Summary

Semantic Web Technologies Lecture 9: SWT for the Life Sciences 2: Successes and challenges for ontologies

Maria Keet

email: keet -AT- inf.unibz.it

home: http://www.meteck.org

blog:

http://keet.wordpress.com/category/computer-science/72010-semwebtech/

KRDB Research Centre Free University of Bozen-Bolzano, Italy

21 December 2009

Introduction

Successes

Challenges00000
000000

Summary

Outline

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges Representation Reasoning issues Introduction

Successes

Challenges00000
000000

Summary

Introduction

Successes Exploiting the classification reasoning service Scalable querying of ontologies and data

Challenges

Representation Reasoning issues

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a
 - document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - What was taken as baseline material? e.g.,

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - . What was taken as baseline material? e.g.,

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - . What was taken as baseline material? e.g.,

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - . What was taken as baseline material? e.g.,

When can SWT considered to be successful?

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version

Relative measures

• According to whom is it a success?

• What was taken as baseline material? e.g.

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - philosopher, logician, engineer, domain expert, CEO...
 - What was taken as baseline material? e.g.
 - non-strategic provident provident in a protocol second second protocol protocol
 - no or clustering-based instance classification to a SWT one with OWL-based knowledge-bases

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - philosopher, logician, engineer, domain expert, CEO...
 - What was taken as baseline material? e.g.

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - philosopher, logician, engineer, domain expert, CEO...
 - What was taken as baseline material? e.g.
 - from string search in a digital library to ontology-annotate sorting of query answer
 - no or clustering-based instance classification to a SWT onewith OWL-based knowledge bases

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - philosopher, logician, engineer, domain expert, CEO...
 - What was taken as baseline material? e.g.,
 - from string search in a digital library to ontology-annotated sorting of query answer
 - no or clustering-based instance classification to a SWT one with OWL-based knowledge bases

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - philosopher, logician, engineer, domain expert, CEO...
 - What was taken as baseline material? e.g.,
 - from string search in a digital library to ontology-annotated sorting of query answer
 - no or clustering-based instance classification to a SWT one with OWL-based knowledge bases

- Only if Berners-Lee's vision of the SemWeb (as in the SciAm 2001 paper) has been realised?
- Absolute measures? e.g.,
 - User's (browsing and buying) usage of Amazon's recommender system with and without SWT
 - Information retrieval: compare precision and recall between a statistics-based and a SWT-based implementation of a document system
 - Feasibility and performance of a set of user queries posed to a RDBMS and its RDF-ised version
- Relative measures
 - According to whom is it a success?
 - philosopher, logician, engineer, domain expert, CEO...
 - What was taken as baseline material? e.g.,
 - from string search in a digital library to ontology-annotated sorting of query answer
 - no or clustering-based instance classification to a SWT one with OWL-based knowledge bases

Examples in different application areas, using different features

• Data integration

- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Ontology-Based Data Access (completoday)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorrow)

- Data integration
- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Untology-Based Data Access (ecomple today)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorow).

- Data integration
- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Ontology-Based Data Access (example today)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorrow).

- Data integration
- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Ontology-Based Data Access (example today)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorrow)

- Data integration
- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Ontology-Based Data Access (example today)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorrow)

- Data integration
- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Ontology-Based Data Access (example today)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorrow)

- Data integration
- Instance classification (example today)
- Matchmaking and services
- Querying, information retrieval
 - Ontology-Based Data Access (example today)
 - Aid in browsing large ontologies
 - Ontologies to improve NLP (more tomorrow)

Successes 00000 000000000000000 **Challenges**00000
000000

- Challenge: solution to problem y not possible yet (or very difficult to achieve) with current SWT, but in theory is (expected to be) feasible
- Failure: technology x claims to solve problem y but it does not and will not do so, or technology x is developed for a non-existing problem but does not solve real problems
 - Is y one that, at least in theory, can be solved with SWT?
 - Was y described too broadly, so that it solves only a subset of the cases?
 - Were there perhaps additional requirements put on a solution?
- Are disconnected technologies with ad-hoc patches a challenge to solve or a failure in devising a generic suite?
- A failure according to one may be considered a challenge by another
- Offer and demand, perceptions, perspectives, expectations

- Challenge: solution to problem y not possible yet (or very difficult to achieve) with current SWT, but in theory is (expected to be) feasible
- Failure: technology x claims to solve problem y but it does not and will not do so, or technology x is developed for a non-existing problem but does not solve real problems
 - Is y one that, at least in theory, can be solved with SWT?
 - Was y described too broadly, so that it solves only a subset of the cases?
 - Were there perhaps additional requirements put on a solution?
- Are disconnected technologies with ad-hoc patches a challenge to solve or a failure in devising a generic suite?
- A failure according to one may be considered a challenge by another
- Offer and demand, perceptions, perspectives, expectations

- Challenge: solution to problem y not possible yet (or very difficult to achieve) with current SWT, but in theory is (expected to be) feasible
- Failure: technology x claims to solve problem y but it does not and will not do so, or technology x is developed for a non-existing problem but does not solve real problems
 - Is y one that, at least in theory, can be solved with SWT?
 - Was y described too broadly, so that it solves only a subset of the cases?
 - Were there perhaps additional requirements put on a solution?
- Are disconnected technologies with ad-hoc patches a challenge to solve or a failure in devising a generic suite?
- A failure according to one may be considered a challenge by another
- Offer and demand, perceptions, perspectives, expectations

- Challenge: solution to problem y not possible yet (or very difficult to achieve) with current SWT, but in theory is (expected to be) feasible
- Failure: technology x claims to solve problem y but it does not and will not do so, or technology x is developed for a non-existing problem but does not solve real problems
 - Is y one that, at least in theory, can be solved with SWT?
 - Was y described too broadly, so that it solves only a subset of the cases?
 - Were there perhaps additional requirements put on a solution?
- Are disconnected technologies with ad-hoc patches a challenge to solve or a failure in devising a generic suite?
- A failure according to one may be considered a challenge by another
- Offer and demand, perceptions, perspectives, expectations

