages 119-133 in
[Antoniou and van Harmelen, 2003]). Upon running the reasoner to classify the classes
and individuals, it will classify, among others, that Carnivore is a subclass of Animal (i.e,
AW O [= Carnivore C Animal).

This is not really exciting, and the tutorial ontology is not of a particularly good
quality. First, we add knowledge: proper parthood, a few more plant parts and an-
imals, such as Impala, Warthog, and RockDassie, and refine it, such that giraffes eat
not only leaves but also twigs. This version of the African Wildlife Ontology is named
AfricanWildlifeOntologyl.owl, and accessible at http://www.meteck.org/teaching/
ontologies/. With this additional knowledge, warthogs are classified as omnivores, li-
ons as carnivores, giraffes as herbivores, and so on. We still miss out on having impalas
classified as herbivores; what can—or should—you add to the ontology to achieve that?
That is, what properties, and how, have to be added so that it will deduce that all impalas
are herbivores? (not simply by asserting Impala C Herbivore, but by using properties of
impalas)

Adding classes and object properties to an ontology does not necessarily make a better
quality ontology. One aspect that does with respect to the subject domain, is to refine the
represented knowledge and with more constraints so as to limit the possible models, such
as that giraffes eat both leaves and twigs, and are disjoint from impalas, and adding more
characteristics to the object properties, e.g., that the is-part-of is not only transitive, but
also reflexive, and is-proper-part-of is transitive and irreflexive or asymmetric (the latter
we can add thanks to the increased expressiveness of OWL 2 DL compared to OWL-DL,
but not both irreflexivity and asymmetry) (see also Section 6.2).

Another aspect is purely engineering practice: if the intention is to put the ontology
online, it should be named properly, i.e., the URI has to be set so that its contents can
be identified appropriately on the Semantic Web; that is, do not simply use the default
URI generated by the tool (e.g., http://www.semanticweb.org/ontologies/2013/0/
Ontology1357204526617.0wl), but specify an appropriate one where the ontology will
be published, like http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl. Third, we
can improve the ontology’s quality by using a foundational ontology, as mentioned in
Section 6.1.2.

A foundational ontology contains basic categories such as IndependentContinuant/
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Endurant (roughly: to represent objects) and Occurent/Perdurant (informally: processes),
and Quality for representing attributes, and then their respective sub-categories, such as
AmountOfMatter, Feature, PhysicalObject, Achievement, Function, and SpatialRegion; see,
e.g., DOLCE, BFO, GFO, GUM, and SUMO that were introduced in Section 6.1.1.

For the sake of example, let us take DOLCE to enrich the African Wildlife Ontology.
To do this, we need to import into our wildlife ontology an OWLized version of DOLCE;
in this case, we import DOLCE-1ite.owl!S. Then, consider first the taxonomic component
of DOLCE in Figure 6.1-B (for details, see Wonderweb deliverable D18 Fig 2 p14 and
Table 1 pl5 or explore the imported ontology with its annotations). Where does Plant
fit in in the DOLCE categorisation? Giraffes drink water: where should we put Water?
Impalas run (fast); where should we put Running? Lions eat impalas, and in the process,
the impalas die; where should we put Death? To answer such questions, we have to
look at the principal distinctions made in DOLCE among its categories. Let us take
Plant: is Plant wholly presents during its existence (enduring), or is it happening in time
(perduring)? With a 3D versus 4D worldview, the former applies. Within endurants,
we look at its subclasses, which are Arbitrary Sum, Physical Endurant, and Non-Physical
Endurant: a plant is certainly not some arbitrary collection of things, like the set of this
lecture notes and your pencil are, and a plant takes up physical space, so one chooses
Physical Endurant. We repeat this for the subclasses of Physical Endurant, which are
Feature, Amount of Matter, and Physical Object. A feature (in DOLCE) is something like
a bump in the road or the hole in a swiss cheese, hence quite distinct from Plant (but a
plant can have such things). Amount of matter is in natural language normally denoted
with a mass noun, such as gold and water, and it can be counted only in quantities
(a liter of water); however, plants can be counted, so they are physical objects and,
hence, we can add AWO:Plant C dolce:PhysicalObject to the ontology. One can find the
alignments for the other ones in a similar step-wise way. The answers can be found in
AfricanWildlifeOntology2.owl.

DOLCE is more than a taxonomy, and we can also inspect in more detail its object
properties and reuse the properties already defined instead of re-inventing them. First,
the African Wildlife Ontology’s is-part-of is the same as DOLCE’s part-of, and likewise
for their respective inverses. Concerning the subject domain, here are a few modelling
questions. The Elephant’s Tusks (ivory) are made of Apatite (calcium phosphate, an
amount of matter); which DOLCE relation can be reused? Giraffes eat leaves and twigs;
how do Plant and Twig relate? How would you represent the Size (Height, Weight,
etc.) of an average adult elephant; with DOLCE’s Quality or an OWL data property?
Answers to the former two questions are included in AfricanWildlifeOntology2.owl:
we have AWO:Tusk C dolce:PhysicalObject and AWO:Apatite C dolce:AmountOfMatter,
so we need to find an object property that has as domain a physical object and as
range an amount of matter; at present, the easiest way to find out, is to run it through
the ONTOPARTS tool [Keet et al., 2012], which returns the constitution relation as the
only one that fits these constraints. ONTOPARTS’s constitution is more restrictive than
DOLCE’s, so we can either 1) use dolce:generic-constituent that relates perdurants or
endurants or 2) add AWO:constituted-of with domain and range dolce:PhysicalObject and
range dolce:AmountOfMatter and add AWO:constituted-of C dolce:generic-constituent, and
then assert Tusk C Jconstituted-of Apatite in our ontology. Option 1 has the benefit of
direct reuse of a relation from DOLCE instead of inventing our own from scratch, whereas
option 2 is more restrictive and precise, thereby also improving the ontology’s quality.

How does it work out when we import BFO into AfricanWildlifeOntologyl.owl?

Yhttp://www.loa-cnr.it/ontologies/DOLCE-Lite.owl
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Aside from minor differences—e.g., Death is not a type of Achievement as in DOLCE,
but a ProcessBoundary instead, and animals and plants are subtypes of Object, see also
Figure 6.1-A—there is a major difference with respect to the object properties (BFO
has none). A possible outcome of linking the wildlife ontology to BFO is included in
AfricanWildlifeOntology3.owl. To do these last two exercises with DOLCE and BFO
in a transparent and reusable way, however, we need a mapping between the two foun-
dational ontologies. Even more so: if there was a proper mapping, probably only one of
the two exercises would have sufficed and the software would have taken care of the map-
pings between the two. Mappings are now available on ROMULUS, and a solid method
to ‘swap’ a foundational ontology is being developed.

One could take the development a step further by adding types of part-whole re-
lations!” [Keet and Artale, 2008] so as to be more precise than only a generic part-of
relation: e.g., Root is a structural part of some Plant and NatureReserve is located-in some
Country, which will be discussed in some detail in the next section. Another option is to
consider a Content Ontology Design Pattern'® [Presutti et al., 2008], such as being more
finicky about names for plants and animals with, perhaps, the Linnaean Taxonomy!'?
content pattern or adding some information on the Climatic Zone?® where the plants and
animals live, and so on?'. ODPs are the topic of Section 6.3. ¢

Instead of the tutorial ontology, you may like to inspect a real ontology that is linked
to DOLCE. There are multiple examples, one of which is the Data Mining Optimization
Ontology we have come across in Chapter 1 [Keet et al., 2015]. You can download the
latest ontology from http://www.dmo-foundry.org to inspect it in your ODE of choice,
and a selection of the links is depicted in Figure 6.4.

Methods and supporting tools are being developed that are informed by founda-
tional ontologies or provide actual support using them, e.g., [Hoehndorf et al., 2010,
Khan and Keet, 2012, Keet, 2012b, Keet et al., 2013a, Hepp, 2011], but more can be
done to assist the modeller in the ontology authoring process.

dolce:particular

dolce:non-physical-endurant dolce:process dolce:quality dolce:abstract
DataType DataFormat

DM-Task | DM-Data dolce:abstract-quality dolce:region

DM-Algorithm DM-Operation

DM-Experiment dolce:quale dolce:abstract-region

Characteristic Parameter /V V\

NeighborhoodRange
OpParameterSettin

Figure 6.4: Selection of DMOP classes linked to DOLCE.

"http://www.meteck.org/teaching/ontologies/pwrelations.owl

Bhttp://www.ontologydesignpatterns.org/

http://ontologydesignpatterns.org/wiki/Submissions :LinnaeanTaxonomy

2Onttp://ontologydesignpatterns.org/wiki/Submissions:ClimaticZone

21But note that regarding content, one also can take a bottom-up approach to ontology development
with resources such as the Environment Ontology (http://www.environmentontology.org/) or pick and
choose from ‘semantified’ Biodiversity Information Standards (http://www.tdwg.org/) etc. Bottom-up
approaches are the topic of the next chapter.
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6.2 Part-whole relations

A, if not the, essential relation is the part-whole relation, which is deemed essential
by the most active adopters of ontologies—i.e., bio- and medical scientists—while its full
potential is yet to be discovered by, among others, manufacturing to manage components
of devices. Let us start with some example modelling questions to get an idea of the
direction we are heading at:

e Is City a subclass of or a part of Province?

e [s a tunnel part of the mountain? If so, is it a ‘part’ in the same way as the sand
of your sandcastle on the beach?

e What is the difference, if any, between how Cell nucleus and Cell are related and
how Receptor and Cell wall are related? Or between the circuit on the ethernet
card embedded on the motherboard and the motherboard in the computer?

e Assuming boxers must have their own hands and boxers are humans, is Hand part
of Boxer in the same way as Brain is part of Human?

e Consider that “Hand is part of Musician” and “Musician part of Orchestra”.
Clearly, the musician’s hands are not part of the orchestra. Is part-of then not
transitive, or is there a problem with the example?

To shed light on part-whole relations in its broadest sense and sort out such modelling
problems, we will look first at mereology (the Ontology take on part-whole relations),
and to a lesser extent meronymy (from linguistics), and subsequently structure the dif-
ferent terms that are perceived to have something to do with part-whole relations into a
taxonomy of part-whole relations, based on [Keet and Artale, 2008].

6.2.1 Mereology

Let us briefly look at the most ‘simple’ mereological theory, Ground Mereology. We take
the one where part-of is primitive (though we also can take proper parthood as primitive
and define parthood in terms of it [Varzi, 2004]). Parthood is reflexive (everything is
part of itself, Eq. 6.1), antisymmetric (two distinct things cannot be part of each other,
or: if they are, then they are the same thing, Eq. 6.2), and transitive (if x is part of y
and y is part of z, then x is part of z, Eq. 6.3):

Vz(part-of(x,x)) (6.1)
Va,y((part_of(x,y) A part_of (y,z)) =  =1y) (6.2)
Va,y, z((partof(z,y) A part-of(y, z)) — part_of (z, z)) (6.3)

With these axioms, on can define proper parthood:

Va, y(proper_part_of(x,y) = part_of (z,y) A\ —part_of(y,x)) (6.4)

Proper parthood is transitive (Eq. 6.5), asymmetric (if = is part of y then y is not part
of z, Eq. 6.6) and irreflexive (z is not part of itself, Eq. 6.7):

Va,y, z((proper_part_of (z,y) A proper_part_of(y, z)) — proper_part_of(z,z)) (6.5)
Y, y(proper_part_of(x,y) — —proper_part-of(y,x)) (6.6)
Va—(proper_part_of(x,x)) (6.7)

These basic axioms already enables us to define several other common relations.
Overlap (x and y share a piece z):

vV, y(overlap(x,y) = Jz(part_of (z,z) A part_of(z,y))) (6.8)
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Underlap (x and y are both part of some z):

Ve, y(underlap(z,y) = Jz(part_of(z,z) A part_of(y, z))) (6.9)
Over- & undercross (over/underlap but not part of):

YV, y(overcross(z,y) = overlap(z,y) A —part_of(z,y)) (6.10)

Va,y(undercross(x,y) = underlap(z,y) A —part_of (y,x)) (6.11)

Proper overlap & Proper underlap:

Ve, y(p-overlap(x,y) = overcross(z,y) A overcross(y,x)) (6.12)

Va,y(punderlap(z,y) = undercross(z,y) A undercross(y, x)) (6.13)

But there are ‘gaps’, some would say. Among others: with x as part, what to do with
the ‘remainder’ that makes up y? There are two options:

o Weak supplementation: every proper part must be supplemented by another, dis-

joint, part, resulting in Minimal Mereology (MM).

e Strong supplementation: if an object fails to include another among its parts, then

there must be a remainder, resulting in Extensional Mereology (EM).
There is a problem with EM, however: non-atomic objects with the same proper parts
are identical (extensionality principle), but sameness of parts may not be sufficient for
identity. For instance, two objects can be distinct purely based on arrangement of its
parts, like there is a difference between statue and its marble, several flowers and a
bouquet of flowers. This is addressed in General Extensional Mereology (GEM); see also
Figure 6.5.

One can wonder if parthood goes on infinitely, or if there is instead some ‘basic
element’, called Atom, and some ultimate whole that encompasses everything. These
different commitments generate additional mereological theories. Moreover, we could
temporalise each mereological theory, and from a modelling perspective in the context of
ontologies as engineering artefacts, they are still inadequate, as we shall see in the next
section.

General Extensional Mereoclogy

GEM = GMM
General Mereology ‘
GM Extensional Closure Mereology
‘ CEM =CMM
Closure Mereology
CM Extensional Mereology
EM

Minimal Mereology

/ MM

Ground Mereology
M

Figure 6.5: Hasse diagram of mereological theories; from weaker to stronger, going uphill (after
[Varzi, 2004]). Atomicity can be added to each one.
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6.2.2 Modelling and reasoning in the context of ontologies

Mereology is, however, not enough for ontology engineering. Partially due to the ‘spill-
over’ from conceptual data modelling and cognitive science, a whole range of relations are
sometimes referred to as a parthood relation, but which are not upon closer inspection.
This has been investigated by several researchers. We shall take a closer look at Keet and
Artale’s taxonomy of part-whole relations [Keet and Artale, 2008] during the lecture; the
informal graphical rendering is depicted in Figure 6.6.

Part-whole relation

[ |
part_of mpart_of
(Mereological part-of relation) ((Meronymic) part-whole relation)

I | ] I
s-part-of  spatial-part-of involved-in  member-of constitutes sub-quantity-of participates-in

f-part-of contained-in located-in member-of

Figure 6.6: Taxonomy of basic mereological (left-hand branch) and meronymic (right-hand
branch) part-whole relations; s-part-of = structural part-of; dashed lines: the subtype has addi-
tional constraints on the participation of the entity types; ellipses: possible finer-grained exten-
sions to the basic part-whole relations. (Source: [Keet and Artale, 2008])

This, in turn, can be put to use with manual or software-supported guidelines, such
as ONTOPARTS, to choose the most appropriate part-whole relation for the modelling
problem at hand??. However, the fancy mereological theories from philosophy are, as of
yet, practically not feasible to implement, and there is no DL or OWL that actually allows
one to represent all of even the most basic mereological theory (Ground Mereology). We
shall take a look at some of the representation and reasoning trade-offs with respect to
the OWL 2 species in the lecture.

Table 6.2: Properties of parthood and proper parthood compared to their support in DLR,,
SHOIN and SROIQ. *: properties of the parthood relation (in M); ¥: properties of the proper
parthood relation (in M).

Language = DLR, SHOIN SROIQ DL-Litey
Feature | (~ OWL-DL) (~OWL2DL) (~OWL 2QL)
Reflexivity * + - + -
Antisymmetry * - - - -
Transitivity * ¥ + + + -
Asymmetry ¥ + + + +
Irreflexivity ¥ + - + -
Acyclicity + - - -

The representation issues affect what we can obtain with automated reasoning over
part-whole relations. Let us first consider what can be represented in DLs and OWL
species, which is shown in Table 6.2, and for OWL 2 one has to recollect the restrictions
on combinations of property characteristics (Section 4.2.1).

nttp://wuw.meteck.org/files/ontopartssup/supindex.html
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Now, what kind of things can be derived with the part-whole relations, and what use
may it have? Informally, e.g., when we can deduce which part of the device is broken,
then only that part has to be replaced instead of the whole it is part of (saving a company
money), and one may want to deduce that when I have an injury in my ankle, I have
an injury in my limb (but not deduce that if you have an amputation of your toe, you
also have an amputation of your foot that the toe is (well, was) part of). If a toddler
swallowed a Lego brick, it is spatially contained in his stomach, but one does not deduce
it is structurally part of his stomach (normally it will leave the body unchanged through
the usual channel). This toddler-with-lego-brick gives a clue why, from an ontological
perspective, equation 23 in [Cuenca Grau et al., 2008] is incorrect (in addition to being
prohibited by OWL 2 DL anyway). Or, e.g., the part-of relation is reflexive, but note
that one cannot represent reflexivity in OWL 2 RL. A consequence of asserting reflexivity
in the ontology is that then for a domain axiom like each Twig is a part-of some Plant,
one deduces that each Twig is a part-of some Twig as well, which is an uninteresting
deduction, and, in fact, points to a defect: it should have been asserted to be a proper
part—which is irreflexive—of Plant. Reflexivity, however, is very useful in other cases,
such as the connection relation for spatial relations.

A separate issue that the solution proposed in [Keet and Artale, 2008] brought afore,
is that it actually requires one to declare the taxonomy of relations correctly. This can be
done by availing of the so-called RBox Reasoning Service [Keet and Artale, 2008], which
can be considered an ontological reasoning service. We shall look at its motivation and
workings in the lecture. The basic idea is that the hierarchy of object properties must
be well-formed, in that in every model, the tuples of the sub-property are a subset of the
tuples of its parent property. The simplest version of this is that the domain and/or range
of the sub-property must be a subclass of the domain and/or range of its super-property.
More formally, we introduce first some notation to denote the user-defined domain and
range of an object property:

Definition 6.1. (User-defined Domain and Range Concepts [Keet and Artale, 2008]).
Let R be a role and R T Cq x Cy its associated Domain € Range axiom. Then, with the
symbol D we indicate the User-defined Domain of R—i.e., Dr = C1—while with the
symbol Rp we indicate the User-defined Range of R—i.e., Rr = Ch.

The RBox Compatibility can then be defined as follows, covering each permutation
of domain and range of the sub-and super property in the hierarchy in the role box R:

Definition 6.2. (RBox Compatibility [Keet and Artale, 2008]) For each pair of roles,
R, S, such that (T,R) = RC S, check whether:

Test 1. (T,R) = Dg E Dg and (T,R) = Rr C Rgs;
Test 2. (T,R) ¥~ Ds C Dg;

Test 3. (T,R) -~ Rs C Rp.

An RBoz is said to be compatible iff Test 1 and (2 or 3) hold for all pairs of role-subrole
in the RBoz.

Note that checking for RBox compatibility—hence, for ontological RBox correctness—
can be implemented by availing of the standard DL/OWL automated subsumption rea-
soning service and an extension to this basic RBox compatibility covering all role inclusion
axioms (OWL object property expressions) has been proposed recently with the SubProS
and ProChainS reasoning services for OWL 2 ontologies [Keet, 2012a].

The part-whole taxonomy, the RBox Compatibility service, and the ONTOPARTS?3

Bhttp://wuw.meteck.org/files/ontopartssup/supindex.html
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tool’s functionalities do not solve all modelling problems of part-whole relations, but at
least provide you with a sound basis and some guidelines.

