OntoClean and Ontology-driven conceptual modelling

A new, simplified view

Nicola Guarino

Summary

- Ontological analysis of particulars
 - Parthood (mereology)
 - Unity (topology)
 - Dependence
- Ontological analysis of universals
 - Essence and identity
 - Different kinds of properties
 - Is-a overloading and the OntoClean methodology
- A practical example

Formal Ontology

- Theory of *formal distinctions and connections* within:
 entities of the world, as we perceive it (*particulars*)
 categories we use to talk about such entities (*universals*)
- Why formal?
 - Two meanings: *rigorous* and *general*
 - Formal logic: connections between truths neutral wrt truth
 Formal ontology: connections between things neutral wrt
 reality
- **Goal:** characterizing particulars and universals by means of formal properties and relations.

Essential properties

 Certain entities must have some properties in order to keep their identity;

- John must have a brain (otherwise, he wouldn't be himself anymore)
- John must be a person.

• A class *carries* an essential property if, for all its instances, such property is essential:

- Every person must have a brain.

Mereological essential properties

Extensionality: whenever the parts exist, x exists (the whole is always the sum of its parts)

- Mereological invariance: x always keeps its parts
- Examples of extensional entities:
 - Amounts of matter
 - Regions
 - Pluralities (pseudo-extensionality)
- Mereologically invariant (but non-extensional) entities:
- A physical body (a lump of matter)

Unity

• A tentative formulation: x is a whole under ω iff there is an equivalence relation ω that binds together all the parts of x, such that, necessarily,

$$\mathsf{P}(y,x) \to (\mathsf{P}(z,x) \Leftrightarrow \omega(y,z))$$

but not

$$\omega(y,z) \Leftrightarrow \exists x (\mathsf{P}(y,x) \land \mathsf{P}(z,x))$$

- P is the *part-of* relation
- + $\boldsymbol{\omega}$ can be seen as a generalized indirect connection

Unity Refined

 $\delta_R(x) =_{\mathrm{df}} R(x, x)$

 $\upsilon_{R}(x) =_{\mathrm{df}} \Sigma_{\delta R}(x) \wedge \forall y, z((\delta_{R}(y) \wedge \delta_{R}(z) \wedge P(y, x) \wedge P(z, x)) \rightarrow$ (x is unified by R) R(y, z)

(x is a whole under R) $\omega_R(x) =_{\mathrm{df}} Max_{\upsilon R}(x)$

 $\Sigma_{\phi}(x) =_{\mathrm{df}} \forall y (P(y, x) \to \exists z (\phi(z) \land P(z, x) \land O(z, y))$ (sum of ϕs)

Kinds of Whole

- Depending on the *nature of ω*, we can distinguish:
 - Topological wholes (a piece of coal, a lump of coal)
 Morphological wholes (a constellation)
 Functional wholes (a hammer, a bikini)

 - Social wholes (a population)
- * a whole can have *parts that are themselves wholes* (with a different ω)
- * Being a whole of a certain kind is an essential property: things cannot change their own unity conditions

Unity Disjointness Constraint

Classes with incompatible UCs are disjoint

Example: Object and Matter

Essence and Rigidity

- Certain properties are essential to all their instances (compare being a person with having a brain).
- These properties are *rigid* if an entity is ever an instance of a rigid property, it must always be such.

- \$\phi\$ is anti-rigid (~R): $\forall x \ (\mathbf{pos} \ \phi(x) \rightarrow \neg \ \mathbf{nec} \ \phi(x))$
- ψ is contingent for ϕ : $\forall x \ (\phi(x) \rightarrow (pos \ \psi(x) \land \neg nec \ \psi(x)))$
- (Being a) Student is anti-rigid.
- (Being a) Student is contingent for Person
 - Student: ~R
 - Person: ~Student
- Being self-connected is contingent for amounts of matter
- Being self-connected is essential for physical objects . Being self-connected is neither contingent nor essential
- for physical entities 15

Dependence meta-properties

- +D: all instances are definitionally dependent on a common property
- -D: no common dependence
- ~D: no dependence at all

Essential properties are (very weak) *Identity Conditions* (IC)

Sortals and other properties

- Sortals (horse, triangle, amount of matter, person, student...)
 - Carry (non-trivial) identity conditions
 Usually correspond to nouns

 - High organizational utility Main subclasses: **types** and **roles**
- Non-sortals (red, big, decomposable, eatable, dependent,
- singular...) - No identity
- Usually correspond to adjectives
- Span across different sortals Limited organizational utility (but high semantic value)
- Categories (universal, particular, event, substance...)
- No identityUseful generalizations for sortals
- -Characterized by a set of (only necessary) formal properties
- Good organizational utility

Carrying vs. Supplying Identity

19

- *Supplying* (global) identity (+0)
 - Having an IC (or essential property) that doesn't hold for all directly subsuming properties
- Carrying identity (+I)
 - Not supplying identity, while being subsumed by a property that does.
- Common sortal principle: x=y -> there is a common sortal supplying their identity
- Theorem: only rigid properties supply global identity

Sortal specialization

- **Type** specialization (e.g. Living being \rightarrow Person) - New features (especially essential properties) affect identity
 - Both necessary and sufficient ICs can be added while specializing types
 - Polygon: same edges, same angles
 Triangle: two edges, one angle
 - Living being: same DNA, etc...?
 Zebra: same stripes?
- Role specialization (e.g. Person → Student) - New features don't affect identity

Identity Disjointness Constraint

ICs impose *constraints* on sortals, making their ontological nature explicit:

Properties with incompatible ICs are disjoint

Examples:

- sets vs. ordered sets
- persons and passengers
- amounts of matter vs. assemblies

Ontological Levels and IC/UC Kinds

Physical

- Mereological
- Topological
- Morphological
- Functional
- Biological
- (a piece of matter) (a cubic block, a constellation) (a tool, a biological organ)

(an amount of matter, a collection)

- (a human body) Cognitive/Intentional (a person, a robot)
- . Social

.