- Challenge: solution to problem y not possible yet (or very difficult to achieve) with current SWT, but in theory is (expected to be) feasible
- Failure: technology x claims to solve problem y but it does not and will not do so, or technology x is developed for a non-existing problem but does not solve real problems
 - Is y one that, at least in theory, can be solved with SWT?
 - Was y described too broadly, so that it solves only a subset of the cases?
 - Were there perhaps additional requirements put on a solution?
- Are disconnected technologies with ad-hoc patches a challenge to solve or a failure in devising a generic suite?
- A failure according to one may be considered a challenge by another
- Offer and demand, perceptions, perspectives, expectations

Introduction

Successes

Challenges00000
000000

Summary

Outline

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges Representat

Reasoning issues

Introduction

Challenges00000
000000

Summary

Outline

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges

Representation Reasoning issues

Instance classification with protein phosphatases (Wolstencroft et al, 2007)

- The setting:
 - Lots of sequence data in data silos that needs to be enriched with biological knowledge
 - Need to organise and classify genes and proteins into functional groups to compare typical properties across species
- The problems:
 - There is no proper, real life, use case that demonstrates the benefits of DL reasoning services such as taxonomic and instance classification
 - Limitations of traditional similarity methods, and automated protein motif and domain matching
 - Automation of p-domain analysis, but not for its interpretation (i..e, detects presence but not consequences for sub-family membership)

Instance classification with protein phosphatases (Wolstencroft et al, 2007)

- The setting:
 - Lots of sequence data in data silos that needs to be enriched with biological knowledge
 - Need to organise and classify genes and proteins into functional groups to compare typical properties across species
- The problems:
 - There is no proper, real life, use case that demonstrates the benefits of DL reasoning services such as taxonomic and instance classification
 - Limitations of traditional similarity methods, and automated protein motif and domain matching
 - Automation of p-domain analysis, but not for its interpretation (i..e, detects presence but not consequences for sub-family membership)

Instance classification with protein phosphatases (Wolstencroft et al, 2007)

- The setting:
 - Lots of sequence data in data silos that needs to be enriched with biological knowledge
 - Need to organise and classify genes and proteins into functional groups to compare typical properties across species
- The problems:
 - There is no proper, real life, use case that demonstrates the benefits of DL reasoning services such as taxonomic and instance classification
 - Limitations of traditional similarity methods, and automated protein motif and domain matching
 - Automation of p-domain analysis, but not for its interpretation (i..e, detects presence but not consequences for sub-family membership)

Introduction

Successes

Challenges00000
000000

Summary

- Maybe OWL reasoning can help with the interpretation of the analysis results:
 - That it does the classification of the (family of) proteins as good as a human expert for organisms *x* (in casu, human)
 - That the approach is 'transportable' to classification of the (family of) proteins in another organism of which much less is known (in casu, *Aspergillus fumigatus*), hence make predictions for those instances by means of classifying them
- Use taxonomic classification and instance classification reasoning services

Successes

Challenges00000
000000

Summary

- Maybe OWL reasoning can help with the interpretation of the analysis results:
 - That it does the classification of the (family of) proteins as good as a human expert for organisms x (in casu, human)
 - That the approach is 'transportable' to classification of the (family of) proteins in another organism of which much less is known (in casu, *Aspergillus fumigatus*), hence make predictions for those instances by means of classifying them
- Use taxonomic classification and instance classification reasoning services

Introduction

Successes

Challenges

Summary

- Maybe OWL reasoning can help with the interpretation of the analysis results:
 - That it does the classification of the (family of) proteins as good as a human expert for organisms x (in casu, human)
 - That the approach is 'transportable' to classification of the (family of) proteins in another organism of which much less is known (in casu, *Aspergillus fumigatus*), hence make predictions for those instances by means of classifying them
- Use taxonomic classification and instance classification reasoning services

Introduction

Successes

Challenges00000
000000

Summary

- Maybe OWL reasoning can help with the interpretation of the analysis results:
 - That it does the classification of the (family of) proteins as good as a human expert for organisms x (in casu, human)
 - That the approach is 'transportable' to classification of the (family of) proteins in another organism of which much less is known (in casu, *Aspergillus fumigatus*), hence make predictions for those instances by means of classifying them
- Use taxonomic classification and instance classification reasoning services

Successes

Challenges00000
000000

Summary

How it can be done

· Develop ontology for the subject domain, in OWL

- Extract knowledge from peer-reviewed literature
- Protein phosphatases; e.g.
 Class R5Phosphatase Complete

 (Protein and
 (hasDomain two TyrosinePhosphataseCatalyticDomain) and
 (hasDomain some TransmembraneDomain) and
 (hasDomain some FibronectinDomain) and
 (hasDomain some CarbonicAnhydraseDomain) and
 hasDomain only (TyrosinePhosphataseCatalyticDomain and
 TransmembraneDomain and
 CarbonicAnhydraseDomain))
- Obtain instance data
 - Process protein sequences by InterProScan
 - Transform into OWL
- Put it together in some system with a reasoner
 - InstanceStore
 - Racer reasoner
Challenges00000
000000

Summary

How it can be done

• Develop ontology for the subject domain, in OWL

- Extract knowledge from peer-reviewed literature
- Protein phosphatases; e.g.
 Class R5Phosphatase Complete

