
Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Semantic Web Technologies
Lecture 5: Ontology engineering methodologies

Maria Keet
email: keet -AT- inf.unibz.it

home: http://www.meteck.org

blog:

http://keet.wordpress.com/category/computer-science/72010-semwebtech/

KRDB Research Center
Free University of Bozen-Bolzano, Italy

30 November 2009

1/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

2/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

3/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

The landscape

• Difference between method and methodology

• Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

• Isn’t ontology development just like conceptual data model
development?

• yes: e.g., interaction with the domain expert, data analysis
• no: e.g., logic, automated reasoning, using (parts of) other

ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

• There are many methods for ontology development, but no
up-to-date methodology

4/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

The landscape

• Difference between method and methodology

• Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

• Isn’t ontology development just like conceptual data model
development?

• yes: e.g., interaction with the domain expert, data analysis
• no: e.g., logic, automated reasoning, using (parts of) other

ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

• There are many methods for ontology development, but no
up-to-date methodology

4/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

The landscape

• Difference between method and methodology

• Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

• Isn’t ontology development just like conceptual data model
development?

• yes: e.g., interaction with the domain expert, data analysis
• no: e.g., logic, automated reasoning, using (parts of) other

ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

• There are many methods for ontology development, but no
up-to-date methodology

4/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

The landscape

• Difference between method and methodology

• Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

• Isn’t ontology development just like conceptual data model
development?

• yes: e.g., interaction with the domain expert, data analysis
• no: e.g., logic, automated reasoning, using (parts of) other

ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

• There are many methods for ontology development, but no
up-to-date methodology

4/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

The landscape

• Difference between method and methodology

• Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

• Isn’t ontology development just like conceptual data model
development?

• yes: e.g., interaction with the domain expert, data analysis
• no: e.g., logic, automated reasoning, using (parts of) other

ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

• There are many methods for ontology development, but no
up-to-date methodology

4/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

The landscape

• Difference between method and methodology

• Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

• Isn’t ontology development just like conceptual data model
development?

• yes: e.g., interaction with the domain expert, data analysis
• no: e.g., logic, automated reasoning, using (parts of) other

ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

• There are many methods for ontology development, but no
up-to-date methodology

4/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

5/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Advances and questions

• Multiple modelling issues in ontology development for the
applied life sciences (e.g., part-of, uncertainty, prototypes,
multilingual), methodological issues, highly specialised
knowledge

• W3C’s incubator group on modelling uncertainty,
mushrooming of bio-ontologies, ontology design patterns,
W3C standard OWL, etc.

• Solving the early-adopter issues moves the goal-posts
• Which ontologies are reusable for one’s own ontology?
• What are the consequences choosing one ontology over the

other?
• The successor of OWL, OWL 2, has 5 languages: which one

should be used for what and when?

6/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Advances and questions

• Multiple modelling issues in ontology development for the
applied life sciences (e.g., part-of, uncertainty, prototypes,
multilingual), methodological issues, highly specialised
knowledge

• W3C’s incubator group on modelling uncertainty,
mushrooming of bio-ontologies, ontology design patterns,
W3C standard OWL, etc.

• Solving the early-adopter issues moves the goal-posts
• Which ontologies are reusable for one’s own ontology?
• What are the consequences choosing one ontology over the

other?
• The successor of OWL, OWL 2, has 5 languages: which one

should be used for what and when?

6/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Advances and questions

• Multiple modelling issues in ontology development for the
applied life sciences (e.g., part-of, uncertainty, prototypes,
multilingual), methodological issues, highly specialised
knowledge

• W3C’s incubator group on modelling uncertainty,
mushrooming of bio-ontologies, ontology design patterns,
W3C standard OWL, etc.

• Solving the early-adopter issues moves the goal-posts
• Which ontologies are reusable for one’s own ontology?
• What are the consequences choosing one ontology over the

other?
• The successor of OWL, OWL 2, has 5 languages: which one

should be used for what and when?

6/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

7/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

• Ontologies are application-independent, hence sole purpose of
representing reality. But...

