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Methodologies Modelling Summary

Ontology development

You have some experience with an ontology language and
representing some knowledge, which was given to you

How to come up with the whole ontology in the first place?

What can, or should, you do when you have to develop your
own ontology?

⇒ Just like in software engineering, there are methods and
methodologies to guide you through it

Recall (L1): an ontology is a logical theory “plus some more”

In this lecture, we look into that “some more”
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Methodologies Modelling Summary

Topics for this lecture

Methodologies

Most are coarse-grained, i.e., a macro-level, processual
information systems perspective; they do not (yet) contain all
the permutations at each step
The actual modelling, or ontology authoring, using micro-level
guidelines and tools
Zooming in on Test-Driven Development of ontologies

Modelling, or: ontology quality:

Methods assisting in modelling
Zooming in on modelling relations
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Methodologies Modelling Summary

Macro-level methodologies

Typical stages of macro-level methodologies

(Source: Simperl et al., 2010)
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Macro-level methodologies

A ‘simple’ methodology: Methontology

Basic methodological steps:

Specification: why, what are its intended uses, who are the
prospective users
Conceptualization: with intermediate representations
Formalization: transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model
Implementation: represent it in an ontology language
Maintenance: corrections, updates, etc.

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others (More comprehensive

assessment of extant methodologies in Corcho et al, 2003)
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Macro-level methodologies

Tools to support this, and more

Protégé, Topbraid, etc.

Standalone version with OWL 2 DL support, WebProtégé with
a fragment of OWL 2

MOdelling wiKI MoKi also has features that have become
relevant more recently:

based on a SemanticWiki, used for collaborative and
cooperative ontology development

‘multi-modal access at different levels of formality: informal,
semi-formal and formal (enables actors with different expertise
contribute)
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Macro-level methodologies

Extending the methodologies

Methontology and others (e.g., On-To-Knowledge,
KACTUS approach) are methods for developing one single
ontology

Changing landscape in ontology development towards building
“ontology networks”

Characteristics: dynamics, context, collaborative, distributed

E.g., the NeOn methodology
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Macro-level methodologies

Extending the methodologies: NeOn

NeOn’s “Glossary of Activities” identifies and defines 55
activities when ontology networks are collaboratively built

Among others: ontology localization, -alignment,
-formalization, -diagnosis, -enrichment etc.

Divided into a matrix with “required” and “if applicable”

Recognises there are several scenarios for ontology
development, refining the typical monolithic ‘waterfall’
approach

(more info in neon 2008 d5.4.1.pdf)
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Macro-level methodologies

Several scenarios for Building Ontology Networks
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Micro-level methodologies

Micro-level methodologies

Guidelines detailing how to go from informal to logic-based
representations with instructions how to include the axioms
and which ones are better than others

To represent the formal and ontological details in an
expressive ontology beyond just classes and some of their
relationships so as to include guidance also for the axioms and
ontological quality criteria

Notably: OntoSpec, “Ontology development 101”
(outdated!!!), DiDOn, TDD

Methods & tools for sets of axioms; e.g.: advocatus diaboli,
SubProS & ProChainS, ...
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Micro-level methodologies

More detailed steps (generalised from DiDOn) (1/2)

1. Requirements analysis, regarding expressiveness (temporal,
fuzzy, n-aries etc.), types of queries, reasoning services needed;

2. Design an ontology architecture, such as modular, and if so,
in which way, distributed or not, etc.

3. Choose principal representation language and consider
encoding peculiarities;
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Micro-level methodologies

A few basic hints for choosing a language

Is reasoning 
required?

Only data 
annotation?

Text 
annotation?

Expressivity 
is important?

Use OWL (2) DL

Use OWL 2 EL

Use OBO 
or OWL 2 EL

Use SKOS, OBO, or 
OWL 2 EL

No

Yes

Decidability is 
important?

Use any FOL, extension 
thereof, or higher order logic, 
e.g. Common Logic, DLRus

large ABox?

Use OWL 2 QL
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Micro-level methodologies

More detailed steps (generalised from DiDOn) (2/2)

4. Formalisation, including:

examine and add the classes, object properties, constraints,
rules taking into account the imported ontologies;
use an automated reasoner for debugging/anomalous
deductions;
use ontological reasoning services for quality checks
(OntoClean, RBox Compatibility);
add annotations;

5. Generate versions in other ontology languages, ‘lite’ versions,
etc, if applicable;
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Micro-level methodologies

Test-driven Development

Ontology lifecycle

TDD 
cycle 

CQ added, template filled, 
or axiom written

TDD 
cycle

TDD 
cycle

etc…TDD 
cycle

etc…

TDD cycle

1. select 
scenario

2. domain axiom 
for TDD test

3. TDD test 
expected to fail

4. update 
ontology

5. classify ontology; 
no contradictions

6. TDD test 
expected to pass

7. refactor

8. regression 
testing

TDD 
cycle

TDD 
cycle

TDD 
cycle

TDD 
cycle

TDD 
cycle

Prior feasibility study, architecture, 
language decisions, ontology reuse
decisions, etc etc, CQ specification

Deployment, 
documentation, etc.
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Test-Driven Development

And then you open an ontology editor...
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Test-Driven Development

Or if you have something to start with:
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Test-Driven Development

Behind the facade

SubClassOf(awo:lion awo:animal)
SubClassOf(awo:lion ObjectSomeValuesFrom(awo:eats awo:Impala))
SubClassOf(awo:lion ObjectAllValuesFrom(awo:eats awo:herbivore))
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Test-Driven Development

And behind that serialisation
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Test-Driven Development

Ontology development at the ‘micro-level’ level (cf. macro)

We need to get those axioms into the ontology

The actual modelling, or ontology authoring, using micro-level
guidelines and tools

Methods, such as reverse engineering and text mining to start,
OntoClean and OntoPartS to improve an ontology’s quality
Parameters that affect ontology development, such as purpose,
starting/legacy material, language
Tools to model, to reason, to debug, to integrate, to link to
data
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Test-Driven Development

Ontology authoring

Ontology authoring: on adding axioms to the Knowledge base

Q1 “Does my ontology have axiom X?”
where X is, e.g., all giraffes eat some twigs
i.e., Giraffe v ∃eat.Twig

Q2 “Will it still be consistent/class satisfiable if I add X?”
add, and try and see what the reasoner says about it

Current approaches:

For Q1: browsing, searching the asserted knowledge

For Q2: essentially a test-last approach

Cumbersome and time-consuming with larger ontologies

Missing: a systematic testbed to do this in a methodical
fashion

It would need to relate to those macro-level processes
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Test-Driven Development

Addressing these issues

⇒ Reuse software engineering’s notion of Test-Driven
Development, based on test-first
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Test-Driven Development

(Recap) TDD in software development

Methodology where one writes new code only if an automated
test has failed [Beck(2004)].