 (Protein and
 (hasDomain two TyrosinePhosphataseCatalyticDomain) and
 (hasDomain some TransmembraneDomain) and
 (hasDomain some FibronectinDomain) and
 (hasDomain some CarbonicAnhydraseDomain) and
 hasDomain only (TyrosinePhosphataseCatalyticDomain and
 TransmembraneDomain and
 CarbonicAnhydraseDomain))
- Obtain instance data
 - Process protein sequences by InterProScan
 - Transform into OWL
- Put it together in some system with a reasoner
 - InstanceStore
 - Racer reasoner

Challenges00000
000000

- Human phosphatases:
 - The reasoner as good as human expert classification
 - Identification of additional p-domains, refined the classification into further subtypes
- A. fumigatus phosphatates:
 - Some phosphatases did not fit in any class, representing differences between the human and A. fumigatus protein families
 - Identification of a novel type of calcineurin phosphatase (has extra domain, like in other pathogenic fungi)
- Overall: demonstration that ontology-based approach with automated reasoning has some advantages over (in addition to the) existing technologies & human labour, and resulted in discovery of novel biological information

Challenges00000
000000

- Human phosphatases:
 - The reasoner as good as human expert classification
 - Identification of additional p-domains, refined the classification into further subtypes
- A. fumigatus phosphatates:
 - Some phosphatases did not fit in any class, representing differences between the human and *A. fumigatus* protein families
 - Identification of a novel type of calcineurin phosphatase (has extra domain, like in other pathogenic fungi)
- Overall: demonstration that ontology-based approach with automated reasoning has some advantages over (in addition to the) existing technologies & human labour, and resulted in discovery of novel biological information

Challenges00000
000000

- Human phosphatases:
 - The reasoner as good as human expert classification
 - Identification of additional p-domains, refined the classification into further subtypes
- A. fumigatus phosphatates:
 - Some phosphatases did not fit in any class, representing differences between the human and *A. fumigatus* protein families
 - Identification of a novel type of calcineurin phosphatase (has extra domain, like in other pathogenic fungi)
- Overall: demonstration that ontology-based approach with automated reasoning has some advantages over (in addition to the) existing technologies & human labour, and resulted in discovery of novel biological information

Introduction

Successes

Challenges00000
000000

Summary

Outline

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges

Representation Reasoning issues

Challenges

Web-based, graphical, ontology-based querying of lots of data (Calvanese et al, 2010)

- The setting:
 - Large amounts of data available on the Web, which can be accessed by canned or precomputed queries presented via web forms, or SQL
 - Domain expert wants more flexibility in data analysis and hypothesis testing, and independence from the sysadmin to do the queries for them

• The problems:

- There is no proper, real life, use case that demonstrates the benefits of scalable, user-usable, Ontology-Based Data Access
- That one has to know how the data is stored, instead of concerning oneself with what kind of information is in the database
- Domain expert-unfriendly query mechanisms (SQL, SPARQL)

Web-based, graphical, ontology-based querying of lots of data (Calvanese et al, 2010)

- The setting:
 - Large amounts of data available on the Web, which can be accessed by canned or precomputed queries presented via web forms, or SQL
 - Domain expert wants more flexibility in data analysis and hypothesis testing, and independence from the sysadmin to do the queries for them
- The problems:
 - There is no proper, real life, use case that demonstrates the benefits of scalable, user-usable, Ontology-Based Data Access
 - That one has to know *how* the data is stored, instead of concerning oneself with *what* kind of information is in the database
 - Domain expert-unfriendly query mechanisms (SQL, SPARQL)

Web-based, graphical, ontology-based querying of lots of data (Calvanese et al, 2010)

- The setting:
 - Large amounts of data available on the Web, which can be accessed by canned or precomputed queries presented via web forms, or SQL
 - Domain expert wants more flexibility in data analysis and hypothesis testing, and independence from the sysadmin to do the queries for them
- The problems:
 - There is no proper, real life, use case that demonstrates the benefits of scalable, user-usable, Ontology-Based Data Access
 - That one has to know *how* the data is stored, instead of concerning oneself with *what* kind of information is in the database
 - Domain expert-unfriendly query mechanisms (SQL, SPARQL)

Challenges

Summary

Idea

- Ontology-Based Data Access, to achieve data access at the 'what-layer', i.e., adding a semantic layer to the database
- Web-based, like most other bioinformatics resources
- Graphical querying to make it usable by the domain expert
- Usage of, mainly, reasoning services for querying the ontology and the data

Challenges

Summary

Idea

- Ontology-Based Data Access, to achieve data access at the 'what-layer', i.e., adding a semantic layer to the database
- Web-based, like most other bioinformatics resources
- Graphical querying to make it usable by the domain expert
- Usage of, mainly, reasoning services for querying the ontology and the data

Challenges00000
000000

Summary

How it can be done

- Develop ontology of the subject domain, in OWL
 - Reverse engineering existing database HGT-DB (http://genomes.urv.cat/HGT-DB/), further manual improvements to create a proper conceptual data model
 - Simplify this conceptual data model into the appropriate OWL language (*DL-Lite_A*, which is roughly OWL 2 QL)
- Create mappings between the terms in the ontology to SQL queries over the database
 - Using the OBDA Plugin for Protégé
 - Oracle database (can also be PostgreSQL, DB2, ...), 4GB genomics database (HGT-DB), tables with 16-46 columns
- Connect this to an OBDA-enabled reasoner
 - In this case: QUONTO (but can be others)

Challenges00000
000000

Summary

How it can be done

- Develop ontology of the subject domain, in OWL
 - Reverse engineering existing database HGT-DB (http://genomes.urv.cat/HGT-DB/), further manual improvements to create a proper conceptual data model
 - Simplify this conceptual data model into the appropriate OWL language (*DL-Lite*_A, which is roughly OWL 2 QL)
- Create mappings between the terms in the ontology to SQL queries over the database
 - Using the OBDA Plugin for Protégé
 - Oracle database (can also be PostgreSQL, DB2, ...), 4GB genomics database (HGT-DB), tables with 16-46 columns
- Connect this to an OBDA-enabled reasoner