• Ontology engineers do take it into account

• A real caveat with choosing explicitly for a specific goal is
that a few years after initial development of the ontology, it
may get its own life and be used for other purposes than the
original scope

• This, then, can require a re-engineering of the ontology (being
done with, e.g., the GO and FMA)

8/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

• Ontologies are application-independent, hence sole purpose of
representing reality. But...

• Ontology engineers do take it into account

• A real caveat with choosing explicitly for a specific goal is
that a few years after initial development of the ontology, it
may get its own life and be used for other purposes than the
original scope

• This, then, can require a re-engineering of the ontology (being
done with, e.g., the GO and FMA)

8/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Possible purposes (1/2)

A. Ontology-based data access through linking data to ontologies

B. Data(base) integration, most notably the strand of
applications initiated by the Gene Ontology Consortium and a
successor, the OBO Foundry

C. Structured controlled vocabulary to link database records and
navigate across databases on the Internet, also known as
‘linked data’;

D. Using it as part of scientific discourse and advancing research
at a faster pace, including experimental ontologies in a
scientific discipline and usage in computing and engineering to
build prototype software;

9/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Possible purposes (2/2)

E. As full-fledged discipline “Ontology (Science)”, where an
ontology is a formal, logic-based, representation of a scientific
theory, or: representation of reality;

F. Coordination and integration of Web Services;

G. Tutorial ontologies to learn modelling in the ontology
development environment (e.g., the wine and pizza
ontologies).

10/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

11/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Which ontologies to reuse and how? (1/2)

a. Foundational ontologies that provide generic top-level
categorisations;
⇒ give a head-start by providing a basic structure, such as
endurants being disjoint from perdurants, types of processes,
attributes, and basic relations; e.g., GFO, DOLCE, BFO, RO;
Marine Microbial Loops reusing DOLCE

b. ‘Reference ontologies’ that contain the main concepts of a
subject domain;
⇒ Restricted in scope of the content, such as an ontology of
measurements, and ‘top-level’ ontologies for a domain, such
as BioTop, OBI

12/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Which ontologies to reuse and how? (2/2)

c. Domain ontologies that have a (partial) overlap with the new
ontology;
⇒ e.g., Gramene extending GO, reuse of the FMA

13/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Which ontologies to reuse and how? (2/2)

c. Domain ontologies that have a (partial) overlap with the new
ontology;
⇒ e.g., Gramene extending GO, reuse of the FMA

image from http://www.imbi.uni-freiburg.de/ontology/biotop/

14/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Which ontologies to reuse and how? (2/2)

d. Legacy representations of information systems and
ontology-like artefacts: conceptual data models of database
and application software (sometimes called ‘application
ontologies’), terminologies, and thesauri;
⇒ ‘ontologise’ a conceptual data model and possibly extend
the contents; e.g. the conceptual data model for the
bacteriocins

15/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Examples

MicroOrganism

Disease

causes a

Geneticdeterminant

contains

Bacteriocin

Food

ingredient in added to

produces

inhibits

encoded on

Categorisation of food and processing (e.g.,
AGROVOC, AOS, Food Ontology Project, HuFO)

Biochemical compounds
(e.g., GO, KEGG, CheBI,
bacteriocin classification)

Genes w.r.t. prokaryotes, chromosomal DNA,
plasmids, transposons (e.g., GO)

Taxonomic
information
(e.g., FAO
species, NCBI)

Disease categorisation (e.g., SNOMED,
ICD10, infectious disease ontology)

16/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

17/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Extracting in a semi-automatic way the subject domain
semantics

I. Extraction of types from data in database and object-oriented
software applications, including database reverse engineering
and clustering;

II. Abstractions from models in textbooks and diagram-based
software;

III. Text mining of documents, including scientific articles and
other Digital Libraries, to find candidate terms for concepts
and relations;

