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Examples

• Information Retrieval: To which degree is a Web site, a Web
page, a text passage, an image region, a video segment, . . .
relevant to my information need?1

• Matchmaking: To which degree does an object match my
requirements? e.g., your budget is about 20.000 euro to buy a
car, then to which degree does a cars price of 20.500 euro
match your budget?

• Ontology alignment: To which degree do two concepts of two
ontologies represent the same thing, or are disjoint, or are
overlapping?

• Classifying ripe apples or “the set of all individuals that
mostly buy low calorie food”

1
some of the following slides are taken from Umberto Straccia’s AAAI’07 tutorial

[http://gaia.isti.cnr.it/∼straccia/download/papers/VANCOUVER07/VANCOUVER07.pdf]
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• A car seller sells an Audi TT for 31500 euro (catalog price)
• A buyer is looking for a sports-car, but wants to to pay not

more than around 30000 euro
• Classical DLs: the problem relies on the crisp conditions on

price
• More fine grained approach (as usual in negotiation): consider

prices as vague constraints (fuzzy sets)
• Seller would sell above 31500 euro, but can go down to 30500
• The buyer prefers to spend less than 30000 euro, but can go

up to 32000 euro
• Highest degree of matching is 0.75; The car may be sold at

31250 euro
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• Problems: what and how to incorporate such vague or
uncertain knowledge in OWL and its reasoners?

• Solutions:

i. probabilistic, possibilistic, fuzzy, rough extensions to the
language

ii. for reasoning: transform back into OWL and use standard
reasoner or develop your own one

• Usage, among others:
• Information retrieval (e.g., top-k retrieval)
• classifying patients (e.g., patients that are possibly septic have

properties: infection and [temperature > 38C OR temperature
< 36C, respiratory rate > 20 breaths/minute OR PaCO2 < 32
mmHg, etc])

• Recommender systems (user preferences etc.)
• Matchmaking in web services
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Uncertainty and vagueness

• Uncertainty: statements are true or false, but due to lack of
knowledge we can only estimate to which probability /
possibility / necessity degree they are true or false
• E.g.: a bird flies or does not fly. The probability / possibility /

necessity degree that it flies is 0.83

• Vagueness: statements involve concepts for which there is no
exact definition, such as tall, small, close, far, cheap,
expensive. true to some degree, taken from a truth space
• E.g., “Hotel Verdi is close to the train station to degree 0.83”

• Uncertainty and Vagueness: “It is probable to degree 0.83
that it will be hot tomorrow”

• Imperfect information covers notions such as uncertainty,
vagueness, contradiction, incompleteness, imprecision
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Probabilistic logic: Syntax

• Finite nonempty set of basic events Φ = {p1, . . . , pn}, with
n ≥ 1

• Events: every element of Φ ∪ {⊥,>} is an event; if φ and ψ
are events, then so are ¬φ, (φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ)

• A probabilistic formula is an expression of the form φ ≥ l ,
with l ∈ R from the unit interval [0, 1] (note that ¬φ ≥ 1− u
encodes φ is true with probability at most u)

• Conditional constraint (ψ | φ)[l , u]: events ψ and φ, and
l , u ∈ [0, 1], which denotes “the conditional probability of ψ
given φ is in [l , u]”

• Probabilistic knowledge base KB = (L,P):
• finite set of logical constraints L
• finite set of conditional constraints P
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Probabilistic logic: Semantics

• A world I associates with every basic event in Φ a binary truth
value, and extend I by induction to all events as usual

• IΦ is the (finite) set of all worlds for Φ

• A world I satisfies an event φ (or: I is a model of φ), denoted
I |= φ, iff I (φ) = true

• Probabilistic interpretation Pr : probability function on IΦ s.t.
all Pr(I ) with I ∈ IΦ sum up to 1

• Pr(φ) is the sum of all Pr(I ) such that I ∈ IΦ and I |= φ

• Pr(ψ | φ): if Pr(φ) > 0, then Pr(ψ | φ) = Pr(ψ∧φ)
Pr(φ)
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Probabilistic logic: satisfiability and entailment

• A probabilistic interpretation Pr satisfies a probabilistic
formula φ ≥ l (i.e., Pr |= φ ≥ l) iff Pr(φ) ≥ l