TDD permeates the whole development process

TDD is a test-first approach rather than test-last (design,
code, test) of unit tests

More focussed, improves communication, improves
understanding of required software behaviour, reduces design
complexity [Kumar and Bansal(2013)]

TDD produced code passes more externally defined tests—i.e,
better software quality—and less time spent on debugging
[Janzen(2005)]
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Test-Driven Development

Several scenarios for TDD (1/2)

I. CQ-driven TDD Specify Competency question, translate it
into one or more axioms, which are the input of the relevant
TDD test(s)

ex1 What software can perform task x?1

ex2 Given a data mining task/dataset, which of the valid or
applicable workflows/algorithms will yield optimal results (or at
least better results than the others)?

ex3 Are there learning algorithms that I can use on
high-dimensional data without having to go through
preliminary dimensionality reduction?

1more here: https://softwareontology.wordpress.com/2011/04/01/

user-sourced-competency-questions-for-software/; other two examples
from [Keet et al.(2015b)]
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Test-Driven Development

Several scenarios for TDD (2/2)

II-a. Ontology authoring-driven TDD - the knowledge engineer who
knows which axiom s/he wants to add, types it, which is then
fed directly into the TDD system

II-b. Ontology authoring-driven TDD - the domain expert uses a
template or “logical macro” ODP [Presutti et al.(2008)],
which map onto generic tests; e.g.:

- the all-some template, i.e., an axiom of the form C v ∃R.D
- instantiate with relevant domain entities; e.g.,

Professor v ∃teaches.Course
- the TDD test for the C v ∃R.D type of axiom is then run

automatically

Behind the usability interface, what gets sent to the TDD system
is one or more axioms
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Test-Driven Development

Tests in ontology engineering

Early explorative work borrowing notion of testing
[Vrandečić and Gangemi(2006)]—no framework, testbed

CQs: patterns [Ren et al.(2014)], formalise into SPARQL
queries—what, not how

Instance-oriented approaches
[Garca-Ramos et al.(2009), Kontokostas et al.(2014)],
eXtreme Design NeON plugin, ODP rapid design
[Blomqvist et al.(2012), Presutti et al.(2009)], RapidOWL
[Auer(2006)]

Tests for particular types of axioms:

disjointness [Ferré and Rudolph(2012)]
adding part-whole relation based domain and range constraints
[Keet et al.(2013b)]
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Test-Driven Development

Tests in ontology engineering

Tawny-Owl’s subsumption tests [Warrender and Lord(2015)].
Tests tailored to the actual ontology rather than reusable
‘templates’ for the tests covering all OWL language features

Scone, BDD, focussing on natural language and examples,
Cucumber at the back (F. Neuhaus, 2015)

Methodologies:

none of the 9 methodologies reviewed by [Garcia et al.(2010)]
are TDD-based
The Agile-inspired OntoMaven
[Paschke and Schaefermeier(2015)] has OntoMvnTest with
‘test cases’ only for the usual syntax checking, consistency, and
entailment
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Test-Driven Development

Tests in ontology engineering

Full TDD ontology engineering [Keet and  Lawrynowicz(2016),
 Lawrynowicz and Keet(2016), Davies et al.(2017)]

Idea of unit tests has been proposed, there is a dearth of
actual specifications as to what exactly is, or should be, going
on in such as test

No regression testing to check that perhaps an earlier
modelled CQ—and thus a passed test—conflicts with a later
one
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Test-Driven Development

Basic idea of Test-Driven Development for an ontology

1. Require: domain axiom x of type X is to be added to the
ontology; e.g., x may be Professor v ∃teaches.Course, which
has pattern C v ∃R.D.

2. Check the vocabulary elements of x are in ontology O (itself a
TDD test);

3. Run the TDD test:

3.1 The first execution should fail (check O 2 x or not present)
3.2 Update the ontology (add x), and
3.3 Run the test again which then should pass (check that O |= x)

and such that there is no new inconsistency or undesirable
deduction

4. Run all previous successful tests, which still have to pass (i.e.,
regression testing); if not, resolve conflicting knowledge.
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Test-Driven Development

TDD test specification, preliminaries

First iteration [Keet and  Lawrynowicz(2016)]:

42 test types for SROIQ covering basic axioms one can add
to the TBox or RBox
Use the reasoner directly via OWL API
Notation of test in algorithm-style notation

Second iteration [Davies(2016), Davies et al.(2017)]:

TDD tests for general TBox axioms and some ABox assertions
Model for testing
More feedback (not just ‘undefined’, ‘failed’, ‘OK’)
Proofs

Third iteration: dealing with RBox inconsistencies
[Keet(2012)], refactoring (ongoing)
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Test-Driven Development

Example: a TBox-test

Require: Test T (C v ∃R.D)
1: α← SubClassOf(?x ObjectSomeValuesFrom(R D))
2: if C /∈ α then . thus, O 2 C v ∃R.D
3: return T (C v ∃R.D) is false
4: else
5: return T (C v ∃R.D) is true
6: end if

Question: This is not the only possible design of a test. Name at
least one other test design (i.e., irrespective of technologies) to
test T (C v ∃R.D); e.g., to find out whether, say,
Lion v ∃eats.Impala is entailed in the ontology
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Test-Driven Development

Revisiting the general idea of TDD for an ontology

1. Require: domain axiom x of type X is to be added to the
ontology; e.g., x may be Professor v ∃teaches.Course, which
has pattern C v ∃R.D.