Challenges00000
000000

Summary

How it can be done

- Develop ontology of the subject domain, in OWL
 - Reverse engineering existing database HGT-DB (http://genomes.urv.cat/HGT-DB/), further manual improvements to create a proper conceptual data model
 - Simplify this conceptual data model into the appropriate OWL language (*DL-Lite*_A, which is roughly OWL 2 QL)
- Create mappings between the terms in the ontology to SQL queries over the database
 - Using the OBDA Plugin for Protégé
 - Oracle database (can also be PostgreSQL, DB2, ...), 4GB genomics database (HGT-DB), tables with 16-46 columns
- Connect this to an OBDA-enabled reasoner
 - In this case: QUONTO (but can be others)

Introduction

Successes

Challenges00000
000000

Summary

Architecture

Challenges00000
000000

Example: Diagram – DL-lite_A correspondence

Figure 2: Section of the HGT application ontology.

Challenges00000
000000

Summary

Formalisation of the graphical elements

Element name	Graphical Representation	Semantics of ontology elements	Semantics of building blocks of query graphs
Class node	С	C	C(x)
	C, D		C(x), D(x)
Is-a link		$C \sqsubseteq D$	
Attribute node and link	C A	$\delta(A) \sqsubseteq C$ $\rho(A) \sqsubseteq \top_d$	C(x), A(x,y)
Role link	C P D	$\exists P \sqsubseteq C \\ \exists P^- \sqsubseteq D$	C(x), R(x,y), D(y)

Challenges00000
000000

Example: mapping concepts & relations of the Ontology to SQL query over the relational database

SELECT id, abbrev	$\sim \rightarrow$	OrganismHasGene(
FROM organism		gene(<i>id</i>),
JOIN genes		$\operatorname{organism}(abbrev))$
ON abbrev = idorganism		
SELECT id, kegg	\sim	GeneHasGeneFunction(
FROM genes		gene(id), function(id))
		KEGG(function(id), kegg)

Figure 3: Extract of the mapping from the HGT-DB database to the $DL-Lite_A$ application ontology.

Challenges

Queries

- SPARQL queries for conjunctions and equalities
- Epistemic queries in *EQL-Lite* for constraints involving inequalities and string matching
 - Imposes constraints on top of the certain answers retrieved by a *DL-Lite_A* conjunctive query
 - Result obtained by:

i. computing the certain answers for the CQ $q(\vec{y}) \leftarrow conj(\vec{z})$ (with $conj(\vec{z})$ the conjunction of atoms, and \vec{y} a vector comprising the variables in \vec{x} and in \vec{w}),

ii. filtering the resulting tuples according to the constraint expression $cons(\vec{w})$, and

iii. projecting onto \vec{x} (a vector comprising the variables corresponding to the highlighted nodes in the query pane)

Challenges

Summary

Queries

- SPARQL queries for conjunctions and equalities
- Epistemic queries in *EQL-Lite* for constraints involving inequalities and string matching
 - Imposes constraints on top of the certain answers retrieved by a $\textit{DL-Lite}_{\mathcal{A}}$ conjunctive query
 - Result obtained by:

i. computing the certain answers for the CQ $q(\vec{y}) \leftarrow conj(\vec{z})$ (with $conj(\vec{z})$ the conjunction of atoms, and \vec{y} a vector comprising the variables in \vec{x} and in \vec{w}),

ii. filtering the resulting tuples according to the constraint expression $cons(\vec{w})$, and

iii. projecting onto \vec{x} (a vector comprising the variables corresponding to the highlighted nodes in the query pane)

Challenges

Summary

Queries

- SPARQL queries for conjunctions and equalities
- Epistemic queries in *EQL-Lite* for constraints involving inequalities and string matching
 - Imposes constraints on top of the certain answers retrieved by a $\textit{DL-Lite}_{\mathcal{A}}$ conjunctive query
 - Result obtained by:
 - i. computing the certain answers for the CQ $q(\vec{y}) \leftarrow conj(\vec{z})$ (with $conj(\vec{z})$ the conjunction of atoms, and \vec{y} a vector comprising the variables in \vec{x} and in \vec{w}),

ii. filtering the resulting tuples according to the constraint expression $cons(\vec{w})$, and

iii. projecting onto \vec{x} (a vector comprising the variables corresponding to the highlighted nodes in the query pane)

Challenges00000
000000

Summary

- Demo of the WONDER system (Web-ONtology baseD Extraction of Relational data)
 - Builds upon the theory, technology, and implementation developed for Ontology-Based Data Access
 - Graphical ontology browsing, query formulation, and query execution in a Web browser
 - Rigorous formal characterisation and uses a coupling with an OWL file
 - (U)CQs (in SPARQL syntax) and EQL-Lite queries managed by the DIG-QUONTO reasoner
- Performance good, GUI insignificant influence on performance
- Usability testing: usable, and domain experts came up with a range of new queries to analyse the data

Challenges00000
000000

Summary

- Demo of the WONDER system (Web-ONtology baseD Extraction of Relational data)
 - Builds upon the theory, technology, and implementation developed for Ontology-Based Data Access
 - Graphical ontology browsing, query formulation, and query execution in a Web browser
 - Rigorous formal characterisation and uses a coupling with an OWL file
 - (U)CQs (in SPARQL syntax) and EQL-Lite queries managed by the DIG-QUONTO reasoner
- Performance good, GUI insignificant influence on performance
- Usability testing: usable, and domain experts came up with a range of new queries to analyse the data