Various extensions to mereology are being investigated, such as mereotopology, the
notion of essential parthood [Artale et al., 2008], and mereogeometry. We shall touch
upon basic aspects for mereotopology; the interested reader may want to consult, among
others, ontological foundations [Varzi, 2007] and its applicability and modelling aspects
in the Semantic Web setting with OWL ontologies [Keet et al., 2012], the introduction
of the RCC8 spatial relations [Randell et al., 1992], and exploration toward integrating
RCC8 with OWL [Griitter and Bauer-Messmer, 2007, Stocker and Sirin, 2009].

6.3 Ontology Design Patterns

A different approach to reuse, is to avail of ontology design patterns (ODPs), which is in-
spired by the idea of software design patterns. The underlying assumption and experience
is that it is hard to reuse only the useful pieces of a comprehensive (foundational) ontol-
ogy, and the cost of reuse may be higher than developing a new ontology from scratch
(but recollect [Keet, 2011b]); hence, there is perceived to be the need for small (or clev-
erly modularized) ontologies with explicit documentation of design rationales, and best
reengineering practices, which can be addressed with ODPs. In short, such ODPs sum-
marize the good practices that are to be applied within design solutions and they keep
track of the design rationales that have motivated their adoption [Presutti et al., 2008].
Basically, ODPs provide mini-ontologies with formalised knowledge for how to go about
modelling reusable pieces, e.g. an n-ary relation or a relation between data type values, in
an ontology (in OWL-DL), so that one can do that consistently throughout the ontology
development and across ontologies. ODPs for specific subject domains are called content
ODPs, such as the ‘sales and purchase order contracts’ or the ‘agent role’ to represent
agents, the roles they play, and the relations between them. [Presutti et al., 2008]

There are several different types of ODPs, which are summarized in Figure 6.7, which
was taken from the rather comprehensive deliverable about ODPs [Presutti et al., 2008].
There are six families of ODPs: Structural OPs, Correspondence OPs, Content OPs
(CPs), Reasoning OPs, Presentation OPs, and Lexico-Syntactic OPs. We shall look into
the ODP briefly during the lecture.

[ odsol:OntologyDesignPattern |

[ ContentoP | | Structuralop | | LexicoSyntacticOP | | ingop || Presentation0P | | Corr oF |
[ 1| [ | ] I

A ey _ & 7

[ ArchitecturalOP | [ LogicaloP | [ NamingoP | | AnnotationOP | | ReengineeringOP
[ 1 L 1 i 1

LogicalMacro
TransformationOP

Figure 6.7: Categorisation of types of ontology design patterns. (Source: [Presutti et al., 2008]).

[ MappingoP |
L ]

SchemaReengineeringOP | [ RefactoringOP |
1 ]

Other foundational ontology aspects, such as philosophy of language, modal logic,
change in time, properties, and dependence, will not be addressed in this course. The
free online Stanford Encyclopedia of Philosophy?* contains comprehensive, entry-level
readable, overviews of such foundational issues.

% http://plato.stanford.edu/



110 Chapter 6. Top-down Ontology Development

6.4 Exercises

Exercise 27. What are the major differences between DOLCE and BFO in terms of
philosophical approach?

Exercise 28. What is the major difference between DOLCE and BFO in type of contents
of the ontologies?

Exercise 29. Content comparison:

a. Try to match the DOLCE classes Endurant, Process, Quality, Amount of Matter,
Accomplishment, Spatial Region, Agentive Physical Object, and Set to a class in
BFO.

b. If you cannot find a (near) equivalence, perhaps as a subclass-of some BFO class?
And if not even that, why do you think that (those) class(es) is (are) not mappable?

Exercise 30. Give the pros and cons of having a separate relation ontology.

Exercise 31. Find at least 2 common relations—in terms of definition or description
and intention—in the OWLized DOLCE, GFO and RO.

Exercise 32. Assume you are asked to develop an ontology about
a. Sociological and organizational aspects of public administration
b. The physiology and chemistry of medicinal plants
c. A topic of your choice
Which (if any) foundational ontology would you choose for each one? Why?

Exercise 33. Download ONSET from http://www.meteck.org/files/onset/ and re-
do Exercise 32, but now use the ONSET tool to obtain an answer. Does it make any
difference? Were you reasons for choosing a foundational ontology the same as ONSET’s?

Exercise 34. Consider the following scenario.

Both before and since the 2008 recession hit, banks have been merging and
buying up other banks, which have yet to integrate their IT systems within
each of the consolidated banks, and meet new regulations on transparency of
business operations. To achieve that, you are tasked with developing an on-
tology of banks that will facilitate the database integration and transparency
requirements. In such an ontology there will be concrete entities e.g., Bank
manager and ATM, and abstract entities e.g., Loans. For this to be possible,
the ontological assumptions that are made by the ontology must be based
on human common-sense. Processes, such as withdrawals and deposits must
also be modelled. It must be possible to capture dates and times for opera-
tions that occur between entities and processes. Past and present transactions
must be allowed in the ontology. Entities of the ontology may have properties
and values associated with them e.g., an individual has a credit rating. You
are required to provide your lecturer with the axioms found in your ontology
therefore it will be useful refer to or possibly use components of an ontology
that implements a particular mereology theory such as classical extensional
mereology (CEM) or any other. This ontology must be represented in OWL
2 DL.

Which (if any) foundational ontology would you choose? Why?
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Exercise 35. Download either AfricanWildlifeOntology2.owl (with DOLCE) or African-
WildlifeOntology3.owl (with BFO) from http://www.meteck.org/teaching/ontologies/,
open it in the ontology development environment of choice, and inspect its contents.
Modify the African Wildlife Ontology as follows:
a. Add enough knowledge so that RockDassie will be classified automatically as a
subclass of Herbivore.
b. Add information that captures that lions, impalas, and monkeys live in nature
reserves, and that monkeys can also be found on some university campuses.

Exercise 36. There is some ontology O that contains the OWLized DOLCE taxonomy
and the following expressions:

hasPart C PD x PD, Human C ED, Brain C ED,
involves = PT x PT, Metabolizing C PD, Living C PD,
involves C hasPart, Human C JhasPart.Brain,
Trans(hasPart), Living C dinvolves.Metabolizing.

Is Human consistent? Verify this with the reasoner and explain why.

Exercise 37. Consider the two OWL ontologies summarised in Table D.1.
a. What is (are) the deduction(s) by the automated reasoner?
b. Is there a difference in the deductions between the two? If so, why; if not, why
not?
c. How can we fix the defect(s)?
(For the dedicated: further details regarding the reasoning service that helps finding the
flaw and suggests how this can be resolved can be found in [Keet, 2012a])

Table 6.3: Sample ontologies with some defect(s).

| O, | OPEs | CEs | Inferred
R C PED x PED | OWLized DOLCE, Ed; C ED, ?
S L ED X ED Ed, C ED, Pedy L PED, Pedy L PED,
SCR Ed; C 3S.Ed,, Ped; C JR.Ped,
| O, | OPEs | CEs Inferred
as O as 01, but with Edy, C AS (and ?
PED C —AS still holds)

Exercise 38. OWL permits only binary object properties, though n-aries can be ap-
proximated. Describe how they can be approximated, and how your ODP would look
like such that, when given to a fellow student, s/he can repeat the modelling of that
n-ary exactly the way you did it and add other n-aries in the same way.

Exercise 39. Inspect the Novel Abilities and Disabilities OntoLogy for ENhancing Ac-
cessibility: ADOLENA; Figure 6.8 provides a basic informal overview. Can (any of) this
be engineered into an ODP? If so, which type(s), how, what information is needed to
document an ODP?



112 Chapter 6. Top-down Ontology Development

providedBy / ameliorates

provides X
Device
isAffectedBy /

affects

requiresAbility,

Ability

Assistive
assistsWith /
isAssistedBy

Device
Replacgment assistsWith / Physical
Device isAssistedB Ability

Figure 6.8: Informal view of the ADOLENA ontology.
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Institute of Cognitive Sciences and Technologies (CNR). 2008.
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%nttp://www.loa-cnr.it/DOLCE. html

*"http://wiki.loa-cnr.it/index.php/LoaWiki:Ontologies

Bnttp://wuw.ifomis.org/bfo

Phttp://wuw.onto-med.de/ontologies/gfo/

3nttp://www.meteck.org/files/swt09/DolceliteBFOinDLandMSyntax . pdf

3'http://www.imbi.uni-freiburg.de/ontology/biotop/
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Bottom-up Ontology Development

The other direction of approach developing an ontology without starting with a blank
slate, is to reuse exiting data, information or knowledge. A motivation to consider this are
the results obtained by Simperl et al [Simperl et al., 2010]: they surveyed 148 ontology
development projects, which showed that “domain analysis was shown to have the highest
impact on the total effort” of ontology development, “tool support for this activity was
very poor”, and the “participants shared the view that process guidelines tailored for
[specialised domains or in projects relying on end-user contributions] are essential for the
success of ontology engineering projects”. In other words: the knowledge acquisition
bottleneck. Methods and tools have been, and are being developed to make it less
hard to get the subject domain knowledge out of the experts and into the ontology,
e.g., through natural language interfaces and diagrams, but also to make it less taxing
on the domain experts by reusing the ‘legacy’ material they already have to store their
information and knowledge. It is the latter we are going to look at in this chapter:
bottom-up ontology development to get the subject domain knowledge represented
in the ontology. We approach it from the other end of the spectrum compared to what we
have seen in Chapter 6, being starting from more or less reusable non-ontological sources
and develop an ontology from that.
Technologies differ according to their focus for semi-automated bottom-up ontology
development:
e Ontology learning to populate the TBox, where the strategies can be subdivided
into:
— transforming information or knowledge represented in one logic language into
an OWL species;
— transforming somewhat structured information into an OWL species;
— starting at the base.
e Ontology learning to populate the ABox.
The latter is carried out typically by either natural language processing (NLP) or one
or more data mining or machine learning techniques. In the remainder of this chapter,
however, we shall focus primarily on populating the TBox. Practically, this means taking
some ‘legacy’ material (i.e., not-Semantic Web and, mostly, not-ontology) and convert
it into an OWL with some manual pre- and/or post-processing. Input artefacts include,
but are not limited to:
1. Databases

113



114 Chapter 7. Bottom-up Ontology Development

Conceptual data models (ER, UML)

Frame-based systems

OBO format ontologies

Thesauri

Biological models

Excel sheets

Tagging, folksonomies

9. Output of text mining, machine learning, clustering

0N OOt W

It is not equally easy (or difficult) to transform them into a domain ontology. Figure 7.1
gives an idea as to how far one has to ‘travel’ from the legacy representation to a ‘Semantic
Web compliant’ one. The further the starting point is to the left of the figure, the more
effort one has to put into realizing the ontology learning such that the result is actually
usable without the need of a full redesign. Due to the limited time available in this
course, we shall not discuss all variants. We shall focus on using a databases as source
material to develop an ontology', thesauri, and NLP.

XML o
Schema Description
Formal Logics
Terms XML DTDs taxonomies

Common Logic

Conceptual Data

‘ordinary’ Models
Glossaries
Dat . General
ata rames H
Dictionaries Database LOgIC
Schema

Glossaries & MetaData, Formal Ontologies
Data Dictionaries XML Schemas, & Inference

& Data Models

Figure 7.1: Various types of less and more comprehensively formalised ‘legacy’ resource.

7.1 Relational databases and related ‘legacy’ KR

The starting position for leveraging the knowledge encoded in a relational database to
develop an ontology could be its conceptual data model. However, despite academics’
best efforts to teach good design and maintenance methodologies in a degree programme,
it is not uncommon in organisations that if there was a conceptual model for the database
at all, it is outdated by the time you would want to use it for ontology development. New
columns and tables may have been added in the database, constraints removed, tables
joined (further denormalised) for better performance or vice versa for cleaner data, and
so on, and no-one bothered to go back to the original conceptual, or even relational,
model and update it with the changes made. Practically, there likely will be a database
with multiple tables that have many (15-50) columns. This is represented at the bottom
of Figure 7.2.

LConverting a relational database into an RDF triple store is quite common as well, but not covered
in the lecture; e.g., the D2R database to RDF mapping (http://sites.wiwiss.fu-berlin.de/suhl/
bizer/d2r-server/).
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Figure 7.2: Denormalised relational database (bottom), where each table is reverse engineered
into an entity in a ‘flat’ EER diagram (middle), and subsequently refined w.r.t. the hidden entity
types and annotations, such as the GO (top), which then finally can be transformed/translated
into an ontology.

If we were to simply convert that physical schema into an OWL ontology, the outcome
would be a bunch of classes with many data properties and a unnamed object property
between a subset of the classes from foreign keys. This won’t do as an ontology.

Reverse engineering the database

There are several reverse engineering tools for physical schemas of relational databases,
where a first pass results in one of the possible logical models (i.e., the relational model
for an RDBMSs), and another iteration brings one up to the conceptual data model
(such as ER, ORM) [Hainaut et al., 1993]. This first draft version of the EER model is
depicted in EER bubble notation in Figure 7.2, where each table (relation) has become
an entity type and each column an attribute. The main problematic consequence for
reverse engineering the conceptual data model to feed into an OWL ontology is that the
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database structure has been ‘flattened out’, which, if simply reverse engineered, ends up
in the ‘ontology’ as a class with umpteen attributes with which one can do minimal (if
at all) automated reasoning (see the first diagram above the table in Figure 7.2).

To avoid this, should one perform some normalization steps to try to get some struc-
ture back into the conceptual view of the data alike in the diagram at the top in Fig-
ure 7.2, and if so, how? Whether done manually or automatically, it can be cleaned
up, and original entity types (re-)introduced, relationships added, and the attributes
separated accordingly, thereby making some knowledge implicit in the database schema
explicit, which is depicted in the top-half of Figure 7.2. This can be done at least partially
automatically by discovering functional dependencies in the data stored in the database
tables. Such reverse engineering opens up other opportunities, for one could use such a
procedure to also establish some mechanism to keep a ‘link’ between the terms in the
ontology and the source in the database so that the ontology can be used to enhance
data analysis through conceptual model or ontology-based querying. A particular algo-
rithm up to obtaining a DL-formalised conceptual data model based on a fully normalised
database can be found in, e.g., [Lubyte and Tessaris, 2009).

Figure 7.2 may give the impression that it is easy to do, but it is not. Difficulties
achieving it have to do with the formal apparatus of the representation languages?,
and the static linking between the layers and the procedures, which are conveniently
depicted with the three arrows, hide the real complexity of the algorithms. Reverse
engineering is not simply running the forward algorithm backwards, but has a heuristics
component to second-guess what the developers’ design decisions may have been along
the stages toward implementation and may have a machine learning algorithm to find
constraints among instances. Most solutions to date set aside data duplication, violations
of integrity constraints, hacks, outdated imports from other databases and assume to have
a well-designed relational database in at least 3NF or BCNF, and, thus, the results are
imperfect.

In addition to this procedure, one has to analyse the data stored in the database on its
exact meaning. In particular, one may come across data in the database—mathematically
instances—that are actually assumed to be concepts/universals/classes, whereas others
represent real instances. For instance, a Content Management System, such as Joomla,
requires the content provider to store a document under a certain category that is con-
sidered a class by its user, which, however is stored in a cell of a row in the back-end
database, hence, mathematically an instance in the software. Somehow, we need to find
that and extract it for use in the ontology in a way that they will become classes. Another
typical case is where a structured controlled vocabulary, such as the Gene Ontology we
have seen in Section 1.3, has been used in the database for annotation. This is depicted
on the right-hand side with Env:444 and so on. Knowing this, one can reverse engineer
that section of the database into a taxonomy in the conceptual data model (shown in Fig-
ure 7.2 in the top figure on the right-hand side). Finally, there is a so-called ‘impedance
mismatch’ between database wvalues and ABox objects, but this is relevant mainly for
ontology-based data access (see Chapter 8). So, to convert a database, we end up hav-
ing some, or all, data where the values are actually concepts that should become OWL
classes and values that should become OWL individuals.

2For conceptual data modelling languages, among others, the Object Management Group’s Ontology
definition metamodel (http://www.omg.org/spec/0DM/1.0/) is exploring interactions between UML and
OWL & RDF, and there are various results on mapping ER, EER, UML, ORM and/or ORM2 into
a suitable or convenient DL language [Artale et al., 2007a, Berardi et al., 2005, Calvanese et al., 1998a,
Calvanese et al., 1999, Keet, 2008, Keet, 2009b, Keet, 2013].
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Enhancing and converting the conceptual model

Having completed all the reverse engineering and data analysis, one can commence with
the ontological analysis. Whilst improving the conceptual data model, one could perhaps
add a section of another ontology for use, improve on the naming and meaning of the
relationships (perhaps one is intended the same as one from a foundational ontology), add
constraints, and so forth, which is a separate line of work (see Section 9.2). Subsequently,
it will have to be converted to a suitable logic language (in the current setting: an OWL
species). One also could switch these steps by first converting it to OWL and then
perform the ontological analysis. There are several tools that convert a conceptual model,
especially UML Class Diagrams, into OWL, but they have only partial coverage and its
algorithms are unclear; for instance, on how one should transform ternaries and what to
do with the attributes (recall Section 6.1.1). In addition, they work only with a subset
of UML diagrams due to the differences in UML tool implementations (which is due to
ambiguity emanating from the OMG standard and differences across versions).

Other languages and OWL

Imperfect transformations from other languages, such as the common OBO format
[Golbreich and Horrocks, 2007, Hoehndorf et al., 2010] and a pure frames-based approach
[Zhang et al., 2006], are available, which also describe the challenges to create them.

OBO is a Directed Acyclic Graph mainly for classes and a few relationships (mainly
is_.a and part_of), which relatively easily can be mapped into OWL, and the extras
(a.0., date, saved by, remark) could go in OWL’s annotations. There are a few mis-
matches and ‘work-arounds’, such as the not-necessary and inverse-necessary, and a non-
mappable antisymmetry (cannot be represented in OWL). As a result, there are several
OBO-in-OWL mappings, some being more comprehensive than others. The latest/of-
ficial mapping available from http://oboformat.org (superseding the earlier mapping
by [Golbreich and Horrocks, 2007]), which is also implemented in the OWL API. Most
OBO ontologies now also have an OWL version (consult OBO Foundry, BioPortal), but
keep both, for each has their advantages (at present). There is one salient difference
between OWL and OBO ontologies—more precisely: the approach to modelling—which
also affects multilingual ontologies (Section 7.3.3), and how you can view an OBO on-
tology in Protégé. In OWL, you typically give a class a human readable name, whereas
in OBO, a class is assigned an identifier and the name is associated to that with a label
(OBO people who moved to OWL maintain that practice, so numbers as class names do
not imply it was natively an OBO ontology). Newer versions of ontology editors let you
choose how to render the ontology in the interface, by name or by label. If you find an
ontology online and the class names are something alike TA012345, then it was likely an
OBO ontology converted into OWL, and you’ll have to change the view in the ‘ontology
view’ settings, so that it will show the labels instead of those meaningless numbers.

While OBO and the older frames-based Protégé do serve a user base, their overall
impact on widespread bottom-up ontology development for the Semantic Web is very
likely to be less than the potential that might possibly be unlocked with leveraging
knowledge of existing (relational) databases. One may be led to assume this holds, too,
for text processing (NLP) as starting point for semi-automated ontology development,
but the results have not been encouraging yet, for various reasons.
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7.2 Thesauri

Two bottom-up approaches that, by basic idea at least, can have a large impact on do-
main ontology development are: taking as basis biological models or any other structured
graphical representation with subject domain icons [Keet, 2005, Keet, 2012b] and the
rather more cumbersome one of reusing thesauri [Biasiotti and Fernandez-Barrera, 2009,
Soergel et al., 2004]. Both examples have abundant similar instances in biology, medicine,
industry, education, agriculture, cultural heritage, and, undoubtedly, some more automa-
tion to realise it would be a welcome addition to ease the efforts to realise the Semantic
Web.