2. Check the vocabulary elements of x are in ontology O (itself a
TDD test);

3. Run the TDD test:

3.1 The first execution should fail (check O 2 x or not present)
3.2 Update the ontology (add x), and
3.3 Run the test again which then should pass (check that O |= x)

and such that there is no new inconsistency or undesirable
deduction

4. Run all previous successful tests, which still have to pass (i.e.,
regression testing); if not, resolve conflicting knowledge.
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Test-Driven Development

A model for testing–possible test results

Ontology already inconsistent

Ontology already incoherent: that is, one or more of its
named classes are unsatisfiable.

Missing entity in axiom: The axiom contains one or more
named classes or properties which are not declared in the
ontology.

Axiom causes inconsistency

Axiom causes incoherence

Axiom absent: The axiom is not entailed by the ontology, but
it could be added without negative consequences.

Axiom entailed: The axiom is already entailed by the ontology
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Test-Driven Development

Formally

Definition

Given an ontology O which is consistent and coherent, and an
axiom A such that Σ(A) ⊆ Σ(O), the result of testing A against O
is

testO(A) =


entailed if O ` A
inconsistent if O ∪ A ` ⊥
incoherent if O ∪ A 0 ⊥

∧(∃C ∈ ΣC (O)) s.t. O ∪ A ` C v ⊥
absent otherwise
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Test-Driven Development

Generalisation

Note: now C and D can be any class expression, not just only a
named class
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Test-Driven Development

Graphically

D

C

We want to test whether this already holds in O.

 not D

There is an object, a, that is a C and not a D…

C
a

… so O with C is-a D would turn out to be inconsistent.

 not D

There is some class E subsumed by C and not a D…

C

… so C is-a D would cause O to be incoherent.

E

 not D

There cannot be a class E subsumed by C and not a D…

C

… so C is-a D is entailed already in O.
What remains: C is-a D is absent.
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Test-Driven Development

Design considerations and issues

Which technology to use?

DL Query tab possible

to cumbersome, not all tests possible

SPARQL-OWL’s implementation OWL-BGP and its SPARQL
SELECT, SPARQL answering engine, and Hermit v1.3.8
[Kollia et al.(2011)]

Limited RBox tests (note: does not implement ASK queries)

SPARQL-DL’s implementation with its ASK queries

Limited RBox tests

Use just the OWL API + a DL reasoner
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Test-Driven Development

TDDOnto2

TDDOnto tool as Protégé plugin

Manages test specification and execution, ontology update

‘wraps’ around the actual execution of the test (SPARQL
query, reasoner) for creation/deletion mock entities, the
true/false returned

To make a long story of performance evaluations short:
TDDonto2 uses the reasoner, for it is the fastest of the options
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Test-Driven Development

Screenshots
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Test-Driven Development

Methodology sketch

Ontology lifecycle

TDD 
cycle 

CQ added, template filled, 
or axiom written

TDD 
cycle

TDD 
cycle

etc…TDD 
cycle

etc…

TDD cycle

1. select 
scenario

2. domain axiom 
for TDD test

3. TDD test 
expected to fail

4. update 
ontology

5. classify ontology; 
no contradictions

6. TDD test 
expected to pass

7. refactor

8. regression 
testing

TDD 
cycle

TDD 
cycle

TDD 
cycle

TDD 
cycle

TDD 
cycle

Prior feasibility study, architecture, 
language decisions, ontology reuse
decisions, etc etc, CQ specification

Deployment, 
documentation, etc.
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Test-Driven Development

CQ-driven KR 
engineer

Domain 
expert

Formalised 
QC

Template 
selectedWrite axiom

Fill template

Select test

Run test Stop

Inconsistent?

incoherent?

Update ontology Refactor ontology 
(optional)

Regression 
testing

All tests 
passed?

Stop

Resolve 
conflicts

Stop

passed
(entailed)

failed (else)

yes

no (absent)

yes

passed

failed

yes

no (tests with 
conflicting 
knowledge)

(the knowledge was not 
added correctly, or you did
something else as well)

(the knowledge was 
already present)

no

Run test
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Test-Driven Development

Notes

The picture shows the basic loop only

What if Step 5 goes wrong (inconsistent/incoherent
ontology):

What is the source of the inconsistency?
Was it a previous test, hence, contradicting CQs?

What if after refactoring (step 7), regression (step 8) fails:

Is a previous test obsolete?
Error introduced in the refactoring?

What does ‘refactoring’ an ontology mean anyway?

(we have some ideas, but too preliminary at this stage)
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Outline

1 Methodologies
Macro-level methodologies
Micro-level methodologies
Test-Driven Development

2 Modelling
Relationship issues
Semantics of relations
Some common relations
Reasoner-mediated modelling

3 Summary
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Preliminaries

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that
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Preliminaries

Using automated reasoners for ‘debugging’ ontologies,
requires one to know about reasoning services

Using standard reasoning services

Reasoning services tailored to pinpointing the errors and
explaining the entailments
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Sampling of methods and tools for ‘debugging’

Finding pitfalls2: OntOlogy Pitfall Scanner! (OOPS!), and
TIPS to prevent them
[Poveda-Villalón et al.(2012), Keet et al.(2015a)]

Finding errors and correcting them: SubProS and ProChainS
[Keet(2012)]

Preventing making errors: FORZA [Keet et al.(2013b)]

When to declare classes disjoint: advocatus diaboli
[Ferré and Rudolph(2012), Ferré(2016)]

See also examples in the lecture notes, WoDOOM workshop
proceedings

2pitfall: among others: undesirable deductions, inconsistent naming scheme,
declaring a property transitive but with incompatible domain and range
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Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable
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Common errors

Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

Atomic: An individual belongs to a class and its complement
Cardinality: An individual has a max cardinality restriction but
is related to more distinct individuals
Datatype: A literal value violates the (global or local) range
restrictions on a datatype property

Basic set of clashes for KBs (ontology + instances) are:

Inconsistency of assertions about individuals, e.g., an individual
is asserted to belong to disjoint classes or has a cardinality
restriction but related to more individuals
Individuals related to unsatisfiable classes
Defects in class axioms involving nominals (owl:oneOf, if
present in the language)
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Relationship issues

Setting

Representing hierarchies of classes
[/concepts/universals/entity types/...] typically received
first/most/only attention

Things become interesting from the viewpoint of automated
reasoning only if there are other axioms, or: properties of
those classes

⇒ How to model those? (and have good quality)

⇒ What effect does that have on the deductions? (preferably
desired ones)
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Relationship issues

Some problematic examples with relationships

A. Trans(partOf)
Hand v ∃partOf.Musician
Musician v ∃partOf.Orchestra
Deducing that each Hand is part of an Orchestra is ‘wrong’

B. hasMainTable ◦ hasFeature v hasFeature

hasMainTable v DataSet× DataTable

hasFeature v DataTable× Feature

Deduces DataSet v DataTable, which is ‘wrong’

SubPropertyOf(PropertyChain(contains hasPart) contains)

SubPropertyOf(PropertyChain(hasPart contains) hasPart)

A B C

A B C

contains haspart

contains

containshaspart

haspart

A.

B.

Mary's 
mouth

Legominifigure1

contains haspart

contains

C. D.
Legomini-
figure1's 
leg

Mary Mary's mouth

haspart contains

haspart

Legomini-
figure1
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Relationship issues

And old issue

A1. Class hierarchy with asserted conditions

B. Correct role box (object properties) C. Wrong role box (object properties)

A2. Other class 
hierarchy with 

the same 
asserted 

conditions

(Live with Protégé)

A1+B: OK; A2+B: OK

A1+C: Chassis inconsistent; A2+C: Chassis (re)classified
as a PD

C. But actually, the property hierarchy is wrong (mostly ignored
by the DL/OWL reasoner, so can’t find that mistake)
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Relationship issues

Other modelling and implementation issues

Poll: are teaches and taught by two relations?

⇒ differentiate between relation between entities and relational
expression describing that state

Poll: How do you map UML’s association ends (or ORM’s
roles) to an OWL object property (or vv.)?

⇒ Bit tricky, you have to make a modelling decision...

These two questions surface as a consequence of different
ontological commitment as to what a relation really is (or
what you’re convinced of it is)
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Relationship issues

A few other modelling questions

Should you introduce a minimum amount of properties in your
ontology, or many?

Always (try to) declare domain and range axioms?

Use explicit inverses (extending the vocabulary) or not?

What about ternaries?

How to find and fix mistakes and pitfalls?

What if solution X is better modelling than option Y but
computationally more costly than Y?
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Semantics of relations

Toward solving such issues

Meaning of relations

Different modelling/representation languages have varying
‘ontological commitments’
When a relation(ship) is a specialisation of another

Reuse relations that are already investigated widely cf.
reinventing the wheel

Methods and tools to avoid pitfalls
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Semantics of relations

Notes from philosophy

Relations investigated in philosophy

Nature of relation itself (standard, positionalist,
anti-positionalist) [Fine(2000), Leo(2008)]
Relationships as endurants or events
[Guarino and Guizzardi(2015), Guarino and Guizzardi(2016)]
Nature and properties of some specific domain-independent
relations (parthood, portions, participation, causation); see the
Stanford Encyclopedia of Philosophy for gentle introductions
‘Categories’ of relations (material, formal) (e.g.,
[Guizzardi and Wagner(2008)])
(among others)

Some results more useful for ontologies and conceptual
modelling than others, some even for tool development
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Semantics of relations

What relations are

Three main options: standard, positionalist, anti-positionalist
[Fine(2000), Leo(2008)]

Applied to trying to resolve issues in metamodels,
formalisations and tools [Keet(2009),
Keet and Fillottrani(2015), Fillottrani and Keet(2015)]

Not the arguments here, only present what they are

Standard view relies on linguistics and the English language in
particular

Formalisation predicate-centred, order of entities important
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Semantics of relations

Graphical depictions positionalist, anti-positionalist

A. Positionalist B. Anti-positionalist

Mary John

Positionalist needs argument places in the “fundamental
furniture of the universe”, anti-positionalist does not

UML Class Diagrams, ORM, ER all positionalist
[Keet and Fillottrani(2015)], OWL, FOL, and most of DL take
standard view
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Semantics of relations

How to bridge ‘standard view’ with ‘positionalist’?

To at least achieve a faithful mapping between conceptual
model and its formalisation in a standard view-based logic

Also helps with linguistic annotations

Model and formalisation of the mapping in
[Keet and Chirema(2016)]

Entity typerole 
playing

0..*
playslinked to

1..*

0..*of

1..* Cardinality constraint

RoleRelationship 2..*1

n-ary 
Predicate

ordered for
ordinal for 
predicate

contains

0..*

1of

order

2..*

0..*

participates in

2..*

ordinal in

{ For each ordered for, 
      the Roles ordered for a Predicate are contained in a Relationship that is the Relationship of that Predicate. 
      (but a Relationship that contains Roles need not have a Predicate, and Roles need not be ordered for a Predicate) 
Each Axiom has participant either a Relationship or an Entity type or both, or an n-ary Predicate or an Entity type or both. }

Axiom type

0..*

Reading pattern

Reading

0..*

0..*

0..1

0..*

1..*

1..* 1..*

1..*

0..*

0..*

0..*

1

has participant

has 
partici-
pant

has partici-
pant

has 
participant

POS
1..*

0..*

gene-
rates

from

Template
0..*

1

has

used in

0..1
0..*

{or}
{xor}
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Semantics of relations

Questions and problems to address

Modelling flaws in the RBox show up as unexpected or
undesirable deductions regarding classes in the TBox, but
current explanation algorithms (e.g., [Horridge et al.(2008),
Parsia et al.(2005), Kalyanpur et al.(2006)]) mostly do not
point to the actual flaw in the RBox

What are the features of a ‘good’ RBox w.r.t. object property
expressions?