VI. Wisdom of the crowds and usage of those tagging techniques;

V. Other (semi-)structured data, such as excel sheets and
company product catalogs.

18/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

19/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Preliminary considerations
• Depending on the purpose(s)—and, in practice, available

resources, such as time, money, domain experts, and available
baseline material—one ends up with either
(a) a large but simple ontology, i.e., mostly just a taxonomy

without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a ‘medium size’ and elaborate ontology, which includes rich
usage of properties, defined concepts, and, roughly, requiring
OWL-DL; or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

• Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

• ⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language

20/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Preliminary considerations
• Depending on the purpose(s)—and, in practice, available

resources, such as time, money, domain experts, and available
baseline material—one ends up with either
(a) a large but simple ontology, i.e., mostly just a taxonomy

without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a ‘medium size’ and elaborate ontology, which includes rich
usage of properties, defined concepts, and, roughly, requiring
OWL-DL; or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

• Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

• ⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language

20/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Languages

• “OWL”: OWL-Lite, OWL-DL, OWL full

• “OWL 2” with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

• OWL 2 DL is most expressive and based on the DL language
SROIQ

• OWL 2 EL fragment to achieve better performance with larger
ontologies (e.g., for use with SNOMED-CT)

• OWL 2 QL fragment to achieve better performance with
ontologies linked to large amounts of data in secondary storage
(databases); e.g. DIG-QuOnto

• OWL 2 RL has special features to handle rules

• Differences between expressiveness of the ontology languages
and their trade-offs

21/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Reasoning services

• The current main reasoning services fall into three categories:

i. The ‘standard’ reasoning services for ontology usage:
satisfiability and consistency checking, taxonomic classification,
instance classification, and querying functionalities including
epistemic and (unions of) conjunctive queries;

ii. Additional ‘non-standard’ reasoning services to facilitate
ontology development: explanation/justification, glass-box
reasoning, pin-pointing errors;

iii. Further requirements for reasoning services identified by users,
such as hypothesis testing, reasoning over role hierarchies, and
discovering type-level relations from ABox instance data.

22/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

On trade-offs and choices

• OWL 2 DL, but not OWL 2 QL, has: role concatenation,
qualified number restrictions, enumerated classes, covering
constraint over concepts, and reflexivity, irreflexivity, and
transitivity on simple roles.

• With OWL 2 QL, but not OWL 2 DL: UCQ and one can
obtain similar performance as with relational databases

• Use parameters in a software-supported selection procedure:
• select the desired purpose and reasoning services to find the

appropriate language
• decide on purpose of usage of the ontology and one’s

language, and obtain which reasoning services are available

• Purpose A or B goes well together with OWL 2 QL and query
functionalities

• For purposes D and E, OWL 2 DL and the non-standard
reasoning services will be more useful

23/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

On trade-offs and choices

• OWL 2 DL, but not OWL 2 QL, has: role concatenation,
qualified number restrictions, enumerated classes, covering
constraint over concepts, and reflexivity, irreflexivity, and
transitivity on simple roles.

• With OWL 2 QL, but not OWL 2 DL: UCQ and one can
obtain similar performance as with relational databases

• Use parameters in a software-supported selection procedure:
• select the desired purpose and reasoning services to find the

appropriate language
• decide on purpose of usage of the ontology and one’s

language, and obtain which reasoning services are available

• Purpose A or B goes well together with OWL 2 QL and query
functionalities

• For purposes D and E, OWL 2 DL and the non-standard
reasoning services will be more useful

23/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

On trade-offs and choices

• OWL 2 DL, but not OWL 2 QL, has: role concatenation,
qualified number restrictions, enumerated classes, covering
constraint over concepts, and reflexivity, irreflexivity, and
transitivity on simple roles.