There are many thesauri that all revolve around the core notions of BT broader term,
NT narrower term, and RT related term (and auxiliary ones UF/USE). For instance,
the Educational Resources Information Center thesaurus:

reading ability

BT ability
RT reading
RT perception
and the AGROVOC of the FAO:

milk
NT cow milk
NT milk fat

How to go from this to an ontology? Three approaches exists (thus far):

e Automatically translate the ‘legacy’ representation of the ontology into an owl file
and call it an ontology (by virtue of being represented in OWL, regardless the
content);

e Find some conversion rules that are informed by the subject domain and founda-
tional ontologies (e.g., introducing part-of, made-from, etc.);

e Give up on the idea of converting it into an ontology and settle for the W3C-
standardised Simple Knowledge Organisation System?® format to achieve compati-
bility with other Semantic Web Technologies.

We will look at the problems with the first option, and achievements with the second
and third option.

Problems

The main problems to address are that thesauri are generally a lexicalisation of a concep-
tualisation and they have low ontological precision with respect to the categories and the
relations (see [Soergel et al., 2004] for further details). Mainly, they lack basic categories
alike those in DOLCE and BFO (ED, PD, SDC, etc.), the ‘RT’ can be anything from
parthood to transformation, to participation, and anything else, and BT/NT is not the
same as is_a; hence, the relations are overloaded with (ambiguous) subject domain se-
mantics, and resulting from that, those relationships are used inconsistently—or at least
not precise enough for an ontology. For instance, in the aforementioned example, milk
and milk fat relate in a different way to each other than milk and cow milk, for milk
fat is a component of milk and cow milk indicates its origin (and, arguably, it is part of
the cow). Among other approaches, [Soergel et al., 2004] use a ‘rules as you go’ approach,
which we shall look at, but in any case it requires substantial manual intervention.

Shttp://wuw.u3.org/2004/02/skos/
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SKOS

Thesauri tend to be very large, and it may well be too much effort to convert them into
a real ontology, yet one still would want to have some interoperation of thesauri with
other systems so as to avail of the large amounts of information they contain. To this
end, the W3C developed a standard called Simple Knowledge Organisation System(s):
SKOS* [Miles and Bechhofer, 2009]. More broadly, it is intended for converting thesauri,
classification schemes, taxonomies, subject headings etc. into one interoperable syntax,
thereby enabling concept-based search instead of text-based search, reuse of each other’s
concept definitions, facilitate the ability to search across institution boundaries, and to
use standard software. This is a step forward compared to the isolated thesauri.

However, there are also some limitations to it: ‘unusual’ concept schemes do not
fit into SKOS because sometimes the original structure too complex, skos:Concept is
without clear properties like in OWL, there is still much subject domain semantics in the
natural language text which makes it less amenable to advanced computer processing,
and the SKOS ‘semantic relations’ have little semantics, as skos:narrower does not
guarantee it is is_a or part_of (it just is the standardised version of NT).

Then there is a peculiarity in the encoding. Let us take the example where Enzyme
is a subtype of Protein, hence, we declare:

SKOSPaths:protein rdf:type skos:Concept

SKOSPaths:enzyme rdf:type skos:Concept

SKOSPaths:enzyme SKOSPaths:broaderGeneric SKOSPaths:protein
in the SKOSPaths SKOS file, which are, mathematically, statements about instances. This
holds true also if we were to transform an OWL file to SKOS: each OWL class becomes a
SKOS instance due to the mapping of skos: Concept to owl:Class [Isaac and Summers, 2009].
This is a design decision of SKOS. From a purely technical point of view, that can be
dealt with easily, but one has to be aware of it when developing applications.

We will look into SKOS during the lecture.

7.3 Natural language and ontologies

There is a lot to be said about how Ontology, ontologies, and natural language interact
from a philosophical perspective up to the point that different commitments lead to
different features and, moreover, limitations of a (Semantic Web) application; also here
more emphasis will be put on an engineering perspective. This section groups together
various aspects of this combination, where subsection 7.3.1 is about partially automated
bottom-up population and Section 7.3.2 manual construction and validation with domain
experts. The last section (Section 7.3.3) is not really about bottom-up, but still has to
do with natural languages and ontologies, being multilingualism. (At some point, this
section may get its own chapter in the lecture notes.)

7.3.1 NLP for ontology learning

Natural Language Processing (NLP) can be useful for ontology development, be used as
a component in an ontology-driven information system, and an NLP application can be
enhanced with an ontology. Which approaches and tools suit best depends on the goal
(and background) of its developers and prospective users, ontological commitment, and
available resources.

“http://www.w3.org/TR/swbp-skos-core-spec
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There are several possibilities for ‘something natural language text’ and ontologies or
ontology-like artifacts:

e Use ontologies to improve NLP: to enhance precision and recall of queries (including
enhancing dialogue systems [Vila and Ferrdndez, 2009]), to sort results of an infor-
mation retrieval query to the digital library (e.g. GoPubMed?® [Dietze et al., 2008]),
or to navigate online articles (which amounts to linked data®).

e Use NLP to develop ontologies (TBox): to search for candidate terms and relations,
which is part of the suite of techniques called ‘ontology learning’, [Coulet et al., 2010,
Alexopoulou et al., 2008]; see, e.g. the recent review on NLP and (bio-)ontologies
by [Liu et al., 2011].

e Use NLP to populate ontologies with instances (ABox): e.g., document retrieval
enhanced by lexicalised ontologies and biomedical text mining [Witte et al., 2007].

e Use ontologies with controlled natural languages in natural language generation
(NLG) systems: this can be done using a template-based approach that works
quite well for English but much less so for grammatically more structured languages
such as Italian [Jarrar et al., 2006] and isiZulu [Keet and Khumalo, 2014b], or with
a full-fledged grammar engine as with the Attempto Controlled English” and bi-
directional mappings (see for a discussion [Schwitter et al., 2008]); see [Bouayad-Agha et al., 2014]
for a recent overview.

Intuitively, one may be led to think that simply taking the generic NLP or NLG tools will
do fine also for specialised domains, such as (bio-)medicine. Any application does indeed
use those techniques and tools®, but, generally, they do not suffice to obtain ‘acceptable’
results. Domain specific peculiarities are many and wide-ranging. For instance, to deal
with the variations of terms (scientific name, variant, common misspellings) and the
grounding step (linking a term to an entity in a biological database) in the ontology-NLP
preparation and instance classification [Witte et al., 2007], to characterise the question
in a question answering system correctly (e.g., [Vila and Ferrdndez, 2009]), and to find
ways to deal with the rather long strings that denote a biological entity or concept or
universal [Alexopoulou et al., 2008].

An example of a comprehensive approach is NLP for pharmacogenomics ontology
development, which requires rule construction, ‘normalization’ of verbs that are candidate
relationships, and linking it to the PHARE domain ontology® [Coulet et al., 2010]. Some
of the mentioned peculiarities actually generate better overall results than in generic or
other domain-specific usages of NLP tools, but it requires extra manual preparatory work
and a basic understanding of the subject domain and its applications to include also such
rules. For instance, enzyme names always end with “-ase”, so one can devise a rule with a
regular expression to detect these terms ending in “-ase” and add them in the taxonomy
as a subclass of Enzyme.

Shttp://www.gopubmed. com/

SAllen H. Renear and Carole L. Palmer. Strategic Reading, Ontologies, and the Fu-
ture of Scientific Publishing. Science 325 (5942), 828. [DOI: 10.1126/science.1157784]
(but see also some comments on the paper at http://keet.wordpress.com/2009/09/19/
linked-data-as-the-future-of-scientific-publishing/)

"http://attempto.ifi.uzh.ch/site/

8Paul Buitelaar’s slides have examples and many references to NLP tools (http://www.deri.ie/
fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf)

“http://bioportal.bioontology.org/ontologies/45138
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7.3.2 Controlled natural languages to interact with domain experts

Controlled natural languages and the broader Natural Language Generation area (NLG)
also have both a linguistic component and a computing component. Aside from its use
in machine translations, NLG is use to create nice ‘syntactic sugar’ to the logic-based
ontologies, which

e helps the domain experts understand what exactly has been represented in the

ontology, and thereby a means to validate that what has been represented is what
was intended;

e can be used to write axioms in pseudo-natural language, rather than the logic itself,

to develop the ontology.
Thus, it is part of a very bottom-up approach of manual ontology authoring.

Let’s start with a few example verbalisations in both English and isiZulu:

(S1) Giraffe C Animal

Each Giraffe is an Animal

izindlulamithi yizilwane
(S2) Herb C Plant

Each Herb is a Plant

ihebhu ngumuthi
(S3) Milk M Butter

Milk and Butter

ubisi nebhotela
The underlined text forms part of the pattern, and the vocabulary is inserted on the fly
read from the ontology file. For English, it is very well feasible to do this with templates
where the terms are slotted in, which can be refined with rules to cate for things such
as a vs an. A notable advanced system that does this is Attempto Controlled English!”
[Fuchs et al., 2010]. For many other languages, however, also a comprehensive encod-
ing of a subset of the grammar rules is necessary to generate understandable sentences
[Jarrar et al., 2006, Keet and Khumalo, 2014a], such as that na + i = ne for the enumer-
ative ‘and’ in isiZulu to generate the nebhotela from ibhotela, and much more complex
ones for verbs and quantifiers that depend on the noun class of the noun that us used to
name the OWL class.

Essentially, each symbol in the language has one or more ways of putting it in nat-
ural language, and based on that, one can create a controlled natural language that can
generate only those sentences following a specified pattern, not some arbitrary sentence
that NLP has to deal with. In this way, then a whole ontology can be wverbalised and
presented as (pseudo-)natural language sentences that hide the logic. having that, the
next step is to go in the other direction: using the controlled natural language to generate
the axioms.

Of course, it takes for granted one already has an ontology in one’s preferred language.

7.3.3 Multilingual ontologies

Perhaps this is not the best place to discuss an ontology engineering issue and natural
language, but it is easier to grasp now than earlier, as we have come across OWL, OBO,
and NLP-driven TBox population now. OWL and its ontology development environ-
ment interfaces asks one to use natural language(-like) naming of the classes and object
properties. But what to do in a collaborative environment, or integrating or just linking
ontologies, and you spelled it hasColour and another developer wrote it as Color in his

Ohttp://attempto.ifi.uzh.ch/site/
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ontology, or one insists on a euphemism BurglarGuards and another domain expert calls
those things PrisonBars? Or you want to develop an ontology that is accessible in all 11
official languages of South Africa?

On the face of it, this may look problematic for OWL, despite that one of its goals
was internationalisation. The spelling variants can be handled through annotations and
synonyms where the original terms have to be preserved by declaring two classes equiva-
lent. It becomes interesting when one ontology has to serve people who prefer more than
one natural language, or at least a natural language different from the ontology. Does
one really have to elect one ‘core’ natural language in which to develop the ontology and
sort out ‘the rest’ with labelling within the ontology, or, worse from a maintenance point
of view, create a separate version of the ontology in each language? By now, this has
become a ‘hot’ research topic, and there are several approaches to deal with multilingual-
ism in ontologies. The remainder of the section is more intended to sensitise you to the
issues you will have to take into consideration when developing multilingual ontologies,
but the state of the art is not yet at the stage where there’s one straightforward solution.

The simplest approach is called semantic tagging, which is depicted in Figure 7.3:
the ontology is ‘developed in English’ and for other languages, labels are added, such
as Fakultat for School. Another approach is to design the ontology in a fundamentally
‘language-independent’ way. This approach underlies the OBO ontologies: each entity
in an OBO-formalised ontology is named with its ID, and then any amount of natural
language terms are associated with it.

| RDF(S) & OWL current status |

[ Campus }

studies_at

works_at

has_US-English_term has_German_term has_Dutch_term
Fakultat Faculteit
Figure 7.3: Ontologies in practice: Semantic Tagging—Classes, Terms. (Source:

http://www.deri.ie/fileadmin/documents/teaching/tutorials/DERI-Tutorial-NLP.final.pdf)

However, both falter as soon as there is no neat 1:1 translation of a term into an-
other single term in a different language—which is quite often the case except for very
similar languages—though within the scientific realm, this is much less of an issue, where
handling synonyms may be more relevant. The following example illustrates some ‘strug-
gling’ on how to handle this for when there is not even a name for the entity in the other
language (taken from [Alberts et al., 2012])

Example 7.1. Let us consider ingcula, which is a “small bladed hunting spear” in
isiZulu, but has no equivalent term in English. Trying to represent it in the ‘En-
glish understanding’, then we could have a class Spear that has two properties, e.g.,
Spear C dhasShape.Bladed M dparticipatesin.Hunting, and then a fuzzy concept to repre-
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sent small, following [Bobillo and Straccia, 2011}, e.g.,

MesoscopicSmall : Natural — [0, 1] as a fuzzy datatype,

MesoscopicSmall(x) = trz(x, 1,5,13,20) with trz the trapezoidal function,
so that a small spear can be defined as

SmallSpear = Spear N dsize.MesoscopicSmall
Then we create a class in English and declare something alike

SmallBladedHuntingSpear = SmallSpear M dhasShape.Bladed M dparticipatesin.Hunting
This is just one of the possibilities of a formalised translation of an English natural lan-
guage description, not a definition of ingcula as it may appear in an ontology about
indigenous knowledge of hunting. But let us assume for now we do want to go in this
direction, then we require more advanced capabilities than even lexicalised ontologies,
which only link dictionaries and grammars to the ontologies (besides, dictionaries are
limited in size and soft copy availability for most South African languages).

A possible solution to this impasse is to use e-connections between natural language-
dependent versions of the ontology. For instance, we could connect inqina.owl#Ingcula@zu
to a set of axioms or to a dummy class (say, hunting.owl#SmallBladedHuntingSpear@en)
with the above-mentioned definition for Ingcula. However, also this is easier said than
done, and has the problem of having to maintain an ontology for each language. <

To conclude from the example: it is not clear how to handle the multilingualism in
this way.

Another idea being proposed is that of a so-called “lexicalised ontology”
[Buitelaar et al., 2009], of which an example is depicted in Figure 7.4. Although it still
conflates the entity and its preferred label (i.e., name), handling other languages is much
more extensive and, at least in theory, will be able to cope with multilingual ontologies
to a greater extent. This is thanks to its relatively comprehensive information about
the lexical aspects in its own linguistic ontology, with the WordForm etc., which is posi-
tioned orthogonally to the domain ontology. In Figure 7.4, the English OralMucosa has
its equivalent in German as Mundschleimhaut, which is composed here of two sub-words
that are nouns themselves, Mund (mouth) and Schleimhaut (mucosa). This idea has been
made more precise and comprehensive in the Lemon model that is tailored to the Se-
mantic Web setting [McCrae et al., 2012]. It uses RDF, but we abstract from that here
and present only a depiction of the model in Figure 7.5 and an example for the class Cat
in Figure 7.6. If you want to know how well this approach works for Bantu languages,
have a look at [Chavula and Keet, 2014]; to see FOAF!! localised in Chichewa check
www.meteck.org/files/ontologies/foaf.ttl.

Yet a step further in ‘decoupling’ the ontology aspect from the natural language
aspect would be to merge this with OBO’s ID approach. At the time of writing this
section, it is an active field of research and it will be updated in a next version of the
lecture notes.

7.4 Other semi-automated approaches

Other (semi-)automated approaches to bottom-up ontology development include machine
learning techniques and deploying so-called ‘non-standard’ DL reasoning services.

A short overview and relevant references of machine learning techniques for ontol-
ogy development can be found in [d’Amato et al., 201x], who also outline where such
inductive methods can be used, being: classifying instances, learning new relationships

"http://xmlns. com/foaf/spec/
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Figure 7.4: Ontologies in practice: Semantic Tagging—Lexicalized Ontologies. (Source:
http://www.deri.ie/fileadmin/documents/teaching /tutorials/DERI-Tutorial-NLP.final.pdf)

among individuals, probabilistic ontologies, and probabilistic mapping for the ontology
matching task, (semi)-automating the ontology population task, refining ontologies, and
reasoning on inconsistent or noisy knowledge bases. Several ‘hybrids’ exists, such as the
linking of Bayesian networks with probabilistic ontologies [da Costa and Laskey, 2006]
and improving data mining with an ontology [Zhou et al., 2005].

Other options are to resort to a hybrid of Formal Concept Analysis with OWL
[Baader et al., 2007a], least common subsumer [Baader et al., 2007b, Turhan, 2008]
[Penaloza and Turhan, 2011], and similar techniques. The notion of least common sub-
sumer and most specific concept and motivations where and how it may be useful are
described in [Penaloza and Turhan, 2011].

Exploiting biological models

See [Keet, 2005, Keet, 2012b] for semi-automated approaches to formalise the graphi-
cal vocabulary in textbooks and drawing tools, and subsequently use an algorithm to
populate the TBox with the knowledge taken from the drawings.

See [Hoehndorf et al., 2011] for a first approach in systems biology and simulation,
where the authors convert models represented in the Systems Biology Markup Language
(SMBL) into OWL.

More TBA.

7.5 Exercises

Exercise 40. Examine Figure 7.7 and answer the following questions.
a. Represent the depicted knowledge in an OWL ontology.
b. Can you represent all knowledge? If not: what not?
c. Are there any problems with the original conceptual data model? If so, which
one(s)?
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Figure 7.5: The Lemon model for multilingual ontologies (Source: [McCrae et al., 2012])

Exercise 41. Figure 7.8 shows a very simple conceptual data model in roughly UML
class diagram notation: a partition [read: disjoint, complete] of employees between clerks
and managers, plus two more subclasses of employee, namely rich employee and poor
employee, that are disjoint from the clerk and the manager classes, respectively (box
with cross). All the subclasses have the salary attribute restricted to a string of length 8,
except for the clerk entity that has the salary attribute restricted to be a string of length
5. Another conceptual data model, in ORM2 notation (which is a so-called attribute-free
language), is depicted in Figure 7.9, which is roughly similar.
a. When you reason over the conceptual data model in Figure 7.8, you will find it has
an inconsistent class and one new subsumption relation. Which class is inconsistent

and what subsumes what (that is not already explicitly declared)? Try to find out
manually, and check your answer by representing the diagram in an OWL ontology

and run the reasoner to find out.

. Develop a proper ontology that can handle both conceptual data models. Consider

the issue of how deal with attributes and add the information that clerks work for
at most 3 projects and managers manage at least one project.

Exercise 42. Consider the small section of the Educational Resources Information Cen-
ter thesaurus, below.
a. In which W3C-standardised (Semantic Web) language would you represent it, and

why?

b. Are all BT /NT assertions subsumption relations?
c. There is an online tool that provides a semi-automatic approach to developing a
domain ontology in OWL starting from SKOS. Find it. Why is it semi-automatic
and can that be made fully automatic (and if so, how)?
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Figure 7.6: The Lemon model for multilingual ontologies to represent the class Cat (Source:
[McCrae et al., 2012])
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Propaganda
BT Communication (Thought Transfer)
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RT Advertising
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RT Mass Media
UF n/a
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Figure 7.7: A small conceptual model in ICom (from its website http://www.inf.unibz.it/
~franconi/~icom ; see [Fillottrani et al., 2012] for further details about the tool); blob: manda-
tory, open arrow: functional; square with star: disjoint complete, square with cross: disjoint,
closed arrow (grey triangle): subsumption.

Employee

RichEmployee FPoorEmploy e
Salary String8 Salary Strings

Clerk Manager
Salary Strings Salary Stringa

Figure 7.8: A small conceptual model in ICom (Source: http://www.inf.unibz.it/
~franconi/~icom ).