What type of flaws are being made?

See [Keet(2014)]
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Sub-Properties in OWL

Preliminaries (1/2)

“basic form” for sub-properties, i.e., S v R,

“complex form” with property chains

R v C1 × C2 as shortcut for domain and range axioms
∃R v C1 and ∃R− v C2 where C1 and C2 are generic classes;
ObjectPropertyDomain(OPE CE) and
ObjectPropertyRange(OPE CE) in OWL.

R v >×> when no domain and range axiom has been
declared

Definition (User-defined Domain and Range Classes)

Let R be an OWL object property and R v C1 × C2 its associated

domain and range axiom. Then, with the symbol DR we indicate the

User-defined Domain of R—i.e., DR = C1—and with the symbol RR we

indicate the User-defined Range of R—i.e., RR = C2.
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Sub-Properties in OWL

Definition ((Regular) Role Inclusion Axioms
([Horrocks et al.(2006)]))

Let ≺ be a regular order on roles. A role inclusion axiom (RIA for
short) is an expression of the form w v R, where w is a finite string of
roles not including the universal role U, and R 6= U is a role name. A
role hierarchy Rh is a finite set of RIAs. An interpretation I satisfies a
role inclusion axiom w v R, written I |= w v R, if wI ⊆ RI . An
interpretation is a model of a role hierarchy Rh if it satisfies all RIAs in
Rh, written I |= Rh. A RIA w v R is ≺-regular if R is a role name, and

w = R ◦ R, or
w = R−, or
w = S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or
w = R ◦ S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or
w = S1 ◦ . . . ◦ Sn ◦ R and Si ≺ R, for all 1 ≥ i ≥ n.

Finally, a role hierarchy Rh is regular if there exists a regular order ≺
such that each RIA in Rh is ≺-regular.
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Sub-Properties in OWL

Object sub-properties

Given S v R, then all individuals in the property assertions
involving property S must also be related to each other
through property R (OWL 2 Spec.).

Subsumption for OWL object properties (DL roles) holds if
the subsumed property is more constrained such that in every
model, the set of individual property assertions is a subset of
those of its parent property

Two ways to constrain a property, and either one suffices:

By specifying its domain or range
By declaring the property’s characteristics
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Sub-Properties in OWL

Constraining a property

Relationship 
characteristic

Antisymmetry IrreflexivityTransitivity

{disjoint, complete}

Reflexivity

Symmetry

Asymmetry

Acyclicity
Intransitivity

Purely-
reflexive

Strongly 
intransitive

B.

Figure: A: Example, alike the so-called ‘subsetting’ idea in UML; B:
hierarchy of property characteristics (Based on Halpin 2001, 2011)
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Sub-Properties in OWL

Constraining a property

Relationship 
characteristic

IrreflexivityTransitivity

{disjoint}

Reflexivity

Symmetry

Asymmetry

B.

Figure: A: Example, alike the so-called ‘subsetting’ idea in UML; B:
hierarchy of property characteristics relevant for OWL 2.
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Sub-Properties in OWL

Outline Sub-Property compatibility Service (SubProS)

First part extends the basic notions from the RBox
compatibility [Keet and Artale(2008)] (defined for ALCQI)

Informally, it first checks the ‘compatibility’ of domain and
range axioms w.r.t the object property hierarchy and the class
hierarchy.

After that, SubProS checks whether the object property
characteristic(s) conform to specification, provided there is
such an expression in the ontology.

It exhaustively checks each permutation of domain and range
and then of the characteristic of the parent and child property
in the object property hierarchy
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range axioms w.r.t the object property hierarchy and the class
hierarchy.

After that, SubProS checks whether the object property
characteristic(s) conform to specification, provided there is
such an expression in the ontology.

It exhaustively checks each permutation of domain and range
and then of the characteristic of the parent and child property
in the object property hierarchy
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Sub-Properties in OWL

Definition (Sub-Property compatibility Service (SubProS))

For each pair of object properties, R,S ∈ O such that O |= S v R, and
O an OWL ontology adhering to the syntax and semantics as specified in
OWL 2 Standard, check whether:

Test 1. O |= DS v DR and O |= RS v RR ;

Test 2. O 6|= DR v DS ;

Test 3. O 6|= RR v RS ;

Test 4. If O |= Asym(R) then O |= Asym(S);

Test 5. If O |= Sym(R) then O |= Sym(S) or O |= Asym(S);

Test 6. If O |= Trans(R) then O |= Trans(S);

Test 7. If O |= Ref(R) then O |= Ref(S) or O |= Irr(S);

Test 8. If O |= Irr(R) then O |= Irr(S) or O |= Asym(S);

Test 9. If O |= Asym(R) then O 6|= Sym(S); continues....

Test 10. If O |= Irr(R) then O 6|= Ref(S);

Test 11. If O |= Trans(R) then O 6|= Irr(R), O 6|= Asym(R),
O 6|= Irr(S), and O 6|= Asym(S);

An OWL object property hierarchy is said to be compatible iff
Test 1 and (2 or 3) hold for all pairs of property-subproperty in O,
and
Tests 4-11 hold for all pairs of property-subproperty in O.
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Sub-Properties in OWL

Definition (Sub-Property compatibility Service (SubProS))

... continued from previous page

Test 10. If O |= Irr(R) then O 6|= Ref(S);

Test 11. If O |= Trans(R) then O 6|= Irr(R), O 6|= Asym(R),
O 6|= Irr(S), and O 6|= Asym(S);

An OWL object property hierarchy is said to be compatible iff

Test 1 and (2 or 3) hold for all pairs of property-subproperty in O,
and

Tests 4-11 hold for all pairs of property-subproperty in O.
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Sub-Properties in OWL

Property chains

Recall the three cases for property chains, with w v R:

Case S: w = S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or
Case RS: w = R ◦ S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or
Case SR: w = S1 ◦ . . . ◦ Sn ◦ R and Si ≺ R, for all 1 ≥ i ≥ n.