• With OWL 2 QL, but not OWL 2 DL: UCQ and one can
obtain similar performance as with relational databases

• Use parameters in a software-supported selection procedure:
• select the desired purpose and reasoning services to find the

appropriate language
• decide on purpose of usage of the ontology and one’s

language, and obtain which reasoning services are available

• Purpose A or B goes well together with OWL 2 QL and query
functionalities

• For purposes D and E, OWL 2 DL and the non-standard
reasoning services will be more useful

23/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Recap

• Four influential factors to enhance the efficiency and
effectiveness of developing ontologies:

• seven types of purpose(s) of the ontology;
• what and how to reuse existing ontologies and ontology-like

artefacts;
• five different types of approaches for bottom-up ontology

development from other legacy sources;
• the interaction with choice of representation language and

reasoning services

• Future works pertain to setting up a software-mediated
guidance system; hence, to structure and make accessible
more easily the ‘soft’ knowledge about ontology development,
which then could feed into design methodologies such as
methontology

24/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Recap

• Four influential factors to enhance the efficiency and
effectiveness of developing ontologies:

• seven types of purpose(s) of the ontology;
• what and how to reuse existing ontologies and ontology-like

artefacts;
• five different types of approaches for bottom-up ontology

development from other legacy sources;
• the interaction with choice of representation language and

reasoning services

• Future works pertain to setting up a software-mediated
guidance system; hence, to structure and make accessible
more easily the ‘soft’ knowledge about ontology development,
which then could feed into design methodologies such as
methontology

24/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

25/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

26/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

OntoClean overview

• Problem: messy taxonomies on what subsumes what

• How to put them in the right order?

• OntoClean provides guidelines for this (refer to Guarino &
Welty, 2004 for an extended example)

• Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for
more information on the basics)

27/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

OntoClean overview

• Problem: messy taxonomies on what subsumes what

• How to put them in the right order?

• OntoClean provides guidelines for this (refer to Guarino &
Welty, 2004 for an extended example)

• Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for
more information on the basics)

27/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

• A property of an entity is essential to that entity if it must be
true of it in every possible world, i.e. if it necessarily holds for
that entity.

• Special form of essentiality is rigidity

Definition (+R)

A rigid property φ is a property that is essential to all its instances,
i.e., ∀xφ(x)→ �φ(x).

Definition (-R)

A non-rigid property φ is a property that is not essential to some
of its instances, i.e., ∃xφ(x) ∧ ¬�φ(x).

28/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

Definition (∼R)

An anti-rigid property φ is a property that is not essential to all its
instances, i.e., ∀xφ(x)→ ¬�φ(x).

Definition (¬R)

A semi-rigid property φ is a property that is non-rigid but not
anti-rigid.

• Anti-rigid properties cannot subsume rigid properties

29/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

• Identity: being able to recognize individual entities in the
world as being the same (or different)

• Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

• Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

• Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

30/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

• Identity: being able to recognize individual entities in the
world as being the same (or different)

• Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

• Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

• Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

30/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

• Identity: being able to recognize individual entities in the
world as being the same (or different)

• Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

• Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

• Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

30/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

• Identity: being able to recognize individual entities in the
world as being the same (or different)

• Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

• Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

• Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

30/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

Definition

A non-rigid property carries an IC Γ iff it is subsumed by a rigid
property carrying Γ.

Definition

A property φ supplies an IC Γ iff i) it is rigid; ii) it carries Γ; and
iii) Γ is not carried by all the properties subsuming φ. This means
that, if φ inherits different (but compatible) ICs from multiple
properties, it still counts as supplying an IC.

• Any property carrying an IC: +I (-I otherwise).

• Any property supplying an IC: +O (-O otherwise); “O” is a
mnemonic for “own identity”

• +O implies +I and +R

31/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Formal ontological property classifications

+D+O +I +R -D Type

+D-O +I +R -D Quasi-Type

-O +I ~R +D Material role
-O +I ~R -D Phased sortal

+D-O +I ¬R -D Mixin

Sortal

+D-O -I +R -D Category

-O -I ~R +D Formal role
~R -D

+D-O -I
¬R -D

Attribution

Non-Sortal

32/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Formal ontological property classifications

Sortal
Non-rigid

Mixin

Phased sortal
Caterpillar, Chrysalis, Butterfly (for Papilionoidae)