Exercise 43. The least common subsumer and most specific concept use non-standard
reasoning services that helps with ontology development, and they are defined in terms
of DL knowledge bases as follows.

Definition 7.1 (least common subsumer ([Penaloza and Turhan, 2011])).
Let L be a Description Logic language, K = (T, A) be a knowledge base repre-
sented in DL L (an L-KB). The least common subsumer (Ics) with respect to

T of a collection of concepts C1,...,Cy, is the L-concept description C such
that:

1. C; 5 C foralll <i<n, and
2. for each L-concept description D holds: if C; & D for all 1 < i < n,
then C Cq D.

Definition 7.2 (most specific concept ([Pefialoza and Turhan, 2011])). Let £
be a Description Logic language, K = (T, .A) be a knowledge base represented
in DL L (an L£L-KB). The most specific concept (msc) with respect to IC of an
individual from A is the L-concept description C such that:

1. K= C(a), and
2. for each L-concept description D holds: K |= D(a) implies C Ty D.

Describe in your own words what they do.
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Exercise 44. In what way(s) can data mining be useful in bottom-up ontology devel-
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Employee
(code)

l RichEmployee l [ Clerk] [ Manager ] ( PoorEmployee ]

b

<has

Figure 7.9: A small conceptual model in ORM2, similar to that in Figure 7.8.

opment? Your answer should include something about the following three aspects:

a.
b.

C.

Exercise 45. You are an ontology consultant and have to advise the clients on ontology
development for the following scenario. What would your advice be, assuming there are
sufficient resources to realize it? Consider topics such as language, reasoning services,

populating the TBox (learning classes and hierarchies, relationships, constraints),

populating the ABox (assertions about instances), and

possible substitutes or additions to the standard automated reasoning service (con-

sistency checking, instance classification, etc.).

bottom-up, top-down, methods/methodologies.

7.6

A pharmaceutical company is in the process of developing a drug to treat
blood infections. There are about 100 candidate-chemicals in stock, cate-
gorised according to the BigPharmaChemicalsThesaurus, and they need to
find out whether it meets their specification of the ‘ideal’ drug, codename
DruTopiate, that has the required features to treat that disease (they already
know that DruTopiate must have as part a benzene ring, must be water-soluble,
smaller than 1 pm, etc). Instead of finding out by trial-and-error and test
all 100 chemicals in the lab in costly experiments, they want to filter out
candidate chemicals by automatic classification according to those DruTopi-
ate features, and then experiment only with the few that match the desired
properties. This in silico (on-the-computer) biomedical research is intended
as a pilot study, and it is hoped that the successes obtained in related works,
such as that of the protein phosphatases and ideal rubber molecules, can be
achieved also in this case.

Literature and reference material

. L. Lubyte, S. Tessaris. Automatic Extraction of Ontologies Wrapping Relational
Data Sources. In Proc. of the 20th International Conference on Database and

Ezxpert Systems Applications (DEXA 2009).
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CHAPTER 8

Ontology-Based Data Access

The previous two blocks were rather theoretical in the sense that we have not seen many
practical application infrastructures with ontologies. This is set to change in the upcom-
ing two lectures of the “advanced topics”. We shall look at both theoretical foundations
of ontology-based data access (OBDA)—currently rebranded as ontology-based data man-
agement'—and one of its realisations, and you will set up an OBDA system yourselves
during the labs.

There are several ‘starting points’ for introducing OBDA, depending on one’s back-
ground. The short description is that it links an ‘ontology’ to lots of data in a relational
database by means of a newly introduced mapping layer, which subsequently can be used
for (automated reasoner-enhanced) ‘intelligent’ queries. The sneer quotes on ‘ontology’
have to do with the fact that, practically, the ‘ontology’ is a logic-based (OWL 2 QL)
simple conceptual data model. The sneer quotes on ‘intelligent’ refer to the fact that
with the knowledge represented in the ontology/conceptual data model and an OBDA-
enabled reasoner, one can pose more advanced queries to the database (in some cases)
than with just a plain relational database and SQL.

In any case, we divert from the “we don’t really care about expressivity and scal-
ability” of the previous block to a setting that is driven by the need for scalability of
ontology-driven information systems.

8.1 Introduction: Motivations

To motivate the need for some version of an OBDA system, we start with two perspec-
tives: the (end-)user and the sysadmin.

A systems administrator’s perspective

Organisations normally have multiple database to store and manage their data; e.g., the
SMS for student, module, and grade management at UKZN, a database with employee
data, the Moodle system for the university’s modules’ content management, and so on. Or
take the Johannesburg public administration that wants to develop integrated services

!For an informal overview, you may like to read also Maurizio Lenzerini’s blog post of the Association
of Computing Machinery Special Interest Group on Management Of Data (ACM SIGMOD)’s blog at
http://wp.sigmod.org/?p=871, May 14, 2013.
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delivery and the separate databases of the individual services have to be integrated.
Health information systems sometimes need to be kept separate for privacy reasons,
yet at the same time, some cross-database queries have to be executed. Hence, the
databases have to be connected in some way, and doing all that manually is a tedious,
time-consuming task in any case. Moreover, you will have to know how the data is stored
in the database, write (very) large queries, and there is no management for recurring
queries.

Instead of knowing the structure of the database(s) by heart to construct such large
queries, one can reduce the cognitive (over-)load by focusing on what is in the database,
without having to care about if the class Student has a separate table or not, and whether
it uses the full name student or perhaps some abbreviations, like stud. Provided the
database was developed properly, there is a conceptual data model that has exactly the
representation of what kind of data is stored in the database, but, traditionally, this is
offline and shelved after implementation. However, this need not be the case, and OBDA
(as well as OBDI—ontology-based data integration) fills this gap.

The case from the viewpoint of the user

Did you ever not want to bother knowing how the data is stored in a database, but
simply want to know what kind of things are stored in the database at, say, the con-
ceptual or ontological layer of knowledge? And did you ever not want to bother writing
queries in SQL (or, in the context of the Semantic Web, SPARQL), but have a graphical
point-and-click interface with which you can compose a query using that ‘what layer’
of knowledge and that the system generates automatically the SQL/SPARQL query for
you, in the correct syntax? And all that not with a downloaded desktop application but
in a Web browser? Frustrated with canned queries and pre-computed queries that limit
your freedom to analyse the data? You don’t want to keep on bothering the sysadmin
for application layer updates to meet your whims and be dependent on whether she has
time for your or not?

Several domain experts in genetics as well as in healthcare informatics, at least,
wanted that and felt constrained in what they could do with their data, including at
least pondering about, if not full desperation with, the so-called “write-only” databases.
Especially in the biology and biomedical fields there has been much ontology development
as well as generation of much data, in parallel, which somehow has to be linked up again.

The notion of query by diagram fills this gap. Of itself, this idea is not new
[Catarci and Santucci, 1994, Bloesch and Halpin, 1996, Bloesch and Halpin, 1997], but
now the technologies exist to realise it, even through a web interface and with reasoner-
enabled querying. So, now one can do a sophisticated analysis of one’s data and unlock
new information from the database by using the ontology-based approach. In one exper-
iment, this resulted in the users—scientists conducting in silico experiments—coming up
with new queries not thought of asking before [Calvanese et al., 2010].

8.2 OBDA Architecture

The intuitive idea for solving the sysadmin issues is depicted in Figure 8.1: we add
a “semantic layer” to a traditional database, or: we have a semantic layer and store
information about all individuals in the knowledge base not in the OWL ABox but in
external storage (a relational database) and create a new link between the OWL TBox
and the data store.
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Figure 8.1: OBDA approach.

There are several approaches to realise this, principally from a databases perspective
and from a knowledge representation perspective, or, informally, “a database with back-
ground knowledge in a logical theory” versus “a logical theory (‘ontology’) with lots of
data in external storage”, which give rise to different formalisations due to their different
starting points. Within the knowledge representation perspective, there are alternatives,
too, both in theory [Calvanese et al., 2007, Kontchakov et al., 2010, Lutz et al., 2009]
and then there are different tools for each component that makes up a realised OBDA
system. For instance, one can choose less or no reasoning, such as the Virtuoso system?,
and an RDF triple store versus relational database technology to store the data. We shall
take a look at the principal options, and subsequently consider in more detail the OBDA
system developed at “La Sapienza” University in Rome and Free University of Bozen-
Bolzano, Italy, which is described in [Calvanese et al., 2009]. Its principal ingredients
are:

e Formal language: a language in the DL-Lite family, (roughly OWL 2 QL);

e OBDA-enabled reasoner: e.g., QUONTO [Acciarri et al., 2005] or Quest?

[Rodriguez-Muro and Calvanese, 2012];

e Data storage: an RDBMS, e.g., Oracle, PostgreSQL, DB2;

e Developer interface: OWL ontology development environment, such as Protégé and
an OBDA plugin [Rodriguez-Muro et al., 2008], to manage the mappings and data
access, and a developer API facing toward the application to be developed;

e End-user interface: OBDA plugin for Protégé for SPARQL queries? and results
[Rodriguez-Muro et al., 2008], and the WONDER system for graphical querying
[Calvanese et al., 2010]°.

This is shown schematically in Figure 8.2. Motivations as to why it is this configuration
will be discussed during the lecture, though some of it can already be gleaned from the
OWL 2 Profiles specification [Motik et al., 2009a] and Section 4.3.

8.3 Principal components

The theoretical details are quite involved, and during the two lectures exemplary excerpts
of the key components will be described. There are two principal aspects to it:

2http://virtuoso.openlinksw.com/, used for, among others DBPedia

3http://obda.inf.unibz.it/protege-plugin/quest/quest.html

4SPARQL is a query language, alike SQL but then for querying OWL and RDF. It deserves more
time to cover than we will do during the lecture. The W3C specification of SPARQL can be found at
http://www.w3.org/TR/rdf-sparql-query/, and some RDF/SPARQL tools at http://www.franz.com/
products/allegrograph/ (AllegroGraph), http://sourceforge.net/projects/sesame/ (Sesame), and
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq/ (D2RQ).

WONDER with input from Santi Garcia-Vallvé (with the Evolutionary Genomics Group, ‘Rovira
i Virgilli’ University, Tarragona, Spain) and Mark van Passel (with the Laboratory for Microbiology,
Wageningen University and Research Centre, the Netherlands).
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Figure 8.2: OBDA approach and some practical components (bottom-half): the relational
database, mappings, an ontology, a reasoner, and a user interface (called WONDER) to hide the
technicalities from the end-user.

1. Ontology-Based Data Access systems (static components):
e An ontology language
e A mapping language
e The data
2. Query answering in Ontology-Based Data Access systems:
e Reasoning over the TBox
e Query rewriting
e Query unfolding
e Relational database technology
The mapping language and the items under 2 are new notions compared to the previous
material in this module (in particular, Section 3) and the databases module (COMP306).

The ontology language

For the language, we remain, roughly, within the Semantic Web setting, and take a
closer look at the OWL 2 QL profile and similar languages in the “DL-lite” family that
is at the basis of OWL 2 QL, and DL-Lite4 in particular [Calvanese et al., 2007]. Most
significantly, the trade-off between expressive power and computational complexity of
the reasoning services leans strongly towards the scalability of reasoning (including query
answering) over large amounts of data; or: one can’t say a lot with either OWL 2 QL or
DL-Lite 4.

Syntax of DL-Litey. As is common in DLs and OWL, we distinguish between (ab-
stract) objects and (data) values. A class expression denotes a set of objects, a datatype
denotes a set of values, an object property denotes a binary relationship between objects,
and a data property denotes a binary relation between objects and values. We assume
to have a set {11,...,T,} of pairwise disjoint and unbounded datatypes, each denoting
a set val(7T;) of values (integers, strings, etc.), and T4 denotes the set of all values. Class
expressions, C, and object property expressions, R, are formed according to the following
syntax, where A denotes a class, P an object property, and U a data property:

C — A | 3R | §U), R — P | P
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Observe that IR denotes an unqualified existential class expression, §(U) denotes the
domain of U, and P~ denotes the inverse of P.

A DL-Lite 4 ontology O = (T,.A), consists of a TBox 7 and an ABox A, where the
TBox is constituted by a set of azioms of the form

CiCCy p(U)CT;, RiC Ry, Ui C Uy,
(diSj 01 02), (diSj R1 RQ), (disj U1 UQ),
(funct R), (funct U).

The axioms in the first row denote inclusions, with p(U) the range of U. The axioms
in the second row denote disjointness; note that distinct datatypes are assumed to be
disjoint. The axioms in the third row denote functionality (at most one) of an ob-
ject property expression and of a data property expression, respectively. The ABox is
constituted by a set of assertions of the form A(a), P(a,a’), and U(a,!), where a, o/
are individuals denoting objects and ¢ is a literal (denoting a value). To ensure that
DL-Lite 4 maintains the computationally well-behaved computational properties of the
DL-Lite family [Calvanese et al., 2007], the form of the TBox has to be restricted (as
we have seen for OWL 2 QL in Chapter 3). In particular, object and data properties
occurring in functionality assertions cannot be specialized, i.e., the cannot appear in the
right hand side of an inclusion axiom.

Semantics of DL-Lite. The semantics of DL-Lite 4 is based on first-order interpre-
tations T = T, where AT is a nonempty interpretation domain, which is partitioned into
a Ag of objects, and a A‘I, of values. The interpretation function -Z maps each individual
a to a € AL, each class A to AT C AL, each object property P to P C Ag x AL,
and each data property U to UL C Ag X A‘I/, whereas each literal £ is interpreted as the
value /7 = val(f), each datatype T} as the set of values T = val(T}), and TZ = AL, The
semantics of expressions:

(EIR)I ={o]| 3. (0,0) € RZ}, (P_)Z ={(0,0') | (d,0) € PI},

SU)F = {o| Iv. (0,v) € U}, (p(U))E = {v | Jo. (0,v) € U*}.

Contrary to OWL, DL-Lite 4 (and its implementation) adopts the unique name assump-
tion, meaning that for every interpretation Z and distinct individuals or values ¢y, co, we
have that c¢f # c& (which is the norm in the database setting).

As for other DLs and OWL species, Z satisfies a1 T g if a{ - 04%, it satisfies
(disj a1 ag) if af NaZ = 0, and it satisfies (funct S) if ST is a function (that is, if
(0,21) € ST and (0,22) € S7%, then 21 = 27)). T satisfies A(a) if a> € AZ, it satisfies
P(a,d) if (a%,a'?) € P, and it satisfies U(a, ¢) if (aZ, val(¢)) € UZL.

Mappings

Here, a few definitions and an example is included; the lecture slides and chapter literature
contain further technical details and more examples of mappings.

Definition 8.1 (Mapping assertion between a database and a TBox). A mapping asser-
tion between a database D and a TBox T has the form ® ~~ ¥ where
e ® is an arbitrary SQL query of arity n > 0 over D;
e U is a conjunctive query over T of arity n’ > 0 without non-distinguished variables,
possibly involving variable terms.
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Definition 8.2 (Mapping assertion in M in an OBDA system). A mapping assertion
between a database D and a TBox T in M has the form ®(Z) ~ U(L, i) where
o ® is an arbitrary SQL query of arity n > 0 over D;
e U is a conjunctive query over T of arity n' > 0 without non-distinguished variables;
e 7,1 are variables with y C Z;
e ¢ are variable terms of the form f(Z), with f € A and 7 C .

Concerning the the semantics of mappings, intuitively: 7 satisfies ® ~» U with respect
to D if all facts obtained by evaluating ® over D and then propagating answers to W,
hold in Z.

Definition 8.3 (Satisfaction of a mapping assertion with respect to a database). An
interpretation I satisfies a mapping assertion ®(Z) ~» W(t, i) in M with respect to a
database D, if for each tuple of values ¥ € Eval(®,D), and for each ground atom in
UI[Z/V], we have that:

o If the ground atom is A(s), then s* € AL;

e If the ground atom is P(s1,sz), then (sT,s%) € PZ.

(Note: Eval(®, D) denotes the result of evaluating ® over D, ¥[Z/0] denotes ¥ where
each x; is substituted with v;)

An example is shown in Figure 8.3 with the OBDA plugin for Protégé. There is an
ontology that happens to have a class PromiscuousBacterium, among other things, and
a relational database (HGT) with several of tables, such as organisme and flexcount.
Now we have to link the two with a mapping, which means (i) constructing a database
query such that it retrieves only the promiscuous bacteria, and (ii) solving the ‘impedance
mismatch’ (recollect Chapter 7) with a functor so that the values returned by the database
query become objects in the ontology, which is what getPromBact does. Informally, the
functor can be considered as a URI building mechanism for individuals in the ontology
taken from the database (theoretically, they are skolem functions).

DEeE tBE mad ¢ < <q,orotégé

r & Metadata (Ontology1222766179.owl) r OWLClasses r M Properties r # Individuals r = Forms r BR Datasource Manager r at ABox Queries |

DATASOURCE BROWSER )y DATASOURCE MANAGER

@ hgt-app._. |[ Mappings | SQL queries | SQL Schema Inspector |
e +|[=®
V@ A= UCTICCIuS TE TCUTITAT TS O TTe <
...... 0 HeT M0 sl
----- Q (getPromBact($abbrev,Sccount,Spercentage))

SELECT organisme.abbrev, ccount, organisme.percentage

FROM ( SELECT idorganisme, COUNT(distinct cstart) as ccount
: FROM COMCLUSTG2 GROUP BY idorganisme
""" a ) flexcount, organisme

WHERE organisme.abbrev = flexcount.idorganisme AND
organisme.percentage > 10 AND flexcount.ccount > 5§

[»

HGT ~M:1
ROBMS ----- Q (getPromBactPrime($abbrev,Sccount, $percentage, Shat))
OBDAMappings i SELECT organisme.abbrev, ccount, organisme.percentage,

organisme.hgt
FROM ( SELECT idorganisme, COUNT(distinct cstart) as ccount

.com/Ontologyl2227 " .
FROM COMCLUSTGZ2 GROUP BY idorganisme

:thm:-@obdalin.im‘.unik_ -0 ) flexcount, Organisme
WHERE organisme.abbrev = flexcount.idorganisme AND .
obda.obdalin organisme.percentage > 10 AND flexXcount.ccount > 10 AND

| organisme.hgt > 150
e 17 =

Figure 8.3: An example of a mapping; see text for explanation. (Source: [Keet, 2010c])
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Query answering

Recall the outline of the ADOLENA ontology from the exercise and Figure 6.8. A query
could be

q(x) :- Device(x), ameliorates(x,y), Paraplegia(y)

i.e., “ retrieve the devices that ameliorate paraplegia”. For this to work, we have to
introduce three aspects. First, we need a computer-processable serialization of the query,
a notion of what kind of queries we can pose, and a way how it will do the answering.
The query language is SPARQL (see footnote 4). The kind of queries are (unions of)
conjunctive queries. A conjunctive query (CQ) ¢ over an ontology O is an expression of
the form ¢(Z) « 3y.conj(Z,y), where ¢(Z) the head, conj(Z, ) the body, the variables in
Z are distinguished variables and ¥ the non-distinguished variables, and where conj (%, %)
is a conjunction of atoms of the form D(z), S(z,2’), z = 2/, where D denotes a class or a
datatype, S an object property or data property in O, and z, 2’ are individuals or literals
in O or variables in & or . Given an interpretation Z = Z, then ¢ is the set of tuples
of AT that, when assigned to the variables &, make the formula 37.conj(Z,#) true in Z.
The set cert(q, O)—certain answers to g over O—is the set of tuples @ of individuals or
literals appearing in O such that @£ € ¢7, for every model Z of O.