To ensure avoidance of undesirable classifications or
inconsistencies, informally:

The domain/range class from left to right has to be equal or a
superclass, on the lhs of the inclusion
Similarly for the outer domain and range on the lhs and
domain and range of the object property on the rhs
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Sub-Properties in OWL

Definition (Property Chain Compatibility Service (ProChainS))

For each set of object properties, R,S1, . . . ,Sn ∈ R, R the set of OWL
object properties (VOP in OWL 2) in OWL ontology O, and Si ≺ R with
1 ≤ i ≤ n, O adheres to the constraints of Definition 3 (and, more
generally, the OWL 2 specification), and user-defined domain and range
axioms as defined in Definition 1, for each of the property chain
expression, select either one of the three cases:

Case S. Property chain pattern as S1 ◦ S2 ◦ . . . ◦ Sn v R. Test
whether:

Test S-a. O |= RS1 v DS2, . . . ,RSn−1 v DSn;
Test S-b. O |= DS1 v DR ;
Test S-c. O |= RSn v RR ;

Case RS. Property chain pattern as R ◦ S1 ◦ . . . ◦ Sn v R. Test
whether:

Test RS-a. O |= RS1 v DS2, . . . ,RSn−1 v DSn;
Test RS-b. O |= RR v DS1;
Test RS-c. O |= RSn v RR ; continues...

Case SR. Property chain pattern as S1 ◦ . . . ◦ Sn ◦ R v R. Test
whether:

Test SR-a. O |= RS1 v DS2, . . . ,RSn−1 v DSn;
Test SR-b. O |= DS1 v DR ;
Test SR-c. O |= RSn v DR ;

An OWL property chain expression is said to be compatible iff the OWL

2 syntactic constraints hold and either Case S, or Case RS, or Case SR

holds.
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Sub-Properties in OWL

Definition (Property Chain Compatibility Service (ProChainS))

.... continued from previous page

Case SR. Property chain pattern as S1 ◦ . . . ◦ Sn ◦ R v R. Test
whether:

Test SR-a. O |= RS1 v DS2, . . . ,RSn−1 v DSn;
Test SR-b. O |= DS1 v DR ;
Test SR-c. O |= RSn v DR ;

An OWL property chain expression is said to be compatible iff the OWL

2 syntactic constraints hold and either Case S, or Case RS, or Case SR

holds.
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Sub-Properties in OWL

BioTop’s inconsistent ‘has process role’

‘has process role’ in BioTop [Beisswanger et al.(2008)] (v. June
17, 2010) is inconsistent. Relevant axioms are:
‘has process role’v‘temporally related to’ (E.1)
‘has process role’v‘processual entity’×role (E.2)
‘temporally related to’ v
‘processual entity’ t quality ×
‘processual entity’ t quality (E.3)
role v ¬quality (E.4)
role v ¬‘processual entity’ (E.5)
Sym(‘temporally related to’) (E.6)
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Sub-Properties in OWL

BioTop’s inconsistent ‘has process role’

Use SubProS to isolate the flaw:

Test 1: fail, because Rhasprocessrole v Rtemporallyrelatedto is
false, as the ranges (see E.2 cf. E.3) are disjoint (see E.4, E.5)
and therewith ‘has process role’ is inconsistent;

Test 2 and 3: pass.

Test 4: not applicable.

Test 5: fail, because O does not contain Sym(‘has process
role’).

Test 6-11: not applicable.
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Sub-Properties in OWL

DMOP chain in v5.2

Of type Case S. Test S-c (for corrections) failed because
O 6|= RDM-TasktOptimizationProblem v RDM-Task. Considering the
suggestions for revision, step B’s first option to revise the ontology
was chosen, i.e., removing OptimizationProblem from the range
axiom of addresses.
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Some common relations

Don’t reinvent the wheel

Part-whole relations, probably received most attention in
ontologies

Spatial relations, and its interaction with parthood

Participation, constitution, causation, ...

Similarity: important for combination machine learning with
ontologies
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Some common relations

Taxonomy of part-whole relations

Hierarchy of part-whole relations common in ontologies and
conceptual data models

Uses DOLCE foundational ontology [Masolo et al.(2003)] for
domain and range of a relation

Main distinction between transitive (parthood) vs
non-transitive (just meronymic) part-whole relations

Formally defined

Details in [Keet and Artale(2008)]
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Some common relations

Part-whole relations

 

Part-whole relation 

mpart_of 
((Meronymic) part-whole relation) 

part_of 
(Mereological part-of relation) 

member-of constitutes sub-quantity-of participates-in involved-in spatial-part-of 

f-part-of 

s-part-of 

located-in contained-in member-of’ 

… … 
… … 

… … 
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Some common relations

Part-whole relations

“member-bunch”, collective nouns (e.g. Herd, Orchestra) with
their members (Sheep, Musician)

∀x , y(member ofn(x , y) , mpart of (x , y) ∧ (POB(x) ∨ SOB(x))
∧SOB(y))

“material-object”, that what something is made of (e.g., Vase and
Clay)

∀x , y(constitutesit(x , y) ≡ constituted ofit(y , x) , mpart of (x , y)∧
POB(y) ∧M(x))
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Some common relations

Part-whole relations

“quantity-mass”, “portion-object”, relating a smaller (or sub) part
of an amount of matter to the whole. Two issues (glass of wine &
bottle of wine vs. Salt as subquantity of SeaWater)

∀x , y(sub quantity ofn(x , y) , mpart of (x , y) ∧M(x) ∧M(y))

“noun-feature/activity”, entity participates in a process, like
Enzyme that participates in CatalyticReaction

∀x , y(participates init(x , y) , mpart of (x , y) ∧ ED(x) ∧ PD(y))