Rigid

Type
Cat, Chair

Quasi-type
Herbivore

Property

Role

Anti-rigid
Material role
Student, Food

Non-sortal

Formal role
Recipient

Attribution
Blue, Spherical

Category
Endurant, Abstract entity

33/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Basics

• Given two properties, p and q, when q subsumes p the
following constraints hold:

1. If q is anti-rigid, then p must be anti-rigid
2. If q carries an identity criterion, then p must carry the same

criterion
3. If q carries a unity criterion, then p must carry the same

criterion
4. If q has anti-unity, then p must also have anti-unity

34/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Example: before

35/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Example: after

36/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

37/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Overview

• Domain experts are expert in their subject domain, which is
not logic

• Modellers often do not understand the subject domain well

• The more expressive the language, the easier it is to make
errors or bump into unintended entailments

• Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

• In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

38/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Overview

• Domain experts are expert in their subject domain, which is
not logic

• Modellers often do not understand the subject domain well

• The more expressive the language, the easier it is to make
errors or bump into unintended entailments

• Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

• In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

38/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Overview

• Domain experts are expert in their subject domain, which is
not logic

• Modellers often do not understand the subject domain well

• The more expressive the language, the easier it is to make
errors or bump into unintended entailments

• Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

• In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

38/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Overview

• Domain experts are expert in their subject domain, which is
not logic

• Modellers often do not understand the subject domain well

• The more expressive the language, the easier it is to make
errors or bump into unintended entailments

• Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

• In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

38/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Overview

• Domain experts are expert in their subject domain, which is
not logic

• Modellers often do not understand the subject domain well

• The more expressive the language, the easier it is to make
errors or bump into unintended entailments

• Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

• In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

38/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Overview

• Using automated reasoners for ‘debugging’ ontologies,
requires one to know about reasoning services

• Using standard reasoning services (recollect slide 22)

• New reasoning services tailored to pinpointing the errors and
explaining the entailments (slide 22)

• Details in KR & onto course next semester (and the two
papers in the ‘recommended readings’ of this lecture), here a
general overview

39/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Common errors

• Unsatisfiable classes
• In the tools: the unsatisfiable classes end up as direct subclass

of owl:Nothing
• Sometimes one little error generates a whole cascade of

unsatisfiable classes

• Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

• Inconsistent ontologies: all classes taken together unsatisfiable

40/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Common errors

• Unsatisfiable classes
• In the tools: the unsatisfiable classes end up as direct subclass

of owl:Nothing
• Sometimes one little error generates a whole cascade of

unsatisfiable classes

• Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

• Inconsistent ontologies: all classes taken together unsatisfiable

40/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Common errors

• Unsatisfiable classes
• In the tools: the unsatisfiable classes end up as direct subclass

of owl:Nothing
• Sometimes one little error generates a whole cascade of

unsatisfiable classes

• Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

• Inconsistent ontologies: all classes taken together unsatisfiable

40/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Common errors

• Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

• Atomic: An individual belongs to a class and its complement
• Cardinality: An individual has a max cardinality restriction but

is related to more distinct individuals
• Datatype: A literal value violates the (global or local) range

restrictions on a datatype property

• Basic set of clashes for KBs (ontology + instances) are:
• Inconsistency of Assertions about Individuals, e.g., an

individual is asserted to belong to disjoint classes or has a
cardinality restriction but related to more individuals

• Individuals Related to Unsatisfiable Classes
• Defects in Class Axioms Involving Nominals (owl:oneOf, if

present in the language)

41/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Common errors

• Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

• Atomic: An individual belongs to a class and its complement
• Cardinality: An individual has a max cardinality restriction but

is related to more distinct individuals
• Datatype: A literal value violates the (global or local) range

restrictions on a datatype property

• Basic set of clashes for KBs (ontology + instances) are:
• Inconsistency of Assertions about Individuals, e.g., an

individual is asserted to belong to disjoint classes or has a
cardinality restriction but related to more individuals

• Individuals Related to Unsatisfiable Classes
• Defects in Class Axioms Involving Nominals (owl:oneOf, if

present in the language)

41/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Outline

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

42/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Where are we?

