
Building ontologies hands-on
– BarCamp lab at ISAO 2023 –

C. Maria Keet
University of Cape Town, South Africa

The aim of this lab is to introduce the participant to creating an ontology, ‘debug-
ging’ it, and exploring improving the ontology. It focuses on the following tasks:

1. Adding and editing knowledge to an ontology;

2. Familiarising oneself with the ontology language features and the automated rea-
soner;

3. Finding the root cause of mistakes, which may be both logical ones and undesir-
able deductions, and correcting them;

4. Exploring methods and tools to improve the representation of the knowledge.

No prior ontology development experience is necessary, though helpful. Since any sum-
mer school is a ‘crash course’, the difficulty of the exercises in Sections 1 and 2 increases
quickly and, depending on your knowledge and skills, may take more time to complete
than the 1.5h timeslot of this lab. It is possible, though not optimal, to jump straight
to the exercises in Sections 3.

Preliminaries

Exercise 0.1. Install your ontology development environment of choice, if not already
done so, and acquaint yourself with the software. Look at the menu options and editing
panels. If you installed Protégé, you also can add new tabs and view (Click ‘Window’
- ‘View’ or ‘Window’ - ‘Tabs’; for views, the mouse pointer will change and you’ll need
to click to place that view somewhere on the open tab to be able to see it).

1 Adding knowledge to an ontology

Exercise 1.1. The following tasks aim to assist with exploring adding content to a
new ‘test ontology’ that uses different language features and therewith different OWL
species.

1



a. Create a new ontology, give it a name, and save it in RDF/XML.
b. Add the knowledge that bicycles are vehicles; i.e., create two classes, bicycle and

vehicle, and make the former a subclass of the latter.
c. Add bicycle v ∃hasComponent.Wheel, or: that each bicycle has ‘at least one’

(‘some’ in Protégé) wheel as component.
d. Save the file in RDF/XML format (the official exchange format), and also each

time before you run the reasoner (if you’re using Protégé, as newer versions might
freeze at times).

e. Download the OWL classifier from https://github.com/muhummadPatel/OWL_

Classifier, open it, open your ontology (‘File’ - ‘load..’) and inspect the OWL
species. (note: this may or may not work fully, depending on whether you have
installed Java and can run .jar files and if so, which version.)

f. Add Bicycle v ≥ 2 hasComponent.>. (note: the > in Description Logics (DL)
notation is the same as owl:Thing in OWL)

g. Reload your ontology in the OWL classifier and inspect the OWL species.
h. Update the previous axioms with the following one: Bicycle v = 2 hasCompo-

nent.Wheel. (note: the = in DL is the same as exactly in Protégé).
i. Reload the ontology in the OWL classifier and inspect the OWL species and

violations. What is the main difference, if any?
j. Declare hasComponent to be transitive. Save your ontology, and either run the

reasoner (‘Reasoner’ - ‘start reasoner’) or check the file again with the OWL
Classifier and try to explain the tool’s behaviour/output. How is this different
from the previous outputs?

Exercise 1.2. The following tasks are intended to experiment with adding content
to the ‘test ontology’ and to try out automated reasoning. If you’re using Protégé:
it includes an ‘explanation’ feature that lists the axioms involved in deducing what it
deduced, which shows up highlighted in yellow, and will help pinpointing errors later
on as well, which can be accessed by clicking on the ‘?’ element.

a. First, uncheck the ‘transitive’ checkbox on hasComponent so that we can use the
DL reasoner again.

b. Add Cycle≡ ∃hasComponent.Wheel. Run the reasoner and observe the deductions.
Can you explain what was deduced and why? (note: if you have used the reasoner
before in Protégé in this session, then click ‘synchronize reasoner’.)

c. Declare vehicle to be the domain of hasComponent.
d. Add the class motorised vehicle as a subclass of vehicle and declare it disjoint from

bicycle.
e. Create a new class electric bicycle and declare it to be a subclass of both bicycle

and motorised vehicle. Run the reasoner and try to explain the deductions in your
own words.

f. Add Wheel v ∃hasComponent.Spoke. Run the reasoner and try to explain the
deductions, i.e., describe why it deduced what it did.