Challenges00000
000000

Summary

- Demo of the WONDER system (Web-ONtology baseD Extraction of Relational data)
 - Builds upon the theory, technology, and implementation developed for Ontology-Based Data Access
 - Graphical ontology browsing, query formulation, and query execution in a Web browser
 - Rigorous formal characterisation and uses a coupling with an OWL file
 - (U)CQs (in SPARQL syntax) and EQL-Lite queries managed by the DIG-QUONTO reasoner
- Performance good, GUI insignificant influence on performance
- Usability testing: usable, and domain experts came up with a range of new queries to analyse the data

Challenges00000
000000

Summary

Additional features

- WONDER currently focuses on querying one database
- OBDA architecture allows for querying incomplete data (data integration scenario¹)
- Querying of the application ontology itself, as well as a combination of querying the ontology and the data²
 - in certain settings, possible to include queries that use the knowledge in the ontology for which there is no data in the database, and still retrieve the right results

¹A. Amoroso, G. Esposito, D. Lembo, P. Urbano, and R. Vertucci. Ontology-based data integration with MASTRO-I for configuration and data management at SELEX Sistemi Integrati. In Proc. of SEBD 2008, pages 8192, 2008.

 $^{^2}$ C. M. Keet, R. Alberts, A. Gerber, and G. Chimamiwa. Enhancing web portals with Ontology-Based Data Access: the case study of South Africa's Accessibility Portal for people with disabilities. In Proc. of OWLED 2008, 2008. CEUR-WS Vol 432

Challenges00000
000000

Informal overview of kind of knowledge in ADOLENA

Challenges00000
000000

Summary

Sample query in OBDA Plugin

Properties 🖌 🔶 Individuals 👘 🚍 Forms 🕴 👭	Datasource Manager 🛛 🥵 ABox Queries			
QUERY EDITOR				
Query name: Unamed Description: No descriptio	on			
Ouery (SPAROL):				
SELECT \$ nome \$ description WHEPE \$ \$	endfitume 'NA PrAccistive Device' \$x			
select share subscription where $\{\phi\}$	imbMobility/ \$x :description \$description			
sassission by, by runitype investopper Enhomobility, by idescription breachprion .				
ax mame aname t				
	Advanced properties Execute Save			
▲ ▼	Advanced properties Execute Save			
A	Advanced properties Execute Save			
A 'CE Power'	Advanced properties Execute Save B 'Portabile & Economic motorised wheelchair.'			
A 'CE Power' 'Dassie 200 M'	Advanced properties Execute Save B 'Portabile & Economic motorised wheelchair.' 'The versatile and nimble Dassie 200 M is the perfec			
A 'CE Power' 'Dassie 200 M' 'Gazelle 250 S'	Advanced properties Execute Save B 'Portabile & Economic motorised wheelchair.' 'The versatile and nimble Dassie 200 M is the perfec 'Slick and stylish would be the best way to describe t			
A 'CE Power' 'Dassie 200 M' 'Gazelle 250 S' 'Predator 4 x 4'	Advanced properties Execute Save B 'Portabile & Economic motorised wheelchair.' 'The versatile and himble Dassie 200 M is the perfec 'Slick and stylish would be the best way to describe t 'The mean beast of wheelchairs, yep it is the ALL TE			
A 'CE Power' 'Dassie 200 M' 'Gazelle 250 S' 'Predator 4 x 4' 'Roman power wheelchair'	Advanced properties Execute Save B 'Portabile & Economic motorised wheelchair.' 'The versatile and nimble Dassie 200 M is the perfec 'Silck and stylish would be the best way to describe t 'The mean beast of wheelchairs, yep it is the ALL TE 'Wheelchair motorised'			
A 'CE Power' 'Dassie 200 M' 'Gazelle 250 S' 'Predator 4 x 4' 'Roman power wheelchair' 'Karma Power'	Advanced properties Execute Save Portabile & Economic motorised wheelchair.' The versatile and nimble Dassie 200 M is the perfec Slick and stylish would be the best way to describe t The mean beast of wheelchairs, yep it is the ALL TE Wheelchair motorised' 'Karma KP40 wheelchair, powerfull fixed base wheel			
A 'CE Power' 'Dassie 200 M' 'Gazelle 250 S' 'Predator 4 x 4' 'Roman power wheelchair' 'Karma Power' 'Karma Power' 'Battery powered mobility vehicle'	Advanced properties Execute Save B 'Portabile & Economic motorised wheelchair.' 'The versatile and nimble Dassie 200 M is the perfec 'Slick and stylish would be the best way to describe t 'Wheelchair motorised' 'Karma KP40 wheelchair, powerfull fixed base wheel 'We supply battery powered mobility vehicles. They			

q(x) :- Device(x), assistsWith(x, y), UpperLimbMobility(y)

Introduction

Challenges

Summary

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges Representation Reasoning issues

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Challenges

- RDF triple stores vs. RDBMSs vs OWL ABoxes in memory; more generally:
 - Making 'legacy' (operational) systems 'Semantic Web compliant'
 - Add a 'wrapper' over the legacy system so that from the outside it looks like it uses SWT
- How to integrate rules other than at instance level
- Modularization
- Semantics-based language transformations
- Coordination among tools with different functionalities

Introduction

Challenges

Summary

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges Representation Reasoning issue

Language limitations considerations

- Known trade-offs between expressiveness and computational complexity
- Different ontology developers and their scopes (and purposes of the ontologies):
 - to some, there is more in OWL/OWL2 than needed and used (recollect slide 32 of lecture 8)
 - to some, there is not enough (some of the limitations and extensions discussed in lecture 2, 6 and 7)
- From a logician's perspective, language limitations are not failures per sé, only *challenges* to find the more interesting and useful combinations of features
- From a modeller's perspective, the trade-offs can be such that it is deemed a *failure* with respect to the expectations and application needs
Language limitations considerations