• Pr satisfies a probabilistic KB iff Pr satisfies all F ∈ KB

• KB is satisfiable iff a model of KB exists

• A probabilistic formula F is a logical consequence of KB
(denoted KB |= F ) iff every model of KB satisfies F

• φ ≥ l is a tight logical consequence of KB iff l is the
infimum2 of Pr(φ) subject to all models Pr of KB (the latter
is equivalent to l = sup{r | KB |= φ ≥ r})3

2
the infimum of a subset of some set is the greatest element (not necessarily in the subset) that is less than or

equal to all elements of the subset; greatest lower bound.
3

the supremum (sup) of a subset S of a partially ordered set T is the least element of T that is greater than or
equal to each element of S; least upper bound.
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Probabilistic RDF, OWL, and DLs
• P-SHOQ(D), P-SHOIN (D) (by T. Lukasiewicz)

• uses the notion of a conditional constraint
• semantics is based on the notion of lexicographic entailment in

probabilistic default reasoning
• probabilistic TBox and ABox
• interprets TBox and ABox probabilistic knowledge as statistical

knowledge and as degrees of belief about instances of concepts
and roles, respectively

• allows for deriving both statistical knowledge and degrees of
belief

• allows for expressing default knowledge about concepts
• PR-OWL (by da Costa and Laskey)

• Probabilistic semantics based on multi-entity Bayesian
networks

• And others with Bayesian networks, with DLs, covering
various permutations of probabilistic KR&R added to different
languages (see references in Straccia, 2008)
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Use of Probabilistic Ontologies

• Representation of terminological and assertional probabilistic
knowledge (e.g., in the medical domain or at the stock
exchange market)

• Information retrieval, for an increased recall

• Ontology matching

• Probabilistic data integration, especially for handling
ambiguous and controversial pieces of information

14/47



Background Uncertain knowledge Vague Knowledge Tools and applications Summary

Outline

Background

Uncertain knowledge
Probabilistic logic and ontologies
Possibilistic logic

Vague Knowledge
Many-valued logics and ontologies
Rough sets and ontologies

Tools and applications

15/47



Background Uncertain knowledge Vague Knowledge Tools and applications Summary

Possibilistic logic introduction
• Syntactically, we now use possibilistic formulas to constrain

the necessities and possibilities of propositional events
• Semantically, we now have possibility distributions on worlds,

each of which associates with every event a unique possibility
and a unique necessity

• Differently from the probability of an event (sum of the
probabilities of all worlds that satisfy that event), the
possibility of an event is the maximum of the possibilities of
all worlds that satisfy the event

• Possibilistic logic useful for encoding user preferences, since
possibility measures can be viewed as rankings (on worlds or
also objects) along an ordinal scale

• While reasoning in probabilistic logic generally requires to
solve linear optimization problems, reasoning in possibilistic
logic does not and thus can generally be done with less
computational effort
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Possibilistic logic: Syntax and Semantics
• Possibilistic formulas have the form Pφ ≥ l or Nφ ≥ l , with φ

event, l ∈ R from [0, 1], Possibly, and Necessarly. e.g.:
• Psnow today ≥ 0.7 encodes that it will snow today is possible

to degree 0.7
• Nmother → female ≥ 1 says that a mother is necessarily

female

• A possibilistic formula is a pair (φ, α) consisting of a classical
logic formula φ and a degree α expressing certainty or priority
(which also can be considered as possibility degree of φ)

• A possibilistic knowledge base KB is a finite set of possibilistic
formulas, of the form KB = {(φi , αi ) : i = 1 . . . n}

• A possibilistic interpretation is a mapping π : IΦ → [0, 1]
• π(I ) is the degree to which world I is possible

• every world I such that π(I ) = 0 is impossible
• every world I such that π(I ) = 1 is totally possible
• π is normalized iff π(I ) = 1 for some I ∈ IΦ
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cont’d

• The possibility of a φ in a π defined by
Poss(φ) = max{π(I ) | I ∈ IΦ, I |= φ}
‘possibility of φ is evaluated in the most possible world where
φ is true’

• Nec(φ) = 1− Poss(¬φ)
‘to what extent φ is certainly true’