2

https://github.com/muhummadPatel/OWL_Classifier
https://github.com/muhummadPatel/OWL_Classifier


2 Finding and correcting mistakes

Exercise 2.1. In this exercise, we’re going to fix the ‘mess’ we created in the previous
exercise in such a way that the ontology is within OWL 2 DL expressivity, is not
incoherent (i.e., has no unsatisfiable classes), and has no undesirable deductions.1

a. Let’s first fix the unsatisfiable class, electric bicycle. What is the root cause of it
being unsatisfiable? Consider:

– Which axiom(s) is (are) the culprit(s)? Several valid arguments are possible.
– We know that electric bicycles do exist (and your lab facilitator rides one,

even!), so they deserve to be in the ontology somehow. Write down at least
two options how to represent it differently, which need not necessarily be
equally good yet not implausible either.

Then discuss with your lab partner what the best solution would be, and why,
and implement it in the ontology.2

b. We’ll tackle the undesirable deduction now: Wheel v Vehicle is clearly wrong with
respect to reality, even though logically correct given what we have represented
in the ontology. This means we either made a mistake in our understanding or
we understood it right but did not add at least some of the knowledge in a way
that we should have done. In investigating the issue, consider:

– Which axiom caused the deduction?
– Does this axiom hold in all possible worlds?

- If yes: then how should the property of Wheel be changed?
- If no: then how should the property be changed?

Discuss with your lab partner what the best solution would be, and why, and
implement it in the ontology.

Exercise 2.2. We’ll explore peculiarities of the language and automated reasoning
that beginners generally don’t expect, with especially when they have a background in
databases. They involve individuals in the ontology.3

a. Add the following instances: electric bicycle(eb1), motor(m1) and motor(m2).
b. Relate the instances as follows: hasComponent(eb1,m1) and hasComponent(eb1,m2).

Save your ontology and run the reasoner.
c. Why is eb1 seemingly allowed to have two motors even though the class expression

states that each electric bicycle has as component exactly 1 motor?
d. Click on the individual m1 or on m2 and examine the inference.
e. Add motor(m3), declare it as different individuals from motor(m1), and add has-

1If you did not do the exercises of Section 1, then you may use the OWL file I created for the lab,
which is available at http://www.meteck.org/teaching/ontologies/dubiousbicycle.owl

2If you did not manage to solve the unsatisfiable class issue, or simply want to see a possible (not
necessarily the best) solution, then you may inspect the OWL file I created for the lab, which is
available at http://www.meteck.org/teaching/ontologies/dubiousbicycle1.owl.

3If you did not do the exercises of Section 1 or did not manage to resolve the issues in Exercise 2.1,
then you may use the OWL file I created for this exercise, being http://www.meteck.org/teaching/

ontologies/dubiousbicycle2.owl.

3

http://www.meteck.org/teaching/ontologies/dubiousbicycle.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle1.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle2.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle2.owl


Component(eb1,m3). Save your ontology and run the reasoner. What happens?
(and read the text; don’t click it away!)

f. Remove hasComponent(eb1,m3).

Exercise 2.3. This exercise zooms in on the so-called RBox, or things we can do with
object properties, and more automated reasoning.4

a. Add the following instances: spoke(s1), Wheel(w1) and bicycle(b1).
b. Add partOf as object property and declare it to be transitive. (bonus question:

why can’t we just reuse hasComponent for that?)
c. Add that spoke is a part of wheel and that wheel is a part of bicycle, and do so

likewise for s1, w1, and b1.
d. Run the reasoner and inspect the property assertions of s1. Why did it deduce

that?
e. Add participatesIn as object property, the chain partOf ◦ participatesIn v partici-

patesIn (in Protégé, use a lowercase ‘o’), the class cycling and instance cycling(tdf1),
and then participatesIn(b1,tdf1).

f. Run the reasoner and inspect the property assertions of s1 again. What has
changed and why? And what about w1?