- (a company)
- \checkmark Correspond to different kinds of IC/UC
- J All levels except the mereological one have non-extensional IC J A generic dependence relation links higher levels to their immediate inferior.

Why bother with this?

· Formal ontological analysis requires analyzing all properties according to their meta-properties - This is a lot of work!

• Why perform this analysis?

- Makes modeling assumptions clear, which:
 - Helps resolving known conflicts
- Helps recognizing unknown conflicts
 Imposes constraints on standard modeling primitives (generalization, aggregation, association) - Elicits **natural distinctions**
- ...results in more *reusable ontologies*

Resolving Ontological Conflicts

- Two well-known ontologies define:
 Physical Object is-a Amount of Matter (WordNet) - Amount of Matter is-a Physical Object (Pangloss)
- Amount of Matter

(anti-unity)

- Physical Object - unstructured /scattered - Isolated material "stuff" body
- Identity: mereologically extensional - Unity: intrinsically none
- Identity three , options:
- None Non-extensional
 - Extensional

Conclusion: the two concepts are disjoint in Rhy Figod lobjects are *constituted* by amounts of matter

Taxonomic Constraints • +R⊄~R • -I⊄+I • -U⊄+U • Incompatible IC's are disjoint • +U ⊄ ~U • Incompatible UC's are • -D⊄+D disjoint · Categories subsume everything • Roles can't subsume types

IS-A overloading

• Reduction of sense:

1. A physical object is an amount of matter (Pangloss)

2. An association is a group (WordNet)

• Overgeneralization:

- An amount of matter is a physical object (WordNet)
 A place is a physical object (µKosmos, WordNet)

• Clash of senses:

- A window is both an artifact and a place (µKosmos)
 A person is both a physical object and a living thing (Pangloss)
- 7. A communicative event is a physical, a mental, and a social event (µKosmos, Pangloss)

Property Dependence

- $\boldsymbol{\cdot}$ Does a property holding for \boldsymbol{x} depend on something else besides x? $P(x) \rightarrow \exists y Q(y)$
 - y should not be a part of x
- Example: Student/Teacher, customer/vendor

0	I	R	D	
+	+	+	±	Туре
-	+	+	±	Quasi-type
-	+	-	-	Mixin
-	+	~	+	Mat. role
-	+	~	-	Phased sortal
-	-	+	±	Category
-	-	~	+	Formal role
-	-	-	-	Attribution

The Backbone Taxonomy

Assumption: no entity without identity

- Since identity is supplied by types, every entity must instantiate a type
- The taxonomy of types spans the whole domain
- Together with categories, types form the backbone taxonomy, which represents the invariant structure of a domain (rigid properties spanning the whole domain)

Well-founded ontology design

An ontology-cleaning example

Dealing with

Ontological Relativism

• Deciding about the meta-properties carried by a given property...

Is up to YOU!

• But a *common agreement* must be achieved about the formal meaning (and practical utility) of meta-properties

Property	 Analysis
Entity,	Location
 Entity Everything is an entity 	 Location A generalized region of
I-U-D+R - Category	space. - +O: by its parts (manaplopically
	extensional). - ~U: no way to isolate a
	location

- -D+R
- Туре

42

Property Amount of M	Analysis latter, Red	
 Amount of Matter unstructured /scattered "stuff" as lumps of clay or some bricks +O: mereologically extensional ~U: intrinsically no unity -D+R Type 	 Red Really Red-thing, the set of all red-colored entities -I-U-D-R Formal Attribution 	43

Property Analysis						
Physical Objec	t, Living Being					
 Physical Object Isolated material objects. +O: same spatial location (only synchronic, no common diachronic IC). +U: Topological -D+R Type 	 Living Being +O: same-DNA (only nec.) +U: biological unity -D+R Type 					
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	45					

Property	Analysis
Food, . • Food - +I-O~U: amt. of matter - +D: something that eats it. - ~R: being food is not necessary - Material Role	Animal • Animal - +O: same-brain - +U: biological unity D+R - Type

.

Property Analysis							
Fruit							
• Fruit							
 An individual fruit, such as an orange or bannana +O: same-plant, same- shape, etc. (only nec.) +U: topological -D+R Type 							

- type-attribution mixin

đ **Property Analysis** Butterfly, Caterpillar • Caterpillar Butterfly - +L: same-wing-pattern

- +U: biological
- -D
- +L: spots, legs, color

- +U: biological
- -D
- ~R: the *same entity* can be something else (a caterpillar)
- Phased sortal
- ~R: caterpillars become butterflies and change their IC

52

- Phased sortal

đ **Property Analysis** Country

- Country
 - A place recognized by convention as autonomous
 - +L: government, sub-regions
 - +U: countries are countable (heuristic)
 - -D
 - $\ensuremath{\mathsf{\sim}}\ensuremath{\mathsf{R}}\xspace$ some countries do not exist as countries any
 - more (e.g. Prussia) but are still places
 - Phased sortal