• A π satisfies a possibilistic formula Pφ ≥ l (resp., Nφ ≥ l), or
π is a model of Pφ ≥ l (resp. Nφ ≥ l), denoted π |= Pφ ≥ l
(resp. π |= Nφ ≥ l), iff Poss(φ) ≥ l (resp. Nec(φ) ≥ l)

• A possibilistic knowledge base is consistent iff its classical
base is consistent
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cont’d

• The inconsistency degree of KB, denoted Inc(KB), is defined
as Inc(KB) = max{αi : KB≥αi is inconsistent}

• There are two possible definitions of inference in possibilistic
logic:
• A formula φ is said to be a plausible consequence of KB,

denoted by KB `P φ, iff KB>Inc(KB) ` φ
• A formula φ is said to be a possibilistic consequence of KB to

degree α, denoted by KB `π (φ, α), iff the following conditions
hold: (1) KB≥α is consistent, (2) KB≥α ` φ, and (3) ∀β > α,
KB≥β 0 φ

• Inference services: instance checking (plausible instance of C ),
plausible subsmption, instance checking with necessity degree,
subsumption with necessity degree
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Possibilistic ontologies

• Add it to an arbitrary DL language (including any of the
DL-based OWL languages)

• E.g. Qi, Pan, Ji in DL’07, supposedly with basics
implemented in KAON2

• Possibilistic generalization of ALC for information retrieval
(Liau and Yao, 2001), used for query relaxation, restriction,
and exemplar-based retrieval

• Thus far: little usage, examples are toy examples
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Introduction

• Vagueness: statements involve concepts for which there is no
exact definition, such as tall, close

• Statements are true to some degree which is taken from a
truth space, which is usually [0, 1]
• Hotel Verdi is close to the train station to degree 0.83
• Find top-k cheapest hotels close to the train station:

q(h)← hasLocation(h, hl) ∧ hasLocation(train, cl) ∧
close(hl , cl) ∧ cheap(h)

• What is the interpretation of close(verdi , train) ∧ cheap(200)?
• Interpretation: a function I mapping atoms into [0, 1], i.e.

I (A) ∈ [0, 1]
• if I (close(verdi , train)) = 0.83 and I (cheap(200)) = 0.2, then

what is the result of 0.83 ∧ 0.2?

• More generally, what is the result of n ∧m, for n,m ∈ [0, 1]?
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Fuzzy logic (basics)
• Formulae: First-Order Logic formulae, terms are either

variables or constants
• many-valued formulae have the form φ ≥ l or φ ≤ u where

l , u ∈ [0, 1] (degree of truth is at least l and at most u, resp.)
• Formulae have a degree of truth in truth space [0, 1]
• Interpretation is a mapping I : Atoms → [0, 1], which are

extended to formulae as follows (subsection):

I(¬φ) = I(φ)→ 0 (1)

I(∃xφ) = supc∈∆IIc
x (φ) (2)

I(∀xφ) = infc∈∆IIc
x (φ) (3)

I(φ ∧ ψ) = I(φ)⊗ I(ψ) (4)

I(φ ∨ ψ) = I(φ)⊕ I(ψ) (5)

I(φ→ ψ) = I(φ)⇒ I(ψ) (6)

I(¬φ) = 	I(φ) (7)
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cont’d

• where Ic
x is as I except that var x is mapped to individual c

• ⊗, ⊕, ⇒, and 	 are combination functions: triangular norms
(or t-norms), triangular co-norms (or s-norms), implication
functions, and negation functions, respectively

• which extend the classical Boolean conjunction, disjunction,
implication, and negation, respectively, to the many-valued
case

• Degree of subsumption between two fuzzy sets A and B,
denoted A v B, is defined as infx∈X A(x)⇒ B(x)
• If A(x) ≤ B(x) for all x ∈ [0, 1] then A v B evaluates to 1

• I |= φ ≥ l (resp. I |= φ ≤ u) iff I(φ) ≥ l (resp. I(φ) ≤ u)
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Fuzzy RDF and RDFS

• Fuzzy RDF

• Statement (triples) may have attached a degree in [0, 1]: for
n ∈ [0, 1]
• 〈(subject, predicate, object), n〉
• Meaning: the degree of truth of the statement is at least n
• E.g.: 〈(o1, isAbout, snoopy), 0.8〉