3 Additional improvements

There are multiple methods, tools, and guidelines to improve on an ontology. They may
involve ‘cleaning up’ orphan classes that are never used, removing duplicate knowledge,
adding more constraints, and more. Since this is only a 1.5h lab, these exercise are but
a small sampling. They can be done in any order.5

Exercise 3.1. As with software development, good housekeeping of an ontology is
better than the alternative. For instance, adding an annotation to a class helps un-
derstanding it, especially if not everything could be represented. A well-known set of
heuristics for that is OOPS! for which there’s a web-based tool that scans the ontology
on such matters. Test your ontology with it at https://oops.linkeddata.es/. Then
examine the output:

a. Do you agree with all the issues OOPS! raised? If not: why not?
b. Which one(s) was (were) most useful to improve your ontology?
c. In case OOPS! is offline or you do not have internet access, then consider the fol-

lowing issues, which are among the ones that came up with my dubiousbicycle2

file:

4If you did not do the exercises of Section 1, did not manage to resolve the issues in Exercise 2.1
or didn’t do Exercise 2.2, then you may use the OWL file I created for this exercise, being http:

//www.meteck.org/teaching/ontologies/dubiousbicycle3.owl.
5If you did not do the previous exercises and just want to try explore improving an ontology, you may

use the test file available at http://www.meteck.org/teaching/ontologies/dubiousbicycle5.owl.

4

https://oops.linkeddata.es/
http://www.meteck.org/teaching/ontologies/dubiousbicycle3.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle3.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle5.owl


i. It’s good advice to declare domain and/or range axioms, as OOPS! also
mentions, yet there were infelicities like we’ve seen in Exercise 1.2c and
Exercise 2.1b. Enumerate all pros and cons of declaring domain and range
axioms.

ii. hasComponent has no inverse declared, yet OOPS! suggests doing so. Why
should you; or should you not do so? (Hint: the answer has both a logic and
ontological aspect to it.)

iii. The file uses different naming conventions of the vocabulary and not having
declared the IRI properly. What is a good naming scheme?

Exercise 3.2. We will now align the test ontology to a foundational ontology, being
BFO 2.0. You may use either the diagram or the BFO Classifier tool, which are available
from https://github.com/mkeet/BFO2DecisionDiagram.

a. Either (1) open the latest version of your test ontology on bicycles in the ontology
editor and add some more entities, including at least Tour and Biker, or (2) open
the facilitator’s cleaned up and extended version, available from http://www.

meteck.org/teaching/ontologies/dubiousbicycle6.owl

b. List the classes that are a direct subclass of owl:Thing. These are the entities
that will have to be aligned.

c. If you do not use the BFO Classifier tool, then get BFO v2.0 and import it into
your ontology yourself first. If you will use the tool, you still may wish to import
it manually, but it is not a requirement (the tool can do it for you).

d. For each entity in the list:
i. Start at the top and continue answering the questions until either 1) you

reached the end and there is no further question, or 2) you don’t know what
the answer to the question should be.

ii. Write the entity it aligns to next to the name of the class from your test
ontology and any further considerations, such as a copy of the question
history or why you couldn’t answer the questions or where along the path
you may not have been certain about the answer you gave.

iii. Import the axiom (if using the tool) or add the subclass declaration manually
in your ontology (if using the diagram only).

e. Assess the alignments among yourselves in the lab. If you’re doing this exercise
alone, you may compare to http://www.meteck.org/teaching/ontologies/

dubiousbicycle7.owl, which definitely has one arguable alignment to probe fur-
ther and discuss.

This completed the lab. If you’d like more exercises (and answers), then try the
exercises in Chapters 4, 5, and 6 of the ontology engineering textbook, which is available
at https://people.cs.uct.ac.za/~mkeet/OEbook/.

5

https://github.com/mkeet/BFO2DecisionDiagram
http://www.meteck.org/teaching/ontologies/dubiousbicycle6.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle6.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle7.owl
http://www.meteck.org/teaching/ontologies/dubiousbicycle7.owl
https://people.cs.uct.ac.za/~mkeet/OEbook/

	Adding knowledge to an ontology
	Finding and correcting mistakes
	Additional improvements