Regarding query answering, consider Figure 8.4, where ¢ is our query, 7 the TBox
(ontology or formal conceptual data model), and A the ABox (our instances, practically
stored in the relational database). Somehow, this combines to produce the answers, using
all components.

First, there is a “reformulation” (or: rewriting) step, which computes the perfect
reformulation (rewriting), gy, of the original query ¢ using the inclusion assertions of 7~
so that we have a union of conjunctive queries. That is, it uses the knowledge of the
ontology to come up with the ‘real’ query. For instance, recollect Figure 6.8 about the
ontology of abilities and disabilities, then a query “retrieve all Devices that assistWith
UpperLimbMobility”, i.e.,

q(x) :- Device(x), assistsWith(x,y), UpperLimbMobility(y)
or, in SPARQL notation:

SELECT $device

WHERE {$device rdf:type :Device.
$device :assistsWith $y.
$y rdf:type :UpperLimbMobility}
will traverse the hierarchy of devices until it finds those devices that have an object prop-
erty declared with as range UpperLimbMobility. In this case, this is MotorisedWheelchair,
hence, the ‘real’ query concerns only the retrieval of the motorised wheelchairs (not first
retrieving all devices, and then making the selection).

Second, the “unfolding” step computes a new query, g, by using the (split version
of) the mappings that link the terms of the ontology to queries over the database.

Third, the “evaluation” step delegates the evaluation of gy, to the relational DBMS
managing the data, which subsequently returns the answer.

8.4 Examples

An example of a DL-Lite4 ontology about the European football league can be found
in [Calvanese et al., 2009], pp270-274, and [Calvanese et al., 2010]’'s HGT ontology and
mappings are online®. An independent extension is described in [Calbimonte et al., 2010],
where OBDA is used to access streaming data sources.

Shttp://obda.inf.unibz.it/obdahgtdb/obdahgtdb.html
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Figure 8.4: Intuition of the top-down approach to query answering.

More TBA.

8.5 Exercises

Exercise 46. You will set up an OBDA system with PostgreSQL, Quest, Protégé,
and the OBDA Plugin for Protégé. Consult https://babbage.inf.unibz.it/trac/
obdapublic/wiki#Tutorials for the files, step-wise explanations, and exercises. All
tutorials together take about 3 day’s work, so you may prefer to take a selection and
distribute the tasks amongst your fellow students and present it to each other afterward
(by the end of the week, the class has to have at least one working OBDA system).

Exercise 47. Work on your chosen mini-project.

8.6 Literature and reference material

1. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and
databases: The DL-Lite approach. In Sergio Tessaris and Enrico Franconi, editors,
Semantic Technologies for Information Systems - 5th Int. Reasoning Web Summer
School (RW 2009), volume 5689 of Lecture Notes in Computer Science, pages 255-
356. Springer, 2009.
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Sierre, Switzerland.



CHAPTER 9

Extra topics

There are many topics in ontology engineering that deserve attention, which range from
foundational issues, to engineering solely in the scope of the Semantic Web, to appli-
cation areas with respect to peculiarities of a particular subject domain. For instance,
ontology matching and alignment [Euzenat and Shvaiko, 2007] has a ‘long’ history (since
the mid-1990s) whereas modularization is a current hot topic with a flurry of recent
papers [Stuckenschmidt et al., 2009], the interaction of ontology with conceptual data
models and reasoning should be, and work toward temporal ontologies is on the rise,
whereas the social dimension of ontology engineering is inherent in the endeavour. Here
I will briefly describe some of these topics, for which we may have time at the end of the
module.

9.1 Uncertainty and vagueness

This advanced ontology engineering topic concerns how to cope with uncertainty and
vagueness in ontology languages and their reasoners—and what we can gain from all the
extra effort. At the time of writing, this elective topic is mainly focused on theory and
research.

Consider, for instance, information retrieval: to which degree is a web site, a page,
a text passage, an image, or a video segment relevant to the information need and an
acceptable answer to what the user was searching for? Or in the context of ontology
alignment, one would want to know (automatically) to which degree the focal concepts
of two or more ontologies represent the same thing, or are sufficiently overlapping. In
an electronic health record system, one may want to classify patients based on their
symptoms, such as throwing up often, having a high blood pressure, and yellowish eye
colour. Or the probability that a person is infected with HIV is 23%, that a minimum
student pass rate for a module ought to be 35%, or the probability that birds fly. How
can software agents do the negotiation for your holiday travel plans that are specified
imprecisely, alike “I am looking for a package holiday of preferably less than 10000 ZAR,
but really no more that 11500 ZAR. , for about 12 days in a cold country that has snow”?

The main problem to solve, then, is what and how to incorporate such wvague or
uncertain knowledge in OWL and its reasoners. To clarify these two terms upfront:

e Uncertainty: statements are true or false, but due to lack of knowledge we can only
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estimate to which probability / possibility / necessity degree they are true or false;

e Vagueness: statements involve concepts for which there is no exact definition (such
as tall, small, close, far, cheap, expensive), which are then true to some degree,
taken from a truth space.

The two principal approaches regarding uncertainty and the Semantic Web are proba-
bilistic and possibilistic languages, ontologies, and reasoning services, where the former
way of dealing with uncertainty receives a lot more attention than the latter. The two
principal approaches regarding vagueness and the semantic web are fuzzy and rough
extensions, where fuzzy receives more attention compared to the rough approach.

None of the extant languages and automated reasoners that can cope with vague or
uncertain knowledge have made it into mainstream Semantic Web tools yet. There was
a W3C incubator group on uncertainty!, but it remained at that. This has not stopped
research in this area; on the contrary. There are two principal strands in these endeav-
ours: one with respect to extending DL languages and its reasoners, such as Pronto?
that combines the Pellet reasoner with a probabilistic extension and FuzzyDL? that is
a reasoner for fuzzy SHZF (D), and another strand that uses different techniques un-
derneath OWL, such as Bayesian networks for probabilistic ontologies (e.g., PR-OWL?*),
and Mixed Integer Logic Programming for fuzzy ontologies. Within the former approach,
one can make a further distinction between extensions of tableaux algorithms and rewrit-
ings to a non-uncertain/non-vague standard OWL language so that one of the generic
DL reasoners can be used. For each of these branches, there are differences as to which
aspects of probabilistic/possibilistic/fuzzy /rough are actually included.

We shall not cover all such permutations in the lecture, but instead focus on gen-
eral aspects of the languages and tools. A good introductory overview can be found in
[Straccia, 2008] (which also has a very long list of references to start delving into the top-
ics (you may skip the DLP section)). Depending on your background education, you may
find the more technical overview [Lukasiewicz and Straccia, 2008] useful as well. To get
an idea of one of the more recent results on rough DL-based ontologies, you might want to
glance over the theory and experimentation [Jiang et al., 2009, Keet, 2010b, Keet, 2010c,
Keet, 2011a]. Last, I assume you have a basic knowledge of probability theory and fuzzy
sets; if there are many people who do not, I will adjust the lecture somewhat, but you
are warmly advised to look it up before the lecture if you do not know about it.

Literature and reference material

1. Thomas Lukasiewicz and Umberto Straccia. 2008. Managing Uncertainty and
Vagueness in Description Logics for the Semantic Web. Journal of Web Semantics,
6:291-308. NOTE: only the section on fuzzy ontologies

2. Umberto Straccia and Giulio Visco. DLMedia: an Ontology Mediated Multimedia
Information Retrieval System. In: Proceedings of the International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW-08), 2008. this is an example
of an application that uses fuzzy DL

3. Keet, C.M. On the feasibility of Description Logic knowledge bases with rough
concepts and vague instances. 238rd International Workshop on Description Logics
(DL’10), 4-7 May 2010, Waterloo, Canada.

"http://www.w3.org/2005/Incubator/urv3/
Zhttp://pellet.owldl.com/pronto/
Shttp://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
‘http://www.pr-owl.org/
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4. Keet, C.M. Rough Subsumption Reasoning with rOWL. SAICSIT Annual Re-
search Conference 2011 (SAICSIT’11), Cape Town, South Africa, October 3-5,
2011. ACM Conference Proceedings, 133-140.

9.2 Ontology-Driven Conceptual Data Modelling

Many databases and software applications have been and are being developed that have,
or should have been, developed following a software or database development method-
ology, i.e., going from requirements analysis to conceptual analysis to design-level code
and then to the actual implementation. The output of the conceptual analysis stage
for software development is a conceptual data model, represented in EER, UML, or
ORM. These languages are not equivalent, and, as with the different features in differ-
ent DL languages, one can assess the expressiveness of those languages, formalise them,
and reason over them [Artale et al., 2007a, Berardi et al., 2005, Calvanese et al., 1998b,
Fillottrani et al., 2012, Keet, 2009b, Queralt and Teniente, 2008]. The formalisation and
subsequent automated reasoning improves the quality of a conceptual data model further
and prevents software bugs in case inconsistencies were found in the model.

In addition, one can then also extend the language in a controlled and precise way
so as to cater for, perhaps less common, features (temporal, spatial etc.). For in-
stance, one can specify and refine UML’s aggregation association or part-whole rela-
tion by availing of advances in Ontology, and make it applicable to conceptual data
modeling [Artale et al., 2008, Guizzardi, 2005, Keet and Artale, 2008|, which then pro-
vides scientific arguments and explain why, e.g., a protein chain’s Residue’s Coordinates
are not part of the residue (as in [Bornberg-Bauer and Paton, 2002]), but an attribute
that describes its location, and distinguish spatial containment from structural part-
hood [Keet and Artale, 2008]. In addition, as was mentioned already in Section 1.3,
one can use an ontology to generate multiple conceptual data models where a subset
of the classes and axioms from the ontology can be reused to construct a conceptual
data model [El-Ghalayini et al., 2006, Jarrar et al., 2003, Sugumaran and Storey, 2006],
thereby improving their quality and ensuring interoperability upfront.

These three scenarios with Ontology-Driven Conceptual Data Modelling can be inte-
grated in the regular software and database development methodologies, as is depicted
in Figure 9.1. An overview, examples, and its application for biological data analysis is
described in [Keet, 2013].

Literature and reference material

1. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70-118, 2005.

2. Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Models.
Phd thesis, University of Twente, The Netherlands. Telematica Instituut Funda-
mental Research Series No. 15, 2005.

3. C.M. Keet. Ontology-driven formal conceptual data modeling for biological data
analysis. In Mourad Elloumi and Albert Y. Zomaya, editors, Biological Knowledge
Discovery Handbook: Preprocessing, Mining and Postprocessing of Biological Data.
Wiley, 2012. in press
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Establishing requirements

Data requirements

/ Data aI"aIVSiS \
Ontological Domain ontology use

analysis Formal (logic-based) / (module extraction)
Conceptual Data Model

Database/Software design
y

Logical schema/
Design-level code

Implemtlantation

ﬁ:al schema and Dataﬁ
00 Code and application

Figure 9.1: The so-called traditional ‘waterfall’ methodology, augmented with ontological anal-
ysis considering aspects from Ontology, Artificial Intelligence (more precisely: knowledge repre-
sentation and reasoning), and ontologies, depicted in boldface.

9.3 Time and Temporal Ontologies

There are requests for including a temporal dimension in OWL; for instance, you can
check the annotations in the OWL files of BFO and DOLCE (or, more conveniently,
search for “time” in®) where they mention temporality that cannot be represented in
OWL, or SNOMED CT® concepts like “Biopsy, planned’ and “Concussion with loss of
consciousness for less than one hour” where the loss of consciousness still can be before
or after the concussion, or a business rule alike ‘RentalCar must be returned before
Deposit is reimbursed’ or the symptom HairLoss during the treatment Chemotherapy,
and Butterfly is a transformation of Caterpillar.

Unfortunately, there is no single (computational) solution to solve all these examples
at once. Thus far, it is a bit of a patchwork of various theories and some technologies,
with, among many aspects, the Allen’s interval algebra [Allen, 1983] with qualitative
temporal relations (such as before and during), Linear Temporal Logics (LTL) and Com-
putational Tree Logics (CTL, with branching time), and a W3C Working draft of a time
ontology” with more explanation in [Hobbs and Pan, 2004], among other things.

We will look at some motivations for temporal ontologies first, proceed to a temporal
DL, DLRys, and finally look at two modelling issues it helps solving.

9.3.1 Why temporal ontologies?
There are two principal parts to answering this question: because of what we want to
represent and what inferencing we want to do with it.

The things to represent

Quite common time aspects in conceptual data modelling for information systems are
the requirements to record actual dates and intervals and calendar calculations. This

Shttp://www.meteck.org/files/swt/DolceliteBF0inDLandMSyntax . pdf
Shttp://www.ihtsdo.org/snomed-ct/
"http://www.w3.org/TR/owl-time/
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is not particularly relevant for a domain ontology, but it would be useful to have an
ontology about such things so that the applications use the same notions and, hence, are
interoperable in that regard.

In Chapter 6 we have seen BFO and the RO and the intention by its developers
to add the precedes and immediately precedes relations to the OBO Foundry ontologies,
which could not be done other than for annotation purposes. There are more such
established qualitative temporal relations, also known as the ‘Allen relations’ or ‘Allen’s
interval algebra’, after the author who gave a first systematic and formal account of them
[Allen, 1983], which comprise relations such as before, after, during, while, and meet®.
Some might say they are all the temporal relations we need, but one may wish to be more
specific in specialised subject domains, such as a transformation_of and developed_from
in developmental biology.

A third aspect of the kinds of things we want to do, are temporalising classes and
temporalising relations. The former is well-known in databases as ‘object migration’;
e.g., an active project evolves to a completed project, and each divorcee in the census
database must have been married before. The latter, relation migration, is a new addition
[Keet and Artale, 2010], which follows the idea of temporal classes, but then applied to
n-ary tuples (with n > 2); e.g. ‘during z’s lifetime, it always has y as part’ and ‘every
passenger that boards the plane must have checked in before departure of that flight’.

More comprehensive, and real, examples, can be found in, among others, [Artale et al.,
Keet, 2009a, Keet and Artale, 2010, Schulz et al., 2009], although this is not to say that
all ontologies have, or ought have, a temporal component to represent the subject domain
as accurately as possible.

Temporal reasoning services

As with a-temporal ontologies, one would want to have the same ones for temporal ontolo-
gies, such as satisfiability checking, subsumption reasoning, and classification. Querying
temporal knowledge bases can also be of interest; to retrieve the answer to, e.g., “Who
was the South African president after Nelson Mandela?”. Logical implications are a bit
more involved, though; e.g. given B C A, then it must be the case that objects ‘ac-
tive’ (alive) in B must be active in A and, e.g., to come up for promotion to become a
company’s manager (B), one must first exist as an employee (A) of that company.

There is a range of other examples which involve time in some way, and which have
been solved and implemented already, such as reasoning with a calendar hierarchy and
across calendars and finding a solution satisfying a set of constraints for scheduling the
lecture hours of a study programme.

A few open issues

There are many issues that are being investigated. On the one hand, there are the
modelling issues in ontology development and figuring out what temporal features they
actually require in a temporal logic, the interaction between temporal logic and temporal
databases (e.g., temporal OBDA), and further investigation into the interaction between
temporal DLs with temporal conceptual data modelling. This, in turn, requires one
to look into the computational properties of various fragments of expressive temporal
logics. More fundamental issues have to do with making choices regarding linear time
vs. branching time and endurantism vs. perdurantism.

8A quick introduction at http://en.wikipedia.org/wiki/Allen’s_Interval_Algebra

2008,
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9.3.2 Temporal DLs

If one assumes that recent advances in temporal Description Logics may have the high-
est chance of making it into a temporal OWL (tOWL)—although there are no proof-
of-concept temporal DL modelling tools or reasoners yet—then the following is ‘on
offer’. A very expressive (undecidable) DL language is DLRys (with the Until and
Since operators), which already has been used for temporal conceptual data modelling
[Artale et al., 2007c] and for representing essential and immutable parts and wholes
[Artale et al., 2008]. A much less expressive language is TDL-Lite [Artale et al., 2007b],
which is a member of the DL-Lite family of DL languages (of which one is the basis
for OWL 2 QL); but these first results are theoretical, hence there is no “tOWL-lite”
yet. It is already known that E£*T (the basis for OWL 2 EL) does not keep the nice
computational properties when extended with LTL, and results with ££7" with CTL
are not out yet. If you are really interested in the topic, you may want to have a look at
a recent survey [Lutz et al., 2008] or take a broader scope with any of the four chapters
from the KR handbook [van Harmelen et al., 2008] that cover temporal KR&R, situa-
tion calculus, event calculus, and temporal action logics, or the Handbook of temporal
reasoning in artificial intelligence [Euzenat and Montanari, 2005]. During the lecture, we
will take a look at DLRys and what it has been used for.

The DLRys temporal DL

DLRys [Artale et al., 2002] combines the propositional temporal logic with Since and
Until operators with the a-temporal DL DLR [Calvanese and De Giacomo, 2003] and
can be regarded as an expressive fragment of the first-order temporal logic L{since, until}
[Chomicki and Toman, 1998, Hodgkinson et al., 1999, Gabbay et al., 2003].

As with other DLRs, the basic syntactical types of DLRys are classes and n-ary
relations (n > 2). Starting from a set of atomic classes (denoted by CN), a set of
atomic relations (denoted by RN), and a set of role symbols (denoted by U), we can
define complex class and relationship expressions (see upper part of Figure 9.2), where
the restriction that binary constructors (M,U,U,S) are applied to relations of the same
arity, ¢, j, k, n are natural numbers, ¢ < n, j does not exceed the arity of R. All the
Boolean constructors are available for both class and relation expressions. The selection
expression U;/n : C' denotes an n-ary relation whose i-th argument (i < n), named Uj, is
of type C. (If it is clear from the context, we omit n and write (U;:C).) The projection
expression 35F[U;]R is a generalisation with cardinalities of the projection operator over
argument U; of relation R; the classical projection is 3=1[U;]R.

The model-theoretic semantics of DLRys assumes a flow of time 7 = (7,, <), where 7,
is a set of time points and < a binary precedence relation on 7,, assumed to be isomorphic
to (Z,<). The language of DLRys is interpreted in temporal models over T, which are
triples of the form Z = (T, AT -I(t)>, where A7 is non-empty set of objects (the domain
of 7) and Z®) an interpretation function. Since the domain, AZ, is time independent,
we assume here the so called constant domain assumption with rigid designator—i.e., an
instance is always present in the interpretation domain and it identifies the same instance
at different points in time. The interpretation function is such that, for every t € T (a
shortcut for t € 7T,), every class C, and every n-ary relation R, we have CZ) C AT and
RT® C (AT)". The semantics of class and relation expressions is defined in the lower
part of Fig. 9.2, where (u,v) = {w € T | u < w < v}. For classes, the temporal operators
0T (some time in the future), @ (at the next moment), and their past counterparts can
be defined via U and S: OTC =TUC, HC = LU C, etc. The operators (7 (always
in the future) and (J~ (always in the past) are the duals of O (some time in the future)
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OTC| omC|OfC| O°C|@BC| ©C| C1UCy| C1SCs
R — T, | BN | =R | RiMRa| RiURy | Ui/n:C |
OTR| O"R|O'R| O R|@R| ©OR| RiUR:| RiSR
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1T = .
CNT® C TZ®,
(~C)E® ; TZO N\ CT®),
(€1 1€ = T )
< LGP0 — €T U R,

SUIRTO = (d € T70 | g{(dr,. du) € B | dy = d} 5 K);
(C’1 UC)TD = {deTIO |3y > t.(de CI(v) AYw € (t,v).d € OI(w))}
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(T

(Rl U Rs () — R%(t) U Rg(t);
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O RFD = {(dy, ..., dn) € (Tn)™® | T < t.(dy,. .., dn) € RF®};
(O RO = {(dr,- . da) € (T)™ | {di,..., dn) € D).