- Known trade-offs between expressiveness and computational complexity
- Different ontology developers and their scopes (and purposes of the ontologies):
 - to some, there is more in OWL/OWL2 than needed and used (recollect slide 32 of lecture 8)
 - to some, there is not enough (some of the limitations and extensions discussed in lecture 2, 6 and 7)
- From a logician's perspective, language limitations are not failures per sé, only *challenges* to find the more interesting and useful combinations of features
- From a modeller's perspective, the trade-offs can be such that it is deemed a *failure* with respect to the expectations and application needs

Challenges

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 What about doing it with probabilistic default knowledge (lecture 7)?
 - {ψ | ψ}|, u| as "generally, if an object belongs to ψ, then it belongs to ψ, with a probability in [l, u]"
 - e.g., (BhasSymptom.Fever | Repatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class Runan and a class RunamDtabotooffellLtbus, where some of the instances of the former have (are bearcerOf) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human population in the world, not a property of an individual human

Challenges

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class Ruman and a class RumanDtabetesRelLLtrue, where some of the instances of the former have (are bear cr0f) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human population in the world, not a property of an individual human

Challenges

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class fluxon and a class BunanDtabetesHellLtbus, where some of the instances of the former have (are bearerQC) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human population in the world, not a property of an individual human

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class fitman and a class
 - RumanDiabeteeMelliitsus, where some of the instances of the former have fare booccellf) an instance of the latter
 - Second, we have some notion of provalence, but what is it associated to (a property of)? of the human population in the world, not a property of an individual human

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - · First, it assumes some class Ruman and a class
 - RumanDiabeteeRellitum, where some of the instances of the former lave face booccell() at instance of the latter
 - Second, we have some notion of provelence, but what is it associated to (a property of)? of the human population in the world, not a property of an individual human

Challenges

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class Human and a class HumanDiabetesMellitus, where some of the instances of the former have (are bearerOf) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human *population* in the world, not a property of an individual human

Challenges

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class Human and a class HumanDiabetesMellitus, where some of the instances of the former have (are bearerOf) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human *population* in the world, not a property of an individual human

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class Human and a class HumanDiabetesMellitus, where some of the instances of the former have (are bearerOf) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human *population* in the world, not a property of an individual human

- *n*-ary relations, where n > 2
- "Hepatitis hasSymptom Fever in most but not all cases"
 - What about doing it with probabilistic default knowledge (lecture 7)?
 - (ψ | φ)[l, u] as "generally, if an object belongs to φ, then it belongs to ψ with a probability in [l, u]"
 - e.g., (∃hasSymptom.Fever | Hepatitis)[1,1]
- "In 2000, worldwide prevalence of diabetes mellitus was 2.8%"
 - Probabilistic, or arithmetic, or what have we?
 - First, it assumes some class Human and a class HumanDiabetesMellitus, where some of the instances of the former have (are bearerOf) an instance of the latter
 - Second, we have some notion of prevalence, but what is it associated to (a property of)? of the human *population* in the world, not a property of an individual human

Challenges

Limitations as identified by users/modellers (Schulz et al, 2009)

• ... Diabetes example continued

- Authors' proposal to put it in the ABox with arithmetic operators, e.g. "

 <u>|DiabeticHuman|</u> = 0.028"
- Yet another: represent the *probability* of a human having diabetes mellitus
- What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - DrughbusePrevention [] Procedure [] BlasFocus.Drughbuse
 - Brughburgertreewarties is Proposition (1) Shandbert (clyant / Perposition Sciences (States (1) Insuface) (clyant / Perposit (1) Space) (clyates) (n. Brughburg))

Challenges

- ... Diabetes example continued
 - Authors' proposal to put it in the ABox with arithmetic operators, e.g. "<u>|DiabeticHuman|</u> |Human| = 0.028"

 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - DrughbusePrevention [] Procedure [] BlasFocus.Drughbuse
 - BrughbusePrevention ⊕ Procedure () BaseParticipant Person () BrughbusePrevention ⊕ Procedure () BaseParticipatesIn. Brughbuse))

Challenges

- ... Diabetes example continued
 - Authors' proposal to put it in the ABox with arithmetic operators, e.g. "<u>|DiabeticHuman|</u> |Human| = 0.028"
 - Another option: put in TBox with a data property, e.g., HumanDiabetesMellitus ⊑ ∃hasPrevalence.real
 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - StrughbusePrevention [] Procedure II EhasFocus. Brughbuse
 - ¹⁴⁴ Drughboustreevention in Drocendure (1) Baadbarticipant (Iprese. F Brughboustreeventies), (1) Insubarticipant, (Person (1) Sparticipant Bruchbool)

Challenges

- ... Diabetes example continued
 - Authors' proposal to put it in the ABox with arithmetic operators, e.g. "<u>|DiabeticHuman|</u> |Human| = 0.028"
 - Another option: put in TBox with a data property, e.g., HumanDiabetesMellitus ⊑ ∃hasPrevalence.real
 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - Reing Administration States and States and

Challenges

- ... Diabetes example continued
 - Authors' proposal to put it in the ABox with arithmetic operators, e.g. "<u>|DiabeticHuman|</u> |Human| = 0.028"
 - Another option: put in TBox with a data property, e.g., HumanDiabetesMellitus ⊑ ∃hasPrevalence.real
 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - DrughbusePrevention [Procedure [ShasParticipant.Person]
 DrughbusePrevention [Procedure [ShasParticipant.Person]
 Scenara.(State [Inaperticipant.(Person [) Specticipates in Drughbuse))

Challenges

- ... Diabetes example continued
 - Authors' proposal to put it in the ABox with arithmetic operators, e.g. " $\frac{|DiabeticHuman|}{|Human|} = 0.028$ "
 - Another option: put in TBox with a data property, e.g., HumanDiabetesMellitus ⊑ ∃hasPrevalence.real
 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - DrugAbusePrevention ⊑ Procedure ⊓ ∃hasFocus.DrugAbuse