• Inferences, e.g.:
〈(a,subClassOf ,b),n〉,〈(x ,type,a),m〉

〈(x ,type,b),n∧m〉
• Fuzzy RDFS adds extra constraints on interpretations

• see, e.g., ‘A fuzzy semantics for semantic web languages’ by Mazzieri and

Dragoni, 2005
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Fuzzy DLs can be classified according to:
• the description logic resp. ontology language that they

generalize
• the allowed fuzzy constructs and the underlying fuzzy logics

(Gödel, Lukasiewicz, Zadeh, ...)
• their reasoning services:

• Consistency, Subsumption, Equivalence

• Graded instantiation: Check if individual a is an instance of class C to

degree at least n, i.e., KB |= 〈a : C , n〉
• Best Truth Value Bound problem: determine tightest bound n ∈ [0, 1] of

an axiom α, i.e. glb(KB, α) = sup{n, | KB |= 〈α ≥ n〉} (likewise for lub)

• Best Satisfiability Bound problem: glb(KB,C) determined by the max

value of x s.t. (R, T ,A∪ {a : C ≥ x}) (among all models, determine the max degree

of truth that concept C may have over all individuals x ∈ ∆I )

• glb(KB,C v D) is the minimal value of x such that

KB = (R, T ,A ∪ {a : C u ¬D ≥ 1− x}) is satisfiable, where a is a new

individual; Therefore, the greatest lower bound problem can be reduced to

the minimal satisfiability problem of a fuzzy knowledge base
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Fuzzy OWL

• Fuzzy SHIF(D), SHOIN (D), SROIQ(D), ...

• Additionally, we add
• modifiers (e.g., very)
• concrete fuzzy concepts (e.g., Young)
• both additions have explicit membership functions
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Concrete fuzzy concepts
• Examples: Small, Young, High, Tall etc, with explicit

membership function
• Use concrete domains to specify them:

• D = 〈∆D ,ΦD〉, where ∆D is an interpretation domain and ΦD

the set of concrete fuzzy domain predicates d with a predefined
arity n = 1, 2 and fixed interpretation dD : ∆n

D → [0, 1]
• For instance:

• ≤18(x) over N, evaluates to true if x ≤ 18, false otherwise, or
cr(0, 18)

• Define Minor ≡ Person u ∃Age.≤18

• Let Young : Natural → [0, 1] be a fuzzy datatype predicate
denoting the degree of youngness

• Define Young(x) = ls(x , 10, 30), where ls is the usual left
shoulder function

• Define YoungPerson ≡ Person u ∃Age.Young
• Then, the KB entails, e.g.:

KB |= Minor v YoungPerson ≥ 0.6,
YoungPerson v Minor ≥ 0.4

29/47
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Modifiers

• Very, moreOrLess, slightly, etc.

• Apply to fuzzy sets to change their membership function
• fuzzy modifier m represents a function fm : [0, 1]→ [0, 1], with

M an alphabet for fuzzy modifiers and m ∈ M
• then, if C is a concept in, say, fuzzy SHOIN , then so is m(C )
• Modifiers are definable as linear in-equations over Q, Z (e.g.,

linear hedges), for instance, linear hedges4, lm(x ; a, b), e.g.
very = lm(x ; 0.7, 0.49)

• Example:
• fvery (x) = x2

• fslightly (x) =
√

x
• SportsCar ≡ Car u ∃speed .very(High), where very is the fuzzy

modifier and High a fuzzy datatype over the domain of speed
(in km/h) and may be defined as, say, High(x) = rs(80, 250)

4
they modify the shape of a fuzzy set in predictable ways; e.g., by pushing all values less than one towards

zero, thereby shrinking the fuzzy part of the set closer to the area that is completely in the set
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• The car seller and buyer revisited
• More fine grained approach: prices as vague constraints

• Seller would sell above 31500 euro, but can go down to 30500
• Buyer prefers to spend less than 30000, but can go up to

32000
• AudiTT v SportsCar u ∃hasPrice.rs(30500, 31500)
• Request v SportsCar u ∃hasPrice.ls(30000, 32000)
• with rs right-shoulder function and ls the left-shoulder

function

• Highest degree to which C ≡ AudiTT u Request is satisfiable
is 0.75 (possibility that the Audi TT and the query matches is 0.75; the

glb(KB,C) = 0.75)