79/116



Methodologies Modelling Summary

Some common relations

Part-whole relations

processes and sub-processes (e.g. Chewing is involved in the
grander process of Eating)

∀x , y(involved in(x , y) , part of (x , y) ∧ PD(x) ∧ PD(y))

Object and its 2D or 3D region, such as contained in(John’s

address book, John’s bag) and located in(Pretoria,

South Africa)

∀x , y(contained in(x , y) , part of (x , y) ∧ R(x) ∧ R(y)∧
∃z ,w(has 3D(z , x) ∧ has 3D(w , y) ∧ ED(z) ∧ ED(w)))

∀x , y(located in(x , y) , part of (x , y) ∧ R(x) ∧ R(y)∧
∃z ,w(has 2D(z , x) ∧ has 2D(w , y) ∧ ED(z) ∧ ED(w)))

∀x , y(s part of (x , y) , part of (x , y) ∧ ED(x) ∧ ED(y))
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Some common relations

Knowledge and Google & AfriGIS
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Some common relations

Parts and space

Could not represent all of parthood in OWL or any DL, worse
for mereotopology, but tried anyway [Keet et al.(2012)]

Example:

Let NTPLI be a ‘non-tangential proper located in’ relation
EnclosedCountry ≡ Country u ∃NTPLI.Country
NTPLI(Lesotho, South Africa), Country(Lesotho),
Country(South Africa),
then it will correctly deduce EnclosedCountry(Lesotho).
with merely ‘part-of’, one would not have been able to obtain
this result
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Some common relations

9-Intersection Method (9IM), based on point-set topology
[Egenhofer and Herring(1990)]

Region Connection Calculus (RCC), based on the reflexive and
symmetric connection [Randell et al.(1992)]

Neither one considers the combination of the space region
with the object that occupies it

This interaction is addressed by mereotopology, which
focuses on spatial entities, not just regions.
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Some common relations

Integrate the extension [Keet et al.(2012)]
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Some common relations

Kuratowski General Extensional MereoTopology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)

details
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Some common relations

Subsets of KGEMT that can be represented in OWL

Reason of differences: the object property characteristics (e.g.

t1/t6 = ref. of P/C, t25 = irr. of PP, t2= trans.).
The six definitions (PP, O, TPP, etc.) can be simplified and
added as primitives to each one.

OWL species Subsets of KGEMT axioms

OWL 2 DL (t1, t2, t6, t7, t8, t10, t26) or
(t1, t2, t6, t7, t8, t10, t27) or
(t1, t2, t6, t7, t8, t10, t25)

OWL DL t2, t7, t8, t10, t26
OWL Lite t2, t7, t8, t10, t26
OWL 2 RL t2, t7, t8, t10, t26
OWL 2 EL t1, t2, t6, t8, t10, t26
OWL 2 QL t1, t6, t7, t8, t10

Importance depends on the desired inference scenarios; thus
far, Trans, Sym, Asym, and Irr seem to be more interesting,
i.e., giving precedence to OWL 2 DL and OWL 2 RL (See

[Keet et al.(2012)] for details on reasoning trade-offs)
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Some common relations

Other relations in (foundational) ontologies

Relation Ontology [Smith et al.(2005)]

Relations that are sort-of temporal, but now not used as such;
hence, one cannot reason ‘fully’ with them w.r.t. intended
meaning

e.g.: derived-from, transformation-of

dependence, inherence

Attributes

DOLCE’s qualities
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Some common relations

Some other aspects of relations (not covered now)

constraints on participation (essential vs. immutable vs.
mandatory)

Modality, necessity, telic, atelic

Temporal relations, relation migration

n-ary relations and reifying (objectifying) them
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Some common relations

Any suggestions for actual ontology development?

Using the taxonomy of part-whole relations

Reasoner-guided relation selection

Performance tradeoffs with inverses
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Some common relations

Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that: OntoParts
[Keet et al.(2012)] and OntoParts-2 [Keet et al.(2013b)]

Reasoning with a taxonomy of relations

The RBox reasoning service [Keet and Artale(2008)] or
SubProS [Keet(2014)] to pinpoint errors

90/116



Methodologies Modelling Summary

Some common relations

Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that: OntoParts
[Keet et al.(2012)] and OntoParts-2 [Keet et al.(2013b)]

Reasoning with a taxonomy of relations

The RBox reasoning service [Keet and Artale(2008)] or
SubProS [Keet(2014)] to pinpoint errors

90/116



Methodologies Modelling Summary

Some common relations

Using the taxonomy of part-whole relations

Representing it correctly in ontologies and conceptual data
models

Decision diagram
Using the categories of the foundational ontology
Examples
Software application that simplifies all that: OntoParts
[Keet et al.(2012)] and OntoParts-2 [Keet et al.(2013b)]

Reasoning with a taxonomy of relations

The RBox reasoning service [Keet and Artale(2008)] or
SubProS [Keet(2014)] to pinpoint errors

90/116



Methodologies Modelling Summary

Reasoner-mediated modelling

GENERATOR: Guided ENtity reuse and class Expression
geneRATOR

?

R

S

Foundational ontology

Domain 
ontology

1

2

3

4

C D

C D

?1

W

R

V
S

T3

4.1

4.2

Domain ontologyA. B.

[Keet et al.(2013a)]
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Reasoner-mediated modelling

Effects of features on reasoning

Disjoint OPs, reflexivity, and qualified cardinality only on
simple OPs in OWL 2. with non-simple when:

if O contains an axiom S ◦ T v R
if R is non-simple, then so is its inverse R−

if R is non-simple and O contains any of the axioms R v S ,
S ≡ R or R ≡ S , then S is also non-simple

Domain and range axioms

Role hierarchy with domain and range axioms vs. ‘specialising’
in class axioms (with existential) [Hammar(2014)]

Inverses

‘understanding’ the reasoner, predicting performance a hot
topic; e.g. [Goncalves et al.(2012), Kang et al.(2012)]
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Outline

1 Methodologies
Macro-level methodologies
Micro-level methodologies
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2 Modelling
Relationship issues
Semantics of relations
Some common relations
Reasoner-mediated modelling

3 Summary
Exercises
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Danny Vrandečić and Aldo Gangemi.

Unit tests for ontologies.
In OTM workshops 2006, volume 4278 of LNCS, pages 1012–1020. Springer, 2006.