Challenges

- ... Diabetes example continued
 - Authors' proposal to put it in the ABox with arithmetic operators, e.g. "<u>|DiabeticHuman|</u> |Human| = 0.028"
 - Another option: put in TBox with a data property, e.g., HumanDiabetesMellitus ⊑ ∃hasPrevalence.real
 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - DrugAbusePrevention ⊑ Procedure ⊓ ∃hasFocus.DrugAbuse

Challenges

- ... Diabetes example continued

 - Another option: put in TBox with a data property, e.g., HumanDiabetesMellitus ⊑ ∃hasPrevalence.real
 - Yet another: represent the *probability* of a human having diabetes mellitus
 - What are the pros and cons of each option w.r.t. subject domain semantics, Ontology, and the ontology languages?
- Problems with Drug Abuse Prevention (in SNOMED CT)
 - DrugAbusePrevention ⊑ Procedure ⊓ ∃hasFocus.DrugAbuse

Challenges

Limitations as identified by users/modellers (Schulz et al, 2009)

- "Concussion of the brain without loss of consciousness", and the temporal aspects (recollect lecture 6)
- "aspirin prevents myocardial infarction"
 - Let us assume that is total prevention (though we could add a probability to it)
 - This only holds for humans actually ingesting aspirin, not for the substance itself
 - It then intends to say that the human taking aspirin will not have a myocardial infarction at all times in the future, which can be represented in a suitable temporal logic with the CP.

[]¹hasPhysiologicalEffect.-ByocardialInfarction

Challenges 0000● 000000

Limitations as identified by users/modellers (Schulz et al, 2009)

- "Concussion of the brain without loss of consciousness", and the temporal aspects (recollect lecture 6)
- "aspirin prevents myocardial infarction"
 - Let us assume that is total prevention (though we could add a probability to it)
 - This only holds for humans actually ingesting aspirin, not for the substance itself
 - It then intends to say that the human taking aspirin will not have a myocardial infarction at all times in the future, which can be represented in a suitable temporal logic with the □⁺
 - e.g., AspirinIntake
 ^[] prevents.MyocardialInfarction, Of MyocardialInfarction
 ^[] preventedBy.AspirinIntake, Of AspirinIntake
 ^[]
 ^[]

 \square^+ hasPhysiologicalEffect.egMyocardialInfarction ?

Challenges ○○○○●

- "Concussion of the brain without loss of consciousness", and the temporal aspects (recollect lecture 6)
- "aspirin prevents myocardial infarction"
 - Let us assume that is total prevention (though we could add a probability to it)
 - This only holds for humans actually ingesting aspirin, not for the substance itself
 - It then intends to say that the human taking aspirin will not have a myocardial infarction at all times in the future, which can be represented in a suitable temporal logic with the □⁺
 - E.g., AspirinIntake
 ^[] prevents.MyocardialInfarction, Of MyocardialInfarction
 ^[] preventedBy.AspirinIntake, Of AspirinIntake
 ^[]
 ^[]

Challenges ○○○○●

Limitations as identified by users/modellers (Schulz et al, 2009)

- "Concussion of the brain without loss of consciousness", and the temporal aspects (recollect lecture 6)
- "aspirin prevents myocardial infarction"
 - Let us assume that is total prevention (though we could add a probability to it)
 - This only holds for humans actually ingesting aspirin, not for the substance itself
 - It then intends to say that the human taking aspirin will not have a myocardial infarction at all times in the future, which can be represented in a suitable temporal logic with the □⁺
 - e.g., AspirinIntake ⊑ □⁺prevents.MyocardialInfarction, Of MyocardialInfarction ⊑ □⁺preventedBy.AspirinIntake, Of AspirinIntake ⊑
 □⁺translation = 1000 for the Manual Manual

 \square^+ hasPhysiologicalEffect.egMyocardialInfarction ?

Challenges

Limitations as identified by users/modellers (Schulz et al, 2009)

- "Concussion of the brain without loss of consciousness", and the temporal aspects (recollect lecture 6)
- "aspirin prevents myocardial infarction"
 - Let us assume that is total prevention (though we could add a probability to it)
 - This only holds for humans actually ingesting aspirin, not for the substance itself
 - It then intends to say that the human taking aspirin will not have a myocardial infarction at all times in the future, which can be represented in a suitable temporal logic with the □⁺
 - e.g., AspirinIntake
 ^[] prevents.MyocardialInfarction, Or MyocardialInfarction
 ^[] preventedBy.AspirinIntake, Or AspirinIntake
 ^[]
 ^[]

 \square^+ hasPhysiologicalEffect.egMyocardialInfarction ?

Challenges

Limitations as identified by users/modellers (Schulz et al, 2009)

- "Concussion of the brain without loss of consciousness", and the temporal aspects (recollect lecture 6)
- "aspirin prevents myocardial infarction"
 - Let us assume that is total prevention (though we could add a probability to it)
 - This only holds for humans actually ingesting aspirin, not for the substance itself
 - It then intends to say that the human taking aspirin will not have a myocardial infarction at all times in the future, which can be represented in a suitable temporal logic with the \Box^+
 - e.g., AspirinIntake \Box \Box^+ prevents.MyocardialInfarction, Or MyocardialInfarction \sqsubseteq \Box^+ preventedBy.AspirinIntake, Or AspirinIntake 🗆

□+hasPhysiologicalEffect.¬MyocardialInfarction ?