Figure 9.2: Syntax and semantics of DLRys.

and ¢~ (some time in the past), respectively, i.e., 0TC = ~0T=C and O C = -0~ =C,
for both classes and relations. The operators ¢* (at some moment) and its dual [0* (at
all moments) can be defined for both classes and relations as ¢*C' = C U OTC U O~ C
and O0*C = C N O"C MO~ C, respectively.

A DLRys knowledge base is a finite set ¥ of DLRys axioms of the form C; C Cy
and Ry C Rs, with Ry and Ro being relations of the same arity. An interpretation Z
satisfies C1 C Cy (R; C Ry) if and only if the interpretation of C7 (R;p) is included
in the interpretation of Cy (Rg) at all time, i.e., CII(t) C 022 ® (Rf(t) - Rg(t)), for all
t € T. Thus, DLRys axioms have a global reading. To see examples on how a DLR ;s
knowledge base looks like we refer to the following sections where examples are provided.

Modelling

We shall look into two examples in more detail. On the one hand, they demonstrate
how temporal issues can permeate both a specific domain as well as domain-independent
issues, and, on the other hand, that we have to start combining different aspects from
previous lectures so as to arrive at the solution.

The first one has to do with solving how to represent the “Assuming boxers must have
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their own hands and boxers are humans, is Hand part of Boxer in the same way as Brain
is part of Human?” that we have encountered in Section 6.2. Recasting this problem
into the temporal dimension, we can encode it in DLRys and prove the correctness of
the intended behaviour [Artale et al., 2008].

The second example reconsiders the suitable relations for bio-ontologies and RO’s
transformation_of in particular. To capture that more accurately and precisely, we apply
some of the OntoClean foundations and combine that with the notion of so-called status
classes from temporal conceptual data modeling and its formal characterisation with
DLRys [Keet, 2009a).

Literature and reference material

Suggested readings:

1. Alessandro Artale, Christine Parent, and Stefano Spaccapietra. Evolving objects
in temporal information systems. Annals of Mathematics and Artificial Intelligence
(AMAI), 50:5-38, 2007. NOTE: only the DLRys part, the rest is optional.

2. Keet, C.M. and Artale, A. A basic characterization of relation migration. Inter-
national Workshop on Fact-Oriented Modeling (ORM’10), Crete, Greece, October
27-29, 2010. Meersman, R. et al. (Eds.), OTM Workshops, Springer, LNCS 6428,
484-493.

3. Keet, C.M. Constraints for representing transforming entities in bio-ontologies.
11th Congress of the Italian Association for Artificial Intelligence (AI*IA 2009).
R. Serra and R. Cucchiara (Eds.), Reggio Emilia, Italy, Dec. 9-12, 2009. Springer-
Verlag LNAIT 5883, 11-20.

4. J. R. Hobbs and F. Pan. An ontology of time for the semantic web. ACM Trans-
actions on Asian Language Processing (TALIP): Special issue on Temporal Infor-
mation Processing, 3(1):6685, 2004.

Optional readings (more technical details, in descending order of being optional):

1. Artale, A., Guarino, N., and Keet, C.M. Formalising temporal constraints on part-
whole relations. 11th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’08). Gerhard Brewka, Jerome Lang (Eds.) AAAI
Press, pp 673-683. Sydney, Australia, September 16-19, 2008.

2. Alessandro Artale, Enrico Franconi, Frank Wolter and Michael Zakharyaschev. A
Temporal Description Logic for Reasoning over Conceptual Schemas and Queries.
In: Proceedings of the 8th European Conference on Logics in Artificial Intelligence
(JELIA’02), Cosenza, Italy, September 2002. LNAI, Springer-Verlag.

3. Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter and Michael
Zakharyaschev. Temporalising Tractable Description Logics. In: Proc. of the 14th
International Symposium on Temporal Representation and Reasoning (TIME’07),
Alicante, June 2007.

4. Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over Description Logic
Axioms. In: Proceedings of the 11th International Conference on Principles of
Knowledge Representation and Reasoning (KR2008), 2008. AAAI Press. Sydney,
Australia, September 16-19, 2008.
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9.4 Challenges in representation and reasoning over on-
tologies

The challenges for Semantic Web Technologies (SWT) in general (and for bio-ontologies
in particular) are quite diverse, of which some concern the SWT proper and others are
by its designers—and W3C core activities on standardization—considered outside their
responsibility but still need to be done. Currently, for the software aspects, the onus
is put on the software developers and industry to pick up on the proof-of-concept and
working-prototype tools that have come out of academia and to transform them into
the industry-grade quality that a widespread adoption of SWT requires. Although this
aspect should not be ignored, we shall focus on the language and reasoning limitations
during the lecture.

In addition to the language and corresponding reasoning limitations that passed the
revue in the lectures on OWL, there are language limitations discussed and illustrated at
length in various papers, e.g., [Schulz et al., 2009], where it might well be that extensions
like the ones about uncertainty, vagueness and time can ameliorate or perhaps even solve
the problem. Some of the issues outlined by Schultz and coauthors [Schulz et al., 2009]
are modelling pitfalls, whereas others are real challenges that can be approximated to a
greater or lesser extent. We shall look at several representation issues that go beyond
the earlier examples of SNOMED CT’s “brain concussion without loss of consciousness”;
e.g. how would you represent in an ontology that in most but not all cases hepatitis
has as symptom fever, or how would you formalize the defined concept “Drug abuse
prevention”, and (provided you are convinced it should be represented in an ontology)
that the world-wide prevalence of diabetes mellitus is 2.8%7

One has to note, however, the initial outcome of a survey conducted with ontology
developers [Alberts et al., 2008]: there were discrepancies between the language features
that were actually used in the ontology and the perceived requirements for language
features selected by the survey respondents. This goes in both directions, i.e., where more
features were requested than have been used in the ontology the survey respondendts were
involved in and more features were used than were requested. Given that selecting an
ontology language is important for all four other design parameters (see Section 5.3 and
Figure 5.6), it deserves further investigation how to overcome this mismatch.

Concerning challenges for automated reasoning, we shall look at two of the nine
identified required reasoning scenarios [Keet et al., 2007], being the “model checking (vi-
olation)” and “finding gaps in an ontology and discovering new relations”, thereby re-
iterating that it is the life scientists’ high-level goal-driven approach and desire to use
OWL ontologies with reasoning services to, ultimately, discover novel information about
nature. You might find it of interest to read about the feedback? received from the SWT
developers upon presenting that paper: some requirements are met in the meantime and
new useful reasoning services were presented.

Literature and reference material

1. Stefan Schulz, Holger Stenzhorn, Martin Boekers, and Barry Smith. Strengths and
limitations of formal ontologies in the biomedical domain. FElectronic Journal of
Communication, Information and Innovation in Health (Special Issue on Ontolo-
gies, Semantic Web and Health), 3(1):31-45, 2009.

“http://keet.wordpress.com/2007/06/11/reasoning-requirements-for-bio-
ontologies-the-harvest-from-owled-d1-2007/
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2. C. Maria Keet, Marco Roos, and M. Scott Marshall. A survey of requirements for
automated reasoning services for bio-ontologies in OWL. In Proceedings of the 3rd
Workshop on OWL: Ezperiences and Directions (OWLED 2007), volume 258 of
CEUR-WS, 2007. 6-7 June 2007, Innsbruck, Austria.

9.5 Social aspects

Some of these issues in ontology development also have to do with the tension between the
“montagues” and the “capulets”. That is, social aspects, which are lightly described in
[Goble and Wroe, 2004], which is a write-up of Goble’s presentation about the montagues
and capulets'? at the SOFG’04 meeting!!. It argues that there are, mostly, three different
types of people within the Semantic Web for the Life Sciences arena (it may just as well
be applicable to another subject domain if they were to experiment with SWT, e.g., in
public administration): the AI researchers, the philosophers, and the IT-savvy domain
experts. They each have their own motivations and goals, which, at times, clash, but
with conversation, respect, understanding, compromise, and collaboration, one will, and
can, achieve the realisation of theory and ideas in useful applications.

Ohttp://www.sofg. org/meetings/sofg2004/Goble . ppt
Yhttp://www.sofg.org/
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APPENDIX A

Practical Assignment: Develop a Domain Ontology

The aim of this practical assignment is for you to demonstrate what you have learned
about the ontology languages, top-down and bottom-up ontology ontology development,
and methods and methodologies, and experiment with how these pieces fit together.

You can do this assignment in groups of two or three students. It should be mentioned
in the material you will hand in who did what.

Tasks

1. Choose a subject domain of interest for which you will develop a domain ontol-
ogy. For instance, about computers, or for accommodation or tourism websites,
furniture, university structures, some hobby (e.g., diving, dancing), or some other
subject domain you happen to be knowledgable about (or know someone who is).

2. Develop the domain ontology in the best possible way. You are allowed to use any
resource you think is useful, be it other ontologies, non-ontological resources, tools,
domain experts, etc.. If you do so (and you are encouraged to do so), then make
sure to reference them in the write-up.

3. Write about 2-3 pages (excluding figures or screenshots) summarising your work.
This can include—Dbut are not limited to—topics such as an outline of the ontology,
why (or why not) you have used a foundational ontology (if so, which, why), if you
could reuse a top-domain or other subject domain ontology, which non-ontological
resources you have used (if any, and if so, how), if you encountered subject domain
knowledge that should have been in the ontology but could not be represented
due to the limitations of OWL, or perhaps a (real or imagined) purpose of the
ontology and therefore a motivation for some OWL fragment, any particular rea-
soning services that was useful (and how and why, which deductions did you have
or experimented with), any additional tools used.

4. After the deadline, you will review one or two ontologies and write-ups of other
groups/students, which we will discuss during the lab after the deadline.

Material to hand in

You have to upload the following items on the course’s Vula:
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1.
2.

3.

Appendix A. Practical Assignment: Develop a Domain Ontology

The OWL file of your ontology
Imported OWL ontologies, if any

The write up

Assessment

1.

Concerning the ontology: quality is more important that quantity. An ontology
with more advanced constraints and appropriate reuse of foundational or general
ontologies is a better illustration what you have learned than a large bare taxonomy.

. Concerning the ontology: it will be checked on modelling errors in the general

sense (errors such as is-a vs. part-of, class vs. instance, unsatisfiable classes).
Regarding the subject domain itself, it will be checked only insofar as it indicates
(mis)understanding of the ontology language or reasoning services.

. Concerning the write up: a synthesis is expected, not a diary. For instance, “We

explored a, b, and ¢, and b was deemed to be most effective because blabla” would
be fine, but not “We tried a, but that didn’t work out, then we had a go at b, which
went well, then we came across c¢, tried it out of curiosity, but that was a dead end,
so we went back to b.”. In short: try to go beyond the ‘knowledge telling’ and work
towards the so-called knowledge transformation.

. Concerning the write up: while a brief description of the contents is useful, it is

more important to include something about the process and motivations how you
got there, covering topics such as, but not limited to, those mentioned under Tasks,
item 3 (and recollect the aim of the assignment—the more you demonstrate it, the
better).

Notes

In random order:

1.

The assignment looks easy. It isn’t. If you start with the development of the ontol-
ogy only the day or so before the deadline, there is an extremely high probability
that you will fail this assignment. Your assignment will be of a higher quality if
you start thinking about it some 2 before the deadline, and the actual development
at most one week before the deadline, and spread out the time you are working on
it.

. If you use non-English terms for the classes and properties, you should either add

the English in the annotations (preferred), else lend me a dictionary.

. Use proper referencing when you use something from someone else, be it an on-

tology, other reused online resources (including uncommon software), textbooks,
articles etc. Not doing so amounts to plagiarism; see Appendix C for guidelines.

. Spell checkers tend to be rather useful tools.

. Some of the mini-project topics can benefit from an experimental ontology that

you know in detail, which you may want to take into consideration when choosing
a subject domain or purpose so that your ontology might be reused later on.



APPENDIX B

Assignment: Mini-project

The aim of this assignment is to work in a small group (204 studnets) and to investigate
a specific theme of ontology engineering. The topics are such that either you can demon-
strate the integration of various aspects of ontologies and knowledge bases or going into
quite some detail on a single topic, and it can be either theory-based, implementation-
focussed, or a bit of both.

Possible topics to choose from will be communicated in week 2, and has to be chosen
and communicated to me (topic + group members) no later than in week 3, else you will
be assigned a topic and a group.

Tasks

1. Form a group of 2-4 people and choose a topic, or vv.: choose a topic and find
other people to work with. It should be mentioned in the material you will hand
in who did what.

2. Carry out the project.

3. Write about 4-6 pages (excluding figures or screenshots) summarising your work.
The page limit is flexible, but it surely has to be < 15 pages in total.

4. Give a presentation of your work during the last lecture (10 minutes presentation,
+5 minutes discussion). Everyone must attend this lecture.

Material to hand in

You have to upload the following items on the course’s Vula site:
1. The write up.

2. Additional material: this depends on the chosen topic. If it is not purely paper-
based, then the additional files have to be uploaded on the system (e.g., software,
test data).

3. Slides of the presentation, if any.
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Appendixz B. Assignment: Mini-project

Note that the deadline is after the last lecture so that you have the option to update
your material for the mini-project with any feedback received during the presentation

and discussion in class.

Assessment

1.

Concerning the write up: a synthesis is expected, not a diary. For instance, “We
explored a, b, and ¢, and b was deemed to be most effective because blabla” would
be fine, but not “We tried a, but that didn’t work out, then we had a go at b, which
went well, then we came across c, tried it out of curiosity, but that was a dead end,
so we went back to b.”. In short: try to go beyond the ‘knowledge telling’ and work
towards the so-called knowledge transformation.

. Concerning the write up: use proper referencing when you use something from

someone else, be it an ontology, other reused online resources (including uncommon
software), textbooks, articles etc. Not doing so amounts to plagiarism, which has a
minimum penalty of obtaining a grade of 0 (zero) for the assignment (for all group
members, or, if thanks to the declaration of contribution the individual can be
identified, then only that individual), and you will be recorded on the departmental
plagiarism list, if you are not already on it, and further steps may be taken. See
also Appendix C for guidelines on referencing material.

. The presentation: respect the time limit, coherence of the presentation, capability

to answer questions.

Concerning any additional material (if applicable): if the software works as intended
with the given input, presentability of the code.

. Marks will be deducted if the presentation or the write-up is too long.

Notes

Things you may want to take into consideration (listed in random order):

1.

KTEX is a useful typesetting system (including beamer for presentation slides), has
a range of standard layouts as well as bibliography style files to save you the trouble
of wasting time on making the write up presentable, and generates a pdf file that
is portable!. This is much less so with MS Word; if you use MS Word nevertheless,
please also include a pdf version of the document.

. Regarding the bibliography: have complete entries. Examples of referencing ma-

terial (for conference proceedings, books and book chapters, and journal articles)
can be found in the scientific papers included in the lecture notes’ bibliography,
scientific literature you consult, and Appendix C.

Spell checkers tend to be rather useful tools.

One or more of the domain ontologies developed in the previous assignment may
be suitable for reuse in your chosen topic.

. Some of the mini-projects lend themselves well for extension into an Honours

project, hence, could give you a head-start.

Yin case you are not convinced: check http://openwetware.org/wiki/Word_vs._LaTeX or http://
ricardo.ecn.wfu.edu/~cottrell/wp.html



APPENDIX C

Dealing with References

C.1 Introduction

When working on a project or a thesis, one may, at times, feel as if one is working alone
in isolation. This may be true for various reasons, but ought not to be the case, unless
you are working on a PhD thesis when you have to demonstrate you have what it takes to
go at least one whole turn through the knowledge creation spiral. What certainly holds,
however, is that

1. the topic of your project or thesis does not exist in isolation, and

2. you are supposed to reinvent the wheel.

Put differently: you are building upon other people’s contributions. That is how science
and engineering move forward.

Building upon other people’s results entails that you are aware what they did and
understand the pros and cons of those earlier proposals. This must be reflected in the
article or thesis you are or will be writing. In this document, we focus on how to go
about giving credit where credit is due; not doing so amounts to plagiarism, which is
the sin of sins in academia, on a par with inventing data and modifying them (that also
constitutes scientific misconduct). If you plagiarise during your thesis writing, you will
be reprimanded officially, if you have done so in your thesis and it is found out after
graduation, your degree will be revoked, if you do it as a scientist, you will be fired. If
you do so in a write up for an assignment of this module and I find out, you will receive
a 0, a warning, and you are required to give a statement you wont do it again; if I catch
you a second time, you will fail the module and the case will be recorded in the university
system (note: given the weighting of the components that make up the grade, with one
0 you are very likely to fail the module already anyway).

C.1.1 Plagiarism and borderlines

Plagiarism is to copy whole sentence(s), figures, tables—any material—from another
document without giving a reference to the source you took it from, be this someone
else’s or your own. ‘Copy’ here is taken liberally. So, if you were to take the original
sentence from [4]

On average, those who commenced with a foundational ontology added more
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new classes and class axioms, and significantly less object properties than
those who started from scratch.

and copy it without putting it in indentation as quote or between quotation marks (“”),
it is plagiarism. Or when you make only very minor changes, e.g.,

On average, those who started with a foundational ontology added more new
classes and class axioms, and significantly less object properties than those who
started with a tabula rasa.

without adding a reference to [4], then it is still plagiarism, even though the two strings
are not exactly the same. Note that when you find useful information online that you use
in your writings, you have to reference that. It may not always be clear who provided
that information and what the exact publication date was, or it may take some effort to
find out, but it wasn’t yours, so you are not allowed to claim as if it were.

This is difficult for mathematically-oriented papers when one has to introduce the
syntax and semantics of a language that was already presented in another paper, so there
are exceptions for those paragraphs (but try to fiddle a bit, where possible), provided the
reference to the paper that introduced the language is given (e.g., [2] reuses the DLRys
language introduced in [1], duly referenced).

This raises a new question: how to cite your source? This appendix is not a long
list about the different referencing styles for the different type of documents—there is
software who can handle that for you—but instead it contains a few guidelines on how
you can refer to the references, the references section itself, managing references, and
what is (not) referencable. (To reiterate: a section with references is essential to the
report/article/thesis.)

C.2 Referencing in text

I will introduce first a difference between quoting and citing material, which also gives
a first example of a reference in the text. There are two principle ways of referencing in
the text: footnote/endnote or names/numbers, and, within each option, there are minor
style variations; either way you choose: be consistent throughout the text.

C.2.1 Quoting versus citing

Longer quotes, like the one from [4] in Section C.1, should be indented, whereas shorter
pieces can be put in-line in quotation marks, e.g.:

We are interested only in the “significantly less object properties” of [4] instead
of the whole gamut.

You also can emphasise something in a quotation, but this has to be indicated as such.
Here is an example of a longer, indented quotation and emphasis:

Against expectations, Keet [4] concluded the following from her experiments:

On average, those who commenced with a foundational ontology added
more new classes and class axioms, and significantly less object prop-
erties than those who started from scratch. (emphasis added)

Now, let us take a look at that peculiar aspect of it.
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Where possible, add also the page number to the reference.
Quotations have to be truthful to the original. For instance, if the original sentence
were:

Ontologists tend to be outspoken about the usefulness of foundational (top-
level) ontologies, such as BFO, DOLCE [1], GFO [2], and SUMO: either they
are perceived to be essential or an impractical burden.

and you quote it as:

Despite our own experiences in developing domain ontologies, Keet [4] dares to
claim that “... foundational (top-level) ontologies ... are ... essential.”

then this is clearly not truthful to the original sentence. It is permitted to skip irrelevant
parts of a larger piece of text as long as they do not modify the overall message of the
original.