• the car may be sold at 31250 euro
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Fuzzy OWL and reasoning

• Three principal approaches tested: Tableaux method, MILP
based method, MIQP based method

• Implementation issues; Several options exists:
• Try to map fuzzy DLs to classical DLs, but difficult to work

with modifiers and concrete fuzzy concepts
• Try to map fuzzy DLs to some fuzzy logic programming: A lot

of work exists about mappings among classical DLs and LPs,
but needs a theorem prover for fuzzy LPs

• Build ad-hoc theorem prover for fuzzy DLs, using e.g., MILP

• A theorem prover for fuzzy SHIF + linear hedges +
concrete fuzzy concepts + linear equational constraints +
datatypes, under classical, Zadeh, Lukasiewicz and Product
t-norm semantics has been implemented
(http://gaia.isti.cnr.it/∼straccia)

• FIRE: a fuzzy DL theorem prover for fuzzy SHIN under
Zadeh semantics (http://www.image.ece.ntua.gr/∼nsimou/)
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Rough ontologies: Introduction

• Extension of rough sets to the knowledge representation layer;
or: extension of crisp concepts in an ontology to incomplete
data in the ABox

• Preliminary results with ‘rough ontologies’

• Some results with fuzzy-rough and rough-fuzzy ontology
languages

• No (end-user) tools and demonstration case studies in a
subject domain yet: requires linking of ontology to sufficient
data, i.e. need for scalable semantic web technologies
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Rough sets

• Brief introduction of the Pawlak rough set model

Set X Lower approximationUpper approximation

Universe U Granule with object(s)
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Rough sets

• I = (U,A) is called an information system, where U is a
non-empty finite set of objects and A a finite non-empty set of
attributes

• For every a ∈ A, function a : U 7→ Va where va is the set of
values that attribute a can have

• For any subset of attributes P ⊆ A, one can define the
equivalence relation ind(P) as

ind(P) = {(x , y) ∈ U × U | ∀a ∈ P, a(x) = a(y)} (8)

• ind(P) generates a partition of U, which is denoted with
U/ind(P), or U/P for short.

• If (x , y) ∈ ind(P), then x and y are indistinguishable with
respect to the attributes in P, i.e, they are p-indistinguishable.
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Rough sets (cont’d)

• From the objects in universe U, we want to represent set X
such that X ⊆ U using the attribute set P where P ⊆ A

• [x ]P denotes the equivalence classes of the
p-indistinguishability relation

• X may not be represented in a crisp way—the set may include
and/or exclude objects which are indistinguishable on the
basis of the attributes in P—but it can be approximated by
using lower and upper approximation, respectively:

PX = {x | [x ]P ⊆ X} (9)

PX = {x | [x ]P ∩ X 6= ∅} (10)
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Rough sets (cont’d)

• The lower approximation is the set of objects that are
positively classified as being members of set X , i.e., it is the
union of all equivalence classes in [x ]P

• The upper approximation is the set of objects that are
possibly in X

• Its complement, U − PX , is the negative region with sets of
objects that are definitely not in X (i.e., ¬X )

• with every rough set we associate two crisp sets, called lower
and upper approximation, denoted as a tuple X = 〈X ,X 〉

• The difference between the lower and upper approximation,
BPX = PX − PX , is the boundary region of which its objects
neither can be classified as to be member of X nor that they
are not in X ; if BPX = ∅ then X is, in fact, a crisp set with
respect to P and when BPX 6= ∅ then X is rough w.r.t. P
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Rough ontologies

• Several proposals, mainly DL+ rough extensions

• diverge in the formalisation what to include to represent
roughness and thus also as to what rough concepts and rough
ontologies actually are

• E is the symmetric, reflexive, transitive equivalence relation

• Let CR be a (rough) concept in a DL language, then
semantics for its lower and upper approximation are:

C = {x | ∀y : (x , y) ∈ E → y ∈ C} (11)

C = {x | ∃y : (x , y) ∈ E ∧ y ∈ C} (12)

• Interpretation should map every approximate concept
CR = 〈C ,C 〉 to a pair over ∆I , i.e., extending ·I as follows:

CIR = (〈C ,C 〉)I = 〈(C )I , (C )I〉 (13)