Introduction

Challenges

Summary

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges Representation Reasoning issues

- The standard reasoning services (recollect lecture 5) are obviously sorted out
- Performance issues for the 'debugging' and explanation reasoning, and how to provide the 'best' explanation
- Querying OWL 2 DL, and any ABox data
- Additional reasoning scenarios

- The standard reasoning services (recollect lecture 5) are obviously sorted out
- Performance issues for the 'debugging' and explanation reasoning, and how to provide the 'best' explanation
- Querying OWL 2 DL, and any ABox data
- Additional reasoning scenarios

- The standard reasoning services (recollect lecture 5) are obviously sorted out
- Performance issues for the 'debugging' and explanation reasoning, and how to provide the 'best' explanation
- Querying OWL 2 DL, and any ABox data
- Additional reasoning scenarios

- The standard reasoning services (recollect lecture 5) are obviously sorted out
- Performance issues for the 'debugging' and explanation reasoning, and how to provide the 'best' explanation
- Querying OWL 2 DL, and any ABox data
- Additional reasoning scenarios

Challenges

Scenarios

- 1. Supporting the ontology development process
- 2. Classification
- 3. Model checking (violation)
- 4. Finding gaps in an ontology & discovering new relations
 - Deriving types and relations from instance-level data
 - · Computing derived relations at the type level
- 5. Comparison of two ontologies ([logical] theories)
- 6. Reasoning with part-whole relations
- 7. Using (including finding inconsistencies in) a hierarchy of relations
- 8. Reasoning across linked ontologies
- 9. Complex queries

explanation and examples in: Keet, C.M., Roos, M. and Marshall, M.S. A survey of requirements for automated reasoning services for bio-ontologies in OWL. Third international Workshop OWL: Experiences and Directions (OWLED 2007), 6-7 June 2007, Innsbruck, Austria. CEUR-WS Vol-258.

Challenges

Scenarios

- 1. Supporting the ontology development process
- 2. Classification
- 3. Model checking (violation)
- 4. Finding gaps in an ontology & discovering new relations
 - Deriving types and relations from instance-level data
 - · Computing derived relations at the type level
- 5. Comparison of two ontologies ([logical] theories)
- 6. Reasoning with part-whole relations
- 7. Using (including finding inconsistencies in) a hierarchy of relations
- 8. Reasoning across linked ontologies
- 9. Complex queries

explanation and examples in: Keet, C.M., Roos, M. and Marshall, M.S. A survey of requirements for automated reasoning services for bio-ontologies in OWL. Third international Workshop OWL: Experiences and Directions (OWLED 2007), 6-7 June 2007, Innsbruck, Austria. CEUR-WS Vol-258.

Challenges

Checking against instances

Usual model checking

- Model checking against real instances in the ABox/Database
 - For each DL-concept in the OWL-formalised ontology (representing a universal), there has to be at least one ABox instance (as representation of the entity in reality)
 - To spot "redundant" DL-concepts w.r.t. the data-needs
- Model violation
 - Reducing the amount of instances to only those that do not violate the TBox (or: the more inconsistencies, the better)
 - For instance, to find a few candidate molecules that satisfy a given set of properties, out of a large pool of possibly suitable molecules; e.g., for drug discovery in pharmainformatics, tyre production

Challenges

Checking against instances

- Usual model checking
- Model checking against *real* instances in the ABox/Database
 - For each DL-concept in the OWL-formalised ontology (representing a universal), there has to be at least one ABox instance (as representation of the entity in reality)
 - To spot "redundant" DL-concepts w.r.t. the data-needs
- Model violation
 - Reducing the amount of instances to only those that do not violate the TBox (or: the more inconsistencies, the better)
 For instance, to find a few candidate molecules that satisfy a given set of properties, out of a large pool of possibly suitable molecules: e.g., for drug discovery in obarmainformatics, tyre
 - production

Challenges

Checking against instances

- Usual model checking
- Model checking against *real* instances in the ABox/Database
 - For each DL-concept in the OWL-formalised ontology (representing a universal), there has to be at least one ABox instance (as representation of the entity in reality)
 - To spot "redundant" DL-concepts w.r.t. the data-needs
- Model violation
 - Reducing the amount of instances to only those that do not violate the TBox (or: the more inconsistencies, the better)
 - For instance, to find a few candidate molecules that satisfy a given set of properties, out of a large pool of possibly suitable molecules; e.g., for drug discovery in pharmainformatics, tyre production

Challenges

Discovering information

- The idea is that the combination of bio-ontologies, instances, and automated reasoning services somehow can find either the missing relations, or the types, or both
- How can one find what is, or may, not be in the ontology but ought to be there?
- At the TBox-level
 - computing derived relations (object properties)
 - find out where relations that are known by the developer have not yet been added to the ontology (finding 'known gaps')
 - add 'ontological' notions with top type 'whole' in a partonomy; e.g., 17 types of macrophage in the FMA each must be part of something
 - flag classes that have no relation (no or no is_a) to anything else in the ontology

Challenges

Discovering information

- The idea is that the combination of bio-ontologies, instances, and automated reasoning services somehow can find either the missing relations, or the types, or both
- How can one find what is, or may, not be in the ontology but ought to be there?
- At the TBox-level
 - computing derived relations (object properties)
 - find out where relations that are known by the developer have not yet been added to the ontology (finding 'known gaps')
 - add 'ontological' notions with top type 'whole' in a partonomy;
 e.g., 17 types of macrophage in the FMA each must be part of something
 - flag classes that have no relation (no or no is_a) to anything else in the ontology
Challenges

Discovering information

- For the TBox through querying the data (ABox, RDBMS)
 - i. "for each x:X, y:Y, r:R, XRY, does there exist a z:Z, s:S, such that there exist ≥ 1 x and xsz?"
 - ii. "for each x:X, y:Y, *r*:*R*, X*R*Y, does there exist an x*s*z and an x*t*a where z:Z, *s*:*S*, a:A, *t*:*T* hold?"
 - iii. Find-me-anything-you-have: "for each x:X, return any $r_1, ... r_n$, their type of role and the concepts $Y_1, ... Y_n$ they are related to"

Introduction

Challenges

Summary

Introduction

Successes Exploiting the classification reasoning services Scalable querying of ontologies and data

Challenges Representation Reasoning issues