Fiddling a bit with the layout to correct style (captialization) or substituting a relative
pronoun with the original noun is permitted, which is always put between square brackets;
for instance:

The dispute was succinctly summarised as “either [foundational ontologies] are
perceived to be essential or an impractical burden” [4].

Instead of a quotation, which is fairly common in the humanities but not in computer
science (because it takes up a lot of space), once can paraphrase it. For instance, you
can put in the text

Keet [4] demonstrated that the 52 test subjects added, on average, more new
OWL classes and class axioms, and significantly less object properties when they
started with the OWLized DOLCE.

or

It has been shown that more new classes and class axioms were added when
ontology developers started with a foundational ontology compared to those who
did not [4].

In these two cases you cite material, but do not quote it. You put the same message in
your own words with such citations: the fact or idea is not new, and hence the reference
where it originates, but it is not taken verbatim from that source.

C.2.2 Referencing modes

The first way of referencing, footnote or endnote, is very common in the humanities
when it comes to ‘real’ references. For computer science, the may be common for Web
references only, and even then it depends on the outlet which one is preferred (and due to
page limitations, one may take up less space than the other, hence make the difference).
An example of footnote referencing is demonstrated the following text passage:

What constitutes a nonviolent personality? Pontara describes 10 characteristics
that a person with a nonviolent personality should posess to a great extent!. One

Pontara, G. (2011). The nonviolent personality. In: Keet, C.M. (Ed.), translated from Italian
La personalita nonviolenta. 54p. Online: http://www.meteck.org/files/NonviolentPersonality.pdf.
Last accessed: April 15, 2011.
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of these is mildness, where he asserts in §3.2.7 that “[a] person equipped with a
nonviolent personality is not outside the political struggle”?, which | will discuss
in detail in the remainder of this essay.

That is, the first reference to the document written by Pontara [6] is referenced in
full, the subsequent one refers to the previous note and contains only the page number.
The full citation is normally also included in a separate “References” section at the end
of the text.

Referencing with footnotes occurs also in computer science literature, but this is
limited to online sources, and is not nice behaviour toward the originators when a proper
article of the online source exist (references count in citation indices—the more your paper
is cited, the higher the impact of your contribution to the field—but footnotes/endnotes
do not count). For instance, it is possible to do the following

We developed our ontology in Protégé 4.1beta® by first importing the taxonomy
of part-whole relations®.

Very nice would be, instead:

We developed our ontology in Protégé 4.1beta [3] by first importing the taxonomy
of part-whole relations [5].

However, citing software is, to a large extent, a judgement call and depends on how widely
known the software is. Protégé is so widely known within the ontology development
community so that, if you write for that community, one would not cite it anymore unless
tehre is something special about it. Surely one would not cite—article or URL—say,
Linux OS in your materials & methods section (unless there’s a very recent flashing new
earth-shattering feature to be highlighted). New, or for the target audience unfamiliar,
software applications should be cited so that a reader can follow up on what you have
done.

You have already come across the other referencing mode, because it has been used
throughout this appendix. More specifically, I used the numbering scheme where a num-
ber (that referred to a reference) was inserted in the main text, like the “... Protégé
4.1beta [3] by...” in the previous example. There is just one section of references, which
are numbered alphabetically in this case, and that’s it. The previous example with a
naming scheme instead of numbers could look like this:

We developed our ontology in Protégé 4.1beta [GMFT03] by first importing the
taxonomy of part-whole relations [KA08].

or one can use the full names instead of an abbreviation:

We developed our ontology in Protégé 4.1beta (Gennari et. al., 2003) by first
importing the taxonomy of part-whole relations (Keet & Artale, 2008).

The final display of the in-text references depends on which referencing style you use,
which will receive attention in Section C.4.

Zop. cit. p27.
3http://stanford.protege.edu
‘http://www.meteck.org/files/ontologies/purelations.owl
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C.2.3 What to put where

The examples in the previous section already introduced several options for how to include
a reference in the text. Here I shall list that more systematically.

What has most effect on the formatting is if you choose a numbering or a naming
scheme. For instance, this is good:
Keet and Artale (2008) developed a taxonomy of part-whole relations.
but if the reference were a number, rendering the sentence like this:
[5] developed a taxonomy of part-whole relations.
then that is not acceptable. In the second case, you would have to write
Keet and Artale [5] developed a taxonomy of part-whole relations.
or, if you refer to more details, then the reference can be put at the end of the sentence:
Keet and Artale developed a taxonomy of part-whole relations, which has as
major division between ‘real’ parthood relations versus those relations that are
motivated by linguistics and might seem a parthood relation, but are not [5].
or you can skip the author(s)’ names, and write it in a more detached way:
The most recently proposed taxonomy of part-whole relations has as major divi-
sion between ‘real’ parthood relations versus those relations that are motivated
by linguistics and might seem a parthood relation, but are not [5].
When using the naming scheme and there are more than three authors for a single
reference, you do not include the whole list of authors in the text, but abbreviate it with
et. al.—in italics, and with the dots. We have seen this in an earlier example already,
e.g., with the reference to Protégé:

. ontology in Protégé 4.1beta (Gennari et. al., 2003) by first...

Some software can do this automatically for you.
You also can combine references into one list, where appropriate. For instance,

. with some recent results on part-whole relations that also build upon temporal
logics in general [1, 2, 5].

instead of the not incorrect but unpleasantly looking

. with some recent results on part-whole relations that also build upon temporal
logics in general [1], [5], [2].

Observe two things in the example: the neater version has all the references within the
same square brackets, and in numerical order. The latter is not required, but neater.
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C.3 The “References” section

The list of references goes at the end of the text. There is no consistency to do that
always after the main text but before the appendix, or also after the appendix. Check
other theses/papers for that, or, if you have an official template, adhere to the template.
Regardless where it ends up after the text, the references in the “References” section
have to be consistent and complete.

Whichever referencing style you use, do the layout the same for the same type of
entries: if you do book titles in italics, then do so for all of them, if you include the total
amount of pages of a book, do so for all of them, and so forth.

They also have to be complete to the extent that a reader should be able to find that
paper. For instance, [3, 5] are complete entries. Conference and journal abbreviations
and cutting down a long list of authors to one or three authors with an “et. al.” may be
acceptable, too (and in some outlets even required), e.g.:

GENNARI, J. H. et. al.. The evolution of Protégé: an environment for knowledge-
based systems development. Int. J. of Hum.-Comp. Studies 58, 1 (2003), 89-123.

may be fine if you run out of space, but not something like

GENNARI, J. H. et. al.. The evolution of Protégé: an environment for knowledge-
based systems development. 2003.

because it misses the publication venue details, nor

GENNARI, J. H., MUuseN, M. A., FERGERSON, R. W., Grosso, W. E.,
CRUBEZY, M., ERIKSSON, H.. Int. J. of Hum.-Comp. Studies, 1 (2003).

because it misses the title of the paper, volume of the journal and page numbers, and
has only several authors instead of all (or: misses the “et. al.” after the last-mentioned
author). A comprehensive version of this and other references used in this appendix can
be found at the end of this appendix in the references section.

References to conference papers have their own acceptable or tolerable ‘shorthand
notations’. For instance, if the authors were really short on space, then a complete
reference like [1] can be seen to be abbreviated as:

ARTALE, A., FRANCONI, E., WOLTER, F., AND ZAKHARYASCHEV, M. A

temporal description logic for reasoning about conceptual schemas and queries.
Proc. of JELIA'02, Springer LNAI 2424, 98-110.

But again, this is only by exception and is done only when the readership is familiar with
those venues. You, as a budding scientist reading those papers, may not be—and that is
the only reason why the two examples of ‘condensed’ references are described here. You
are not short on space, and have to give full details of the reference.

C.3.1 Finding the details of those ‘random’ online documents

There are many documents on the web and when you have search for information on,
e.g. Google Scholar, clicked a pdf, then it might seem that is all there is. This is not the
case, especially since computer scientists generally archive their papers on their home
page—just that that document does not have all the citation data does not mean it has
not been published. So for instance, the following practice is wrong:
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... One of the semantic wikis is SweetWiki [1] that uses RDF [2]. ...

References
1. http://smtp.websemanticsjournal.org/index.php/ps/article/viewFile/138/136
2. http://www.semantic-web-book.org/w/images/7/73/Informatik09-Semantic-Web-1-RDF.pdf

The real references for [1] and [2] that should appear in your references section are as
follows:

1. Buffa, M., Gandonb, F., Ereteo, G. Sander, P., Faron. C. SweetWiki: A
semantic wiki. Journal of Web Semantics, 2008, 6(1): 84-97.

2. Hitzler, P., Kroetzsch, M., Rudolph, S. Foundations of Semantic Web Tech-
nologies. Chapman & Hall/CRC, 2009, 455p.

The trick is to find out that the first URL is actually pointing to a a preprint version
of a published scientific paper and the second URL to tutorial slides of a textbook book
(which can be referenced provided you did read the book).

The quick and dirty way to find out is to put the title of the document in Google
Scholar. If it finds it, then look at the bottom row of the hit, which has hyperlinks
like ‘cited by’, and also a ‘cite’. Click on ‘cite’ and it gives you the reference in three
different styles. Pick one and put it in the references; considering the gradations of
(in)completeness, that is definitely better than just the URL. However, those automat-
ically generated references are somewhat incomplete, especially when it comes to pub-
lished conference papers. Another option is to look up the publications page of one of
the paper’s authors, and take the data from there. If you have figured out the pub-
lisher, then you also can go to the publisher’s site to obtain the details. Finally, a lot of
computer science papers have been indexed in the computer science bibliography server
at http://www.informatik.uni-trier.de/~ley/db/index.html, which can generate
the reference for you. If that does not work out well, like with the second URL: try to
understand the URL. A “semantic-web-book” in it is a pretty obvious clue.

C.4 Managing your references

Nevertheless, this raises the question: What are the ‘minimal’ components of a reference?
This depends on the reference style you use. For instance, there is a so-called “Harvard
referencing” and “Chicago style” that have elaborate guides with the dos and don’ts, there
are common styles in computer science, such as of the IEEE, Springer LNCS, and ACM,
and journals tend to have their own requirements how to reference each type of resource.
You’d be crazy to read through all those guidelines and adapt your references each time
you have to follow another style. Scientists and software developers got together, and
developed reference management software to do this for you, so, unlike other resources
on referencing (and there are a lot of them), I will not waste time re-writing a guide on
that, because we can get that sorted out automatically.

When you conduct your literature research to read up on the topic you have chosen for
your thesis, article, or technical report, you will come across many resources, some more
useful than others. Of those deemed relevant, you should note the publication details
immediately to save yourself from wasting time searching for that resource again in a few
months’ time. What information about the publication venue of that resource should you
record? We have seen in the previous section that the notion of ‘complete’ information
might, in fact, vary slightly. In addition, you may have noticed that the references you
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have come across have different layouts. Although you are going to focus on writing your
honours project now, you may wish to continue with a masters and/or, if the results
obtained are really good and novel, you may be involved in writing a scientific paper
afterwards, which may have its own requirements for formatting references. Manually
reformatting the references is a painstaking task and prone to introduce inconsistencies
in the layouts. The latter is considered sloppyness and not appreciated: if you obviously
do not care about your text, why should the reader spend precious time to read it?

Fortunately, many have gone before you who wanted to have a nice software-based
reference management system that also does automatically the reformatting of the ref-
erences adjusted to the venue and in the right order. There are now several such tools
around that come in three different flavours. First, there are ‘general science’ reference
management tools for people who write texts in OpenOffice or MS Word, such as Refer-
ence Manager® and Endnote®, which, however, are stand-alone applications that are not
for free. Second, there are free tools that take a social networking approach to reference
management, such as Mendeley’. The third one is for IATX aficionados, such as Jabref®,
BibDesk?, and BibTool'? (more general information at: http://www.bibtex.org/).

Basically, you store your references in a fancy database and each time you use a
reference, you insert its key in the text. Once ready, the selected keys, your text editor,
and your ‘selected export format’ get together and produce the right amount of references
in the right format in the right order—automatically.

Let’s have a quick look at an example for IATEX, which is the preferred editing and
typesetting program of computer scientists. Your text goes in a .tex file, your references
go in a .bib file, and your choice for reference format is a selected .bst file. At the
end of your main file, say, myproject.tex you add two lines, one to specify the reference
style, say, model3-num-names.bst, and one to refer to your bibliography, say mybib.bib,
which then looks like this:

\bibliographystyle{model3-num-names}
\bibliography{mybib}

You then have to run latex-bibtex-latex-latex to get all references fully resolved. To
produce the references for this document, I used the acm.bst format, and there are very
many more options available that come both with a IATEX editor distribution and online.
Have a look at, e.g., this resource!!. For instance, when I use the very same bib file but
with

\bibliographystyle{abbrvnat}
\bibliography{mybib}

the references look like depicted in Figure C.1. Not just that, but you would not have
seen numbers in square brackets in this document, but the authors’ names, like:

...importing the taxonomy of part-whole relations [Keet and Artale(2008)].

You may not like the square brackets, or want to have the in-text format alike “(Keet
& Artale, 2008)” instead of “[Keet and Artale(2008)]”. The .bst files are customizable,

Shttp://www.refman. com/

Shttp://www.endnote.com/

"http://www.mendeley.com/

Shttp://jabref.sourceforge.net/

“http://bibdesk.sourceforge.net/
Ohttp://www.gerd-neugebauer.de/sof tware/TeX/BibTool/index.en.html
"http://www.cs.stir.ac.uk/~kjt/software/latex/showbst.html
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[Artale et al.(2002)Artale, Franconi, Wolter, and Zakharyaschev] A. Artale, E. Franconi,
F. Wolter, and M. Zakharyaschev. A temporal description logie for reasoning about concep-
tual schemas and queries. In 8. Flesca, 8. Greco, N. Leone, and G. lanni, editors, Proceed-
ings of the 8th Joint European Conference on Logics in Artificial Intelligence (JELIA-02),
volume 2424 of LNAI pages 98-110. Springer Verlag, 2002.

[Artale et al.(2008)Artale, Guarino, and Keet] A. Artale, N. Guarino, and C. M. Keet. For-
malising temporal constraints on part-whole relations. In G. Brewka and J. Lang, editors,
11th International Conference on Principles of Knowledge Representation and Heasoning
(KR'08), pages 673-683. AAAI Press, 2008. URL http://www.meteck.org/files/AGK_
KRO8.pdf Sydney, Australia, September 16-19, 2008.

[Gennari et al.(2003)Gennari, Musen, Fergerson, Grosso, Crubézy, Eriksson, Noy, and Tu|
J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson,
N. F. Noy, and 8. W, Tu. The evolution of Protégé: an environment for knowledge-based
systems development. International Journal of Human-Computer Studies, 58(1):89-123,
2003. ISSN 1071-5819. doi: http://dx.doi.org/10.1016/S1071-5819(02)00127-1.

[Keet(2011)] C. M. Keet. The use of foundational ontologies in ontology development: an
empirical assessment. In G. Antoniou et al., editors, 8th Extended Semantic Web Confer-
enee (ESW(C'11), volume 6643 of LNCS, pages 321-335. Springer, 2011. Heraklion, Crete,
Greece, 29 May-2 June, 2011.

[Keet and Artale(2008)] C. M. Keet and A. Artale. Representing and reasoning over a tax-
onomy of part-whole relations. Applied Ontology — Special issue on Ontological Founda-
tions for Coneeptual Modeling, 3(1-2):91-110, 2008. URL http: //wuw.meteck.org/files/
ADOT _pw_AKOT . pdf|

[Pontara(2011)] G. Pontara. The mnonviolent personality. page 54. March
2011. URL http://www.meteck.org/files/NonviolentPersonality.pdf|
Translated from the Italian original La personalita nonviolenta. Online:
http:/ /www.meteck.org/files/NonviolentPersonality.pdf. Last Accessed: April 15, 2011.

Figure C.1: The same references, but formatted with abbrvnat.

but before you have a go at that, you may want to check out the very powerful natbib
package that already does most of this for you.

C.5 What you can (not) cite

Your thesis/article/tech report is a serious academic document. This means that you
use, and build upon—hence, also reference—proper academic and reliable, material of
good quality. As a rule of thumb:

e What you can reference: journal articles, conference papers, books, chapters in
books (including edited conference proceedings), technical reports, other theses,
standards. In general: they are primary sources.

e What you should not reference (under normal circumstances, in CS): blogs and
blog posts, posts on forums, Joe Soap’s tips ’'n tricks. These are, at best, secondary
sources.

Web pages and company product manuals are trickier, but, in general, they should be
avoided whenever possible. For instance, a ‘white paper’ by Company of Ruby And Perl
on the Fabulously Implemented Algorithm to SCam Others may claim that their tool is
the coolest around, but any company will say that about their applications. Let “[7]” be
the reference to that online white paper, then you might be tempted to write a sentence
in your thesis alike
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CRAP'’s FIASCO has the best performance [7].

A press release may say so, but your thesis is not a mouthpiece for the company. If, on
the other hand, there is a paper independently from the organisation that compared it
to similar tools and has shown it experimentally to hold, then that resource should be
referenced.

Another tricky resource is Wikipedia, because it provides nice introductory overviews
of many topics. However, Wikipedia is a secondary source and you should have a (reliable)
textbook or handbook on those topics, in particular when it comes to your thesis. In this
case, it is appropriate to reference the textbook.

Regarding blogs, while they should be avoided as reference, if you find, say, a piece of
good code that someone put on their blog and it cannot be found elsewhere, it is better
to reference that than claiming you invented it when you did not.
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APPENDIX D

Answers of selected exercises

D.1 Answers Chapter 2

Answer to Exercise 1.

A: Dalila travels to Johannesburg

B: Dalila travels to Durban

C: Dalila takes the plane
Then we can formalise the three sentences, above as: (AV B)A (A — (C)) — —-B
Truth table: satisfiable.

(((AvB) "~ (A=>0C)) =>"B)
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Answer to Exercise 2.
(b) There exists a node that does not participate in an instance of R, or: it does not
relate to anything else: JxVy.—R(x,y).

(¢c) £L = (R) as the binary relation between the vertices. Optionally, on can add the
vertices as well. Properties:

R is symmetric: Vay.R(z,y) — R(y,x).

R is irreflexive: Vz.—R(z,x).

If you take into account the vertices explicitly, one could say that each note partici-
pates in at least two instances of R to different nodes.

Answer to Exercise 3.
(a) R is reflexive (a thing relates to itself): Va.R(x,z).
R is asymmetric (if a relates to b through relation R, then b does not relate back to a

183
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through R): Vay.R(x,y) — —R(y,x).

(b) See the example on p21 of the lecture notes.

D.2 Answers Chapter 3

Answer to Exercise 6.

(a) Rewrite (Eq. 3.24) into negation normal form:

Person MVYeats.Plant M (- Person Ll —=Veats.(Plant U Dairy))

Person MVeats.Plant M (- Person L 3=eats.(Plant L Dairy))

Person MVYeats.Plant M (- Person L Jeats.(—Plant 1 = Dairy))

So our initial ABox is:

S = {(PersonMVeats.Plant M (- Person L Jeats.(=Plant 1 =Dairy)))(a)}

(b) Enter the tableau by applying the rules (see lecture slide 31) until either you find a
completion or only clashes.

(M-rule): {Person(a),Veats.Plant(a), (—Person U Jeats.(—Plant M —Dairy))(a)}

(U-rule):

(1) {Person(a),Veats.Plant(a), (—Person L Jeats.(—Plant N —Dairy))(a), ~Person(a)}

iclash!