J. D. Warrender and P. Lord.

How, What and Why to test an ontology.
Technical Report 1505.04112, Newcastle University, 2015.
http://arxiv.org/abs/1505.04112.

104/116



Methodologies Modelling Summary

Exercises

Choose one involvement between Chewing and Eating

Chewing involved-in some Eating
Chewing v ∃involved-in.Eating

Chewing inverse(involves) some Eating
Chewing v ∃involves−.Eating
Eating involves some Chewing
Eating v ∃involves.Chewing
Eating inverse(involved-in) some Chewing
Eating v ∃involved-in−.Chewing
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Exercises

How to formalise the UML diagram in OWL?

teaches, taught-by, InverseObjectProperties(teaches
taught-by)
teaches v >×>
taughtBy v >×>
teaches ≡ taughtBy−

domain teaches: Prof, and range teaches: Course
teaches v Prof× Course

domain teaches: Prof, and range teaches: Course, domain
taught-by: Course, range taught-by: Prof
teaches v Prof× Course

taughtBy v Course× Prof
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Exercises

OWL files

http://www.meteck.org/teaching/ontologies/ has various
versions of the African Wildlife Ontology (alone, linked to
DOLCE, link to GFO)

http:

//www.meteck.org/files/ontologies/EvalComputer.owl has
no object properties at all. add both properties and axioms
(details of exercise depends on number of participants)

Pick one. Add missing object properties and/or axioms
(details of exercise depends on number of participants)
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Exercises

The Wildlife Ontology and DOLCE

Giraffes eat leaves and twigs. how do Plant and Twig relate?

The elephant’s tusks (ivory) are made of apatite (calcium
phosphate); which DOLCE relation can be reused?

How would you represent the Size (Height, Weight, etc.) of
an average adult elephant?

with quality and quale
OWL data properties
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Exercises

The Wildlife Ontology and DOLCE

Giraffes eat leaves and twigs. how do Plant and Twig relate?

(some type of) parthood relation

The elephant’s tusks (ivory) are made of apatite (calcium
phosphate); which DOLCE relation can be reused?

constitution

How would you represent the Size (Height, Weight, etc.) of
an average adult elephant?

with quality and quale
OWL data properties

What is the data type; integer, float, real, string?
Measure in meter, feet, kg, lb?
Introduce “ElephantHeight”, and also “LionHeight”,
“GiraffeHeight’, “ImpalaHeight”, etc.?
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Exercises

The Wildlife Ontology and DOLCE

Giraffes eat leaves and twigs. how do Plant and Twig relate?

(some type of) parthood relation

The elephant’s tusks (ivory) are made of apatite (calcium
phosphate); which DOLCE relation can be reused?

constitution

How would you represent the Size (Height, Weight, etc.) of
an average adult elephant?

with quality and quale
OWL data properties

What is the data type; integer, float, real, string?
Measure in meter, feet, kg, lb?
Introduce “ElephantHeight”, and also “LionHeight”,
“GiraffeHeight’, “ImpalaHeight”, etc.?
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Exercises

A computer ontology

CPU and Desktop?

containment

Who are members of an Agile team?

hasMember vs. memberOf
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Exercises

A computer ontology

CPU and Desktop?

containment

Who are members of an Agile team?

hasMember vs. memberOf
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Exercises

Ground Topology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)

111/116



Methodologies Modelling Summary

Exercises

Minimal (mereo) Topology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)
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Exercises

Minimal (mereo) Topology; Ground Mereology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)
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Exercises

Minimal (mereo) Topology; General Extensional Mereology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)
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Exercises

General Extensional MereoTopology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)
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Exercises

Kuratowski General Extensional MereoTopology

Core axioms and definitions
P(x , x) (t1) P(x , y) ∧ P(y , z)→ P(x , z) (t2)
P(x , y) ∧ P(y , x)→ x = y (t3) ¬P(y , x)→ ∃z(P(z, y) ∧ ¬O(z, x)) (t4)
∃wφ(w)→ ∃z∀w(O(w , z)↔ ∃v(φ(v) ∧ O(w , v))) (t5)
C(x , x) (t6) C(x , y)→ C(y , x) (t7)
P(x , y)→ E(x , y) (t8) E(x , y) =df ∀z(C(z, x)→ C(z, y)) (t9)
E(x , y)→ P(x , y) (t10) SC(x) ↔ ∀y, z(x = y + z → C(y, z)) (t11)
∃z(SC(z) ∧ O(z, x) ∧ O(z, y) ∧ ∀w(P(w , z)→ (O(w , x) ∨ O(w , y))))→ C(x , y) (t12)
z =

∑
xφx → ∀y(C(y , z)→ ∃x(φx ∧ C(y , x))) (t13)

P(x , cx) (t14) c(cx) = cx (t15)
c(x + y) = cx + cy (t16) cx =df∼ (ex) (t17)
ex =df i(∼ x) (t18) ix =df

∑
z∀y(C(z, y)→ O(x , y)) (t19)

Additional axioms, definitions, and theorems
PP(x , y) =df P(x , y) ∧ ¬P(y , x) (t20) O(x , y) =df ∃z(P(z, x) ∧ P(z, y)) (t21)
EQ(x , y) =df P(x , y) ∧ P(y , x) (t22) TPP(x, y) =df PP(x, y) ∧ ¬IPP(x, y) (t23)
IPP(x , y) =df PP(x , y) ∧ ∀z(C(z, x)→ O(z, y)) (t24)
¬PP(x , x) (t25) PP(x , y) ∧ PP(y , z)→ PP(x , z) (t26)
PP(x , y)→ ¬PP(y , x) (t27)
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