• Interesting property: C v D ⇒ 〈C ,C 〉 v 〈D,D〉
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Reasoning services

• Alike the standard DL reasoning services:
• approximate concept satisability, being the definitely

satisability and possibly satisability (note that of CR is possibly
unsatisfiable, it is also definitely unsatisfiable)

• approximate concepts rough subsumption reasoning
• may be reduced to concept satisability reasoning problem in

classical description logics (after transformation from RoughDL
to standard DL)

• Instance classification of the objects into the approximations
and their corresponding rough concepts
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Applications

• None, i.e., no use case in a subject domain, except a few toy
examples

• Potential: hypothesis testing, classification of patients, etc.

• Extending the theory: fuzzy-rough DL language (Bobillo and
Straccia, 2009)
• Extending also the reasoning algorithms
• Add C and C represented as fuzzy DL concepts:

C
i 7→ ∃si .C and C i 7→ ∀si .C , where si is a fuzzy similarity

relation, add symmetry and reflexivity (in fuzzy SHIF(D), i.e.
fuzzy OWL Lite)

• Replace (upper si C) with (some si C) and (lower si C)
with (all si C), then add in the fuzzy RBox the reflexivity,
symmetry and transitivity of R (in fuzzy SROIQ(D), i.e.
fuzzy OWL 2 DL)

• Then use the fuzzyDL and DeLorean reasoners,
respectively
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A scenario

Suppose a person would like to “buy a sports car that costs at
most about 22 000 euro and that has a power of around 150 HP”

• the buyer has to manually search for car selling web sites, e.g.,
using Google;

• select the most promising sites;

• browse through them, query them to see the cars that each
site sells, and match the cars with the requirements;

• select the offers in each web site that match the requirements;
and

• eventually merge all the best offers from each site and select
the best ones.
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A scenario

• A shopping agent automatizing the whole process once it
receives the query q from the buyer:
• The agent selects some resources S that it considers as

relevant to q (probabilistic)
• For the top-k selected sites, the agent reformulates q using the

ontology of the specific car selling site (probabilistic)
• q may contain many vague/fuzzy concepts (“around 150

HP”), so a car may match q to a degree. So, a resource
returns a ranked list of cars, where the ranks depend on the
degrees to which the cars match q. (fuzzy)

• The agent integrates the ranked lists (using probabilities) and
shows the top-n items to the buyer (or divided by definite and
possible matches)

• To do this, there are bits and pieces for the languages and
reasoners, but not everything together
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Tools

• Probabilistic ontology tools:
• Pronto: pellet + probabilistic http://pellet.owldl.com/pronto/

• PR-OWL http://www.pr-owl.org/

• Probabilisitc Ontology Alignment Tool
http://gaia.isti.cnr.it/∼straccia/software/oMap/oMap.html

• OMEN: A Probabilistic Ontology Mapping Tool
• BayesOWL, OntoBayes
• TOSS http://om.umiacs.umd.edu/ptoss.html

• Fuzzy ontology tools:
• Fuzzy RDF

http://gaia.isti.cnr.it/∼straccia/software/fuzzyRDF/fuzzyRDF.html
• fuzzyDL

http://gaia.isti.cnr.it/∼straccia/software/fuzzyDL/fuzzyDL.html
• DeLorean http://webdiis.unizar.es/∼fbobillo/delorean.php
• Fuzzy-Kazimir http://www.openclinical.org/prj kasimir.html

• FIRE http://www.image.ece.ntua.gr/∼nsimou/
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Examples

• Probabilistic ontologies:
• Star Trek ontology (experimental ontology to demonstrate

PR-OWL) http://www.pr-owl.org/basics/ontostartrek.php

• Astronomy to demonstrate TOSS
http://om.umiacs.umd.edu/pparq.html

• Fuzzy ontologies:
• Ontology Mediated Multimedia Information Retrieval System

http://gaia.isti.cnr.it/∼straccia/software/DL-Media/DL-Media.html
• Oncology with Fuzzy-Kazimir http://www.oncolor.org/

• FIRE with an medical imaging example
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Summary

Background

Uncertain knowledge
Probabilistic logic and ontologies
Possibilistic logic

Vague Knowledge
Many-valued logics and ontologies
Rough sets and ontologies

Tools and applications
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