(2) {Person(a),Veats.Plant(a), (—Personli3eats.(—PlantT—Dairy))(a), Jeats.(~Plantl
~Dairy)(a)}

(F-rule): {Person(a),Yeats.Plant(a), (= Person3eats.(~Plantf—-Dairy))(a), Jeats.(—Plantn
—Dairy)(a), eats(a, b), (~Plant M —Dairy)(b)}
(M-rule): {Person(a),Veats.Plant(a), (- Personll3eat
—Dairy)(a), eats(a,b), (~Plant 1 —Dairy)(b), ~Plant
(V-rule): {Person(a),Veats.Plant(a), (—PersonliJeat
—Dairy)(a), eats(a,b), (—Plant 1 —Dairy)(b), ~Plant

»

.(=PlantN—Dairy))(a), Jeats.(-Plantn
). ~Dairy(®))

.(=PlantN—Dairy))(a), Jeats.(—=Plantn
b), ~Dairy(b), Plant(b)} jclash!

—

®

—

(¢) T+ Vegan C Vegetarian? yes

D.3 Answers Chapter 4

Answer to Exercise 14.
Hint: use a property chain.

Answer to Exercise 15.

Modelling: The answers and considerations for the universityl.owl exercises can be
found at http://owl.man.ac.uk/2005/07/sssw/university.html, and note that those
answers hold for OWL-DL. Does it make a difference with OWL 2 DL? E.g., would the
new feature of qualified cardinality constraints be of any use? Not really.

Answer to Exercise 16. to 18
See http://owl.man.ac.uk/2005/07/sssw/university.html. We will discuss this in
the lab.

Answer to Exercise 20. and 20

Let us first have a look randomly at a deduction and its explanation (click on the “?”
right from the deduction in Protégé) as a first step toward figuring out why so many
classes are unsatisfiable (i.e., equivalent to Nothing, or L). Take the explanation for
CS_StudentTakingCourses:
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_

™ Highlight unsatisfiable classes

Subclass axiom symbol E B‘
Equivalent classes axiom symbol = B‘

Disjoint classes axiom symbol cC=- =
") Obfuscate entity names ( View justification entailments... 3
g Use ordering ( Extract ontology...

Explanation 1

®CS_StudentTakingCourses = Nothing

® CS_StudentTakingCourses c CS_Student
® C5_Student c takesCourse only C5_Course
® CS_Course cC offeredin some C5_Department
® CS_Department c affiliatedWith some CS_Library
Transitive: affiliatedWith
® CS_Library c affiliatedWith some EE_Librar_
® CS_StudentTakingCourses c takesCourse min 1 Thing
® CS_Department ¢ —= EE_Department
® EE_Department = affiliatedWith some EE_Library
.f Stop \.
e

This CS_StudentTakingCourses has a long explanation of why it is unsatisfiable, and
we see that some of the axioms that it uses to explain the unsatisfiability also have
unsatisfiable classes. Hence, it is a good idea to set this aside for a while, as it is a
knock-on effect of the others that are unsatisfiable.

Let us have a look at the unsatisfiability regarding departments.

_

™ Highlight unsatisfiable classes

Subclass axiom symbol c B‘
Equivalent classes axiom symbol = B‘

Disjoint classes axiom symbol C= =
{_| Obfuscate entity names C View justification entailments... 3
™ uUse ordering ( Extract ontology...

Explanation 1

@ Al_Dept = Nothing

@ Al_Dept = CS_Department and hasResearchArea value Al

o CS_Department C affiliatedWith some CS_Library
Transitive: affiliatedWith

® CS_Library c affiliatedWith some EE_Library

® CS_Department c - EE_Department

® EE_Department = affiliatedWith some EE_Library

Stop

‘
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So, the AI Dept is unsatisfiable because its superclass CS_Department is, i.e., it is a
knock-on effect from CS_Department. Does this give sufficient information as to say why
CS_Department is inconsistent? In fact, it does. See the next screenshot, which is the
same as lines 3-7, above.

.00
™ Highlight unsatisfiable classes
Subclass axiom symbol | ¢ |4
Equivalent classes axiom symbol | & |4
Disjoint classes axiom symbol | ¢ = |4

|| Obfuscate entity names View justification entailments...

™ Use ordering
Explanation 1
CS5_Department = Nothing
CS_Department c affiliatedWith some CS_Library
Transitive: affiliatedWith
CS_Library C affiliatedWith some EE_Library
C5_Department c = EE_Department
EE_Department = affiliatedWith some EE_Library

CS_Department is unsatisfiable, because it is affiliatedWith some CS_Library that, in

turn (by transitivity), isaffiliatedWith some EE_Library that belongs to the EE Department,
which is disjoint from CS_Department. Two ‘easy’ options to get rid of this problem are

to remove the transitivity or to remove the disjointness. Alternatively, we could revisit

the domain knowledge; e.g., CS library may not be affiliatedWith EE library, but is,
adjacentTo or disjoint with the EE library.

Let us now consider why CS_course is unsatisfiable:
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_

™ Highlight unsatisfiable classes

Subclass axiom symbol E
Equivalent classes axiom symbol E
Disjoint classes axiom symbol [E

D Obfuscate entity names (" View justification entailments... )
E Use ordering / Extract ontology... )
Explanation 1
@ CS_Course = Nothing
@ CS_Course C offeredln some C5_Department
@ CS_Department C affiliatedWith some CS_Library

Transitive: affiliatedWith
@ CS_Library c affiliatedWith some EE_Library
@ CS_Department C — EE_Department
L EE_Department = affiliatedWith some EE_Library

( Stop )

We have again that the real problem is CS_Department; fix that one, and CS_course is
satisfiable, too.

There is a different issue with AIStudent. From the explanation in the next screen-
shot, we can see immediately it has something to do with the inconsistency of HCIStudent.

_

™ Highlight unsatisfiable classes

Subclass axiom symbol E
Equivalent classes axiom symbol E
Disjoint classes axiom symbol @

D Obfuscate entity names (" View justification entailments... )

E Use ordering | Extract ontology...

Explanation 1
@ AlStudent = Nothing
AlStudent c hasAdvisor some ProfessorinHClorAl
advisorOf inverseOf hasAdvisor
ProfessorinHClorAl c advisorOf only HCIStudent
AlStudent c = HCIStudent

Stop

‘

But looking at HCIStudent for a clue does not help us further in isolating the problem:
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806
™ Highlight unsatisfiable classes
Subclass axiom symbol | ¢ [
Equivalent classes axiom symbol | & |-
Disjoint classes axiom symbol | ¢ = |-&

|_| Obfuscate entity names View justification entailme

[ﬂ Use ordering

Explanation 1
HCIStudent = Nothing
HCIStudent c hasAdvisor some ProfessorinHClorAl
- advisorOf inverseOf hasAdvisor
ProfessorlnHClorAl c advisorOf only AlStudent
AlStudent c - HCIStudent

Considering the axioms in the explanation only, one can argue that the root of the
problem is the disjointness between AIStudent and HCIStudent, and remove that axiom
to fix it. However, does it really make sense to have the union ProfessorInHCIorAI?
Not really, and therefore it would be a better fix to change that one into two separate
classes, ProfessorInHCI and ProfessorInAI and have them participating in
ProfessorInHCI C VadvisorOf.HCIStudent and

ProfessorInAl C Vadvisor0f.AIStudent,

respectively.

Last, we have a problem of conflicting cardinalities with LecturerTaking4Courses:
it is a subclass of TeachingFaculty, which is restricted to taking at most 3 courses,
which is in conflict with the “exactly 4” of LecturerTaking4Courses. This can be fixed
by changing the cardinality of either one, or perhaps a lecturer taking 4 courses is not a
sub- but a sister-class of TeachingFaculty.



D.4. Answers Chapter 5 189

8,00
™ Highlight unsatisfiable classes
Subclass axiom symbol | ¢ R
Equivalent classes axiom symbol | = s
Disjoint classes axiom symbol | ¢ = -

|_| Obfuscate entity names View justification entailments...

E Use ordering Extract ontology...

Explanation 1
LecturerTaking4Courses = Nothing
LecturerTaking4Courses C Lecturer
Lecturer c TeachingFaculty
TeachingFaculty C takesCourse max 3 Thing
LecturerTaking4Courses C takesCourse exactly 4 Thing

D.4 Answers Chapter 5

Answer to Exercise 24.
The answer is uploaded on Vula.

Answer to Exercise 25.
There are 39 pitfalls detected and categorised as ‘minor’, and 4 as ‘important’. (explore
the other pitfalls to see which ones are minor, important, and critical)

The three “unconnected ontology elements” are used as a way to group things, so are
not really unconnected, so that can stay.

ThinAndCripsyBase is detected as a “Merging different concepts in the same class”
pitfall. Aside from the typo, one has to inspect the ontology to determine whether it
can co with an improvement: what are its sibling, parent and child classes, what its
annotation? It is disjoint with DeepPanBase, but there is no other knowledge. It could
just as well have been named ThinBase, but the original class was likely not intended as
a real merging of classes, at least not like a class called, say, UndergradsAndPostgrads.

Then there are 31 missing annotations. Descriptions can be added to say what a
DeepPanBase is, but for the toppings this seems less obvious to add.

The four object properties missing domain and range axioms was a choice by the
modellers (see the tutorial) to not ‘overcomplicate’ the tutorial for novice modellers as
they can have ‘surprising’ deductions, but it would be better to add them where possible.

Last, OOPS detected that the same four properties are missing inverses. This cer-
tainly can be added for islngredientOf and haslngredient.

D.5 Answers Chapter 6

Answer to Exercise 27.
Some of the differences are: descriptive, possibilism, and multiplicative for DOLCE ver-
sus prescriptive and realist, actualism, and reductionist for BFO. You can find more
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differences in Table 1 of [Khan and Keet, 2012] and online in the “comparison tables”
tab at http://www.thezfiles.co.za/ROMULUS/.

Answer to Exercise 28.

There are several differences. The major differences are that DOLCE also has relation-
ships and axioms among the categories using those relationships (i.e., richly formalised),
whereas BFO v1 and v1.1 is a ‘bare’ taxonomy of universals (some work exist on merging
it with the RO, but not yet officially). Others are the Abstract branch and the treatment
of ‘attributes’/quality properties in DOLCE that do not have an equivalent in BFO. The
BFO-core has a more comprehensive inclusion of parthood and boundaries than DOLCE.

Answer to Exercise 29.
Informal alignments:

a. dolce:Endurant maps roughly to bfo:Continuant (though actually, more precisely to
bfo:IndependentContinuant), dolce:Process as a sub-class of bfo:Process, and dolce:quality
to bfo:quality.

b. Amount of Matter, Accomplishment, Agentive Physical Object, and Set do not
have a mapping. An example of the possible reasons: Set is abstract, but not
existing in nature (hence, by philosophical choice, not in BFO).

A more detailed comparison—or: the results of trying to align DOLCE, BFO, and GFO—
is available at http://www.thezfiles.co.za/ROMULUS/.

Answer to Exercise 30.
This was discussed in the lecture. The real problem with having a separate relation
ontology is that many of the relations don’t mean much without the restriction on the
domain and range. For instance, take participates in: intuitively we know what it means
by understanding the English word, but that won’t do for adequate processing by a
computer. We can add that an ‘object’ participates in a ‘process’—or: declare the domain
of participates in to be ‘object’ and range to be ‘process’—but we have to be precise
on what we mean with ‘object’ and what with ‘process’, beyond a possibly ambiguous
natural language description. The latter can be solved by committing to a foundational
ontology, therewith answering questions like: is the ‘object’ to mean Object in BFO or
PhysicalObject in DOLCE or Material_Object in GFO? Or perhaps DOLCE’s Endurant,
hence, that also non-physical objects and amounts of matter can participate in some
‘process’?

Having the relations integrated in the rest of a foundational ontology (cf. separate)
definitely increases precision of the representation of the meaning of the relations, and
each ontology language has the capability to declare domain and range axioms anyway.

Answer to Exercise 31.
The most often recurring relationships are parthood, participation, constitution, and
inherence or dependence.

Answer to Exercise 32.
Options may vary:
1. DOLCE or GFO

2. BFO or GFO
3. Depends on you chosen topic

Answer to Exercise 33.
We will consider ONSET in more detail next week. You can have a look at it w.r.t.
the previous question by downloading it from http://www.meteck.org/files/onset/



D.5. Answers Chapter 6 191

(platform-independent jar file), which can recommend you BFO, DOLCE, GFO, and/or
SUMO, depending on the answer you give to one or more of its questions and whether
any scaling is applied.

Answer to Exercise 31.
(I use the version with DOLCE in the following answers)

a. To have RockDassie classified as a subclass of Herbivore (still both animals, and
physical objects, and physical endurants, and endurants), it needs to have more, or
more constrained properties than Herbivore. In Protégé notation, each Herbivore
is equivalent to:

(eats only plant) or (eats only (is-part-of some plant)).

Rockdassies eat grasses and broad-leafed plants. The easiest way to modify the
ontology is to add that grasses are plants (already present), that broad-leafed plants
are kinds of plants, and that rockdassies eat only grass or broad-leafed plant. This
is not to say this is the best thing to do: there are probably also other animals that
eat grasses and broad-leafed plants, which now unintentionally will be classified as
rockdassies.

b. The ontology does not contain any knowledge on ‘living in’ and ‘nature reserves’.
Nature reserves are administrative entities, but also can be considered only by their
region-of-space aspect; for the sake of example, let’s add NatureReserve C space-
region. Trickier is the living, or living in: one could add it as an OWL object
property livesln or as a subclass of Process and add participation relations between
that, the nature reserve, and the lions, impalas, and monkeys. The former is less
cumbersome, the latter more precise and interoperable (see lecture notes). We'll
return to this choice in the bottom-up section.

Answer to Exercise 32.
This sample ontology is available at http://www.meteck.org/teaching/ontologies/
pwEx2.owl.

No, Human is unsatisfiable.

Reason: Human C ED (EnDurant), it has a property hasPart (to Brain), which has de-
clared as domain PD (PerDurant), but ED C =PD (endurant and perdurant are disjoint),
hence, Human cannot have any instances.

Answer to Exercise 33.
This is a generalisation of the previous exercise and the example we did during the lecture.
a. The ontologies and their inferences are shown in Table D.1.
b. Thus, there are differences in the deductions. For Oj, the only way to have the
ontology consistent is to classify Ed; as a subclass of PED, which is possible because
PED is a subclass of ED. In the second case, there are several issues (following the
reasoner and logic-based explanation): Edp is assumed to be correctly a subclass
of AS, but this then runs into problems with Ed; C 3S.Eds, because S C R and
the range of R is PED and therefore also the range of S is PED (or a subclass
thereof), which is disjoint from AS, hence the “3S.Edy”-part doesn’t work (cannot
be instantiated), and therefore Ed; cannot be instantiated.
c. We fix the defect by revising the ontology such that the object property hierarchy
satisfies the RBox Compatibility service, i.e., the domain and range of S have to
be equal or a subclass of the domain and range of R.

Answer to Exercise 34.
The description of the n-ary ODP can be found in the NeON deliverable D2.5.1 on pp67-
68. Also, you may wish to inspect the draft ODPs that have been submitted to the
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Table D.1: Sample ontologies to illustrate the OWL reasoners and explanation (based on
Protégé’s explanation feature).

’ 01 ‘ OPEs ‘ CEs ‘ Inferred, with explanation
R C PED x PED | OWLized DOCLE taxonomy, Ed; C PED: because Dp = PED
SCED x ED Ed; C ED, Edy, C ED, Ped; C PED, | and SC R
SCR Ped, C PED, Ed; C 3S.Ed»,
Ped; C JR.Ped,
’ Os ‘ OPEs ‘ CEs ‘ Inferred, with explanation ‘
as O as Oy, but with Ed, C AS (and Ed; inconsistent: 1. AS C —PED,
PED C —AS still holds) 2. Ed; C 3S.Ed», 3. Edy C AS,
4. R =PED and 5. SCR

ODP portal (at http://www.ontologydesignpatterns.org, in case you had not found

it already).

Answer to Exercise 35.
One could make a Content ODP out of it: for each AssistiveDevice that is added to the
ontology, one also has to record the Disability it ameliorates, it requires some Ability to
use/operate the device, and performs a certain Function. With that combination, one
even can create some sort of an ‘input form’ for domain experts and administrators,
which can then hide all the logic entirely, yet as long as they follow the pattern, the
information gets represented as intended.

Another one that may be useful is the Architectural OP: adolena.owl now contains
some bits and pieces of both DOLCE (endurant, perdurant, and some of their subclasses)
and some terms from BFO (realizable), neither of the two ontologies were imported. The
architectural ODP can help cleaning this us and structuring it.

D.6 Answers Chapter 7

Answer to Exercise 40.
Phone points conceptual data model to ontology:
a. A sample formalisation is available at http://www.meteck.org/teaching/ontologies/

phonepoints.owl.

b. Yes, all of it it can be represented.
c. Yes, there are problems. See Figure D.1 for a graphical rendering that MobileCall
and Cell are unsatisfiable; verify this with your version of the ontology. Observe
that it also deduced that PhonePoint = LandLine.

Answer to Exercise 41.

Integration issues:
a. See Figure D.2

b. Multiple answers are possible due to various design decisions. E.g.,:

e Did you represent Salary as a class and invented a new object property to
relate it to the employees, or used it as a name for an OWL data property
(preferably the former)? And when a data property, did you use different data
types (preferably not)?

e Did you add RichEmployee, or, better, Employee that has some property of

being rich?
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PhonePoint

) \
©
\ HomePoint
n LandLine
"3
r r2 X

Figure D.1: Answer to 35-b: red: inconsistent class, green: ‘positive’ deduction

e Did you use a foundational ontology, or at least make a distinction between
the role and its bearer (Employee and Person, respectively)?

Employee

RichEmployee
Salary String8{—____
VA X
Clerk 1 wmanager
Salary Strings Salary String8

Figure D.2: Answer to 36-a.

Answer to Exercise 42.
Thesauri:
a. Language: SKOS or OWL 2 EL. Why:
e SKOS: was the purpose of it, to have a simple, but formal, language for
‘smooth transition” and tagging along with the SW
e OWL 2 EL: intended for large, simple, type-level ontologies, and then still
some reasoning possible
b. Regarding mass media, films and news media: not necessarily, but to be certain,
check yourself what the definition of Mass Media is, when something can be called
News Media, and then assess the differences in their properties.
Propaganda has as broader term Information Dissemination, but a characteris-
tic of propaganda is dissemination of misinformation.

Answer to Exercise 43.
Principally:
- expressive foundational ontology, such as DOLCE or GFO for improved ontology
quality and interoperability
- bottom-up onto development from the thesaurus to OWL
- integration/import of existing bio-ontologies
- Domain ontology in OWL taking the classification of the chemicals, define domain
& range and, ideally, defined concepts
- Add the instance data (the representation of the chemicals in stock) in the OWL
ABox (there are only 100, so no real performance issues), and add a dummy class
disjoint from DruTopiate destined for the ‘wrong’ chemicals
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Take some suitable reasoner for OWL 2 DL (either the ‘standard’ reasoners or
names like fact++)

Then classify the instances availing of the available reasoning services (run fact++
etc.): those chemical classified as instances of the ‘ideal chemical’ are the candidate
for the lab experiments for the drug to treat blood infections.

Alternatively: add DruTopiate as class, add the other chemicals as classes, and any
classes subsumed by DruTopiate are the more likely chemicals, it’s parents the less
likely chemicals.

Methods and methodologies that can be used: single, controlled ontology devel-
opment, so something like METHONTOLOGY will do, and for the micro-level
development something like OD101, ontospec, or DiDON.