• Parameters that affect ontology development, such as
purpose, base material, language

• Methods, such as reverse engineering text mining to start,
OntoClean to improve

• Tools to model, to reason, to debug, to integrate, to link to
data

• Methodologies that are coarse-grained: they do not (yet)
contain all the permutations at each step, i.e. what and how
to do each step, given the recent developments;

• e.g. step x is “knowledge acquisition”, but what are it
component-steps?

43/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Where are we?

• Parameters that affect ontology development, such as
purpose, base material, language

• Methods, such as reverse engineering text mining to start,
OntoClean to improve

• Tools to model, to reason, to debug, to integrate, to link to
data

• Methodologies that are coarse-grained: they do not (yet)
contain all the permutations at each step, i.e. what and how
to do each step, given the recent developments;

• e.g. step x is “knowledge acquisition”, but what are it
component-steps?

43/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Example methodology: Methontology
• Basic methodology:

• specification: why, what are its intended uses, who are the
prospective users

• conceptualization, with intermediate representations
• formalization (transforms the domain-expert understandable

‘conceptual model’ into a formal or semi-computable model)
• implementation (represent it in an ontology language)
• maintenance (corrections, updates, etc)

• Additional tasks (as identified by Methontology)
• Management activities (schedule, control, and quality

assurance)
• Support activities (knowledge acquisition, integration,

evaluation, documentation, and configuration management)

• Applied to chemical, legal domain, and others

• More comprehensive assessment of extant methodologies in
Corcho et al, 2003

44/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Example methodology: Methontology
• Basic methodology:

• specification: why, what are its intended uses, who are the
prospective users

• conceptualization, with intermediate representations
• formalization (transforms the domain-expert understandable

‘conceptual model’ into a formal or semi-computable model)
• implementation (represent it in an ontology language)
• maintenance (corrections, updates, etc)

• Additional tasks (as identified by Methontology)
• Management activities (schedule, control, and quality

assurance)
• Support activities (knowledge acquisition, integration,

evaluation, documentation, and configuration management)

• Applied to chemical, legal domain, and others

• More comprehensive assessment of extant methodologies in
Corcho et al, 2003

44/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Example methodology: Methontology
• Basic methodology:

• specification: why, what are its intended uses, who are the
prospective users

• conceptualization, with intermediate representations
• formalization (transforms the domain-expert understandable

‘conceptual model’ into a formal or semi-computable model)
• implementation (represent it in an ontology language)
• maintenance (corrections, updates, etc)

• Additional tasks (as identified by Methontology)
• Management activities (schedule, control, and quality

assurance)
• Support activities (knowledge acquisition, integration,

evaluation, documentation, and configuration management)

• Applied to chemical, legal domain, and others

• More comprehensive assessment of extant methodologies in
Corcho et al, 2003

44/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

MOdelling wiKI

• MoKi is based on a SemanticWiki, which is used for
collaborative and cooperative ontology development

• It enables actors with different expertise to develop an
“enterprise model” not only using structural (formal)
descriptions but also adopting more informal and semi-formal
descriptions of knowledge1

• access to the enterprise model at different levels of
formality: informal, semi-formal and formal

• more info at http://moki.fbk.eu

1enterprise model: “a computational representation of the structure,
activities, processes, information, resources, people, behavior, goals, and
constraints of a business, government, or other enterprise”

45/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

MOdelling wiKI

• MoKi is based on a SemanticWiki, which is used for
collaborative and cooperative ontology development

• It enables actors with different expertise to develop an
“enterprise model” not only using structural (formal)
descriptions but also adopting more informal and semi-formal
descriptions of knowledge1

• access to the enterprise model at different levels of
formality: informal, semi-formal and formal

• more info at http://moki.fbk.eu

1enterprise model: “a computational representation of the structure,
activities, processes, information, resources, people, behavior, goals, and
constraints of a business, government, or other enterprise”

45/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Extending the methodologies

• Methontology, MoKi, and others (e.g., On-To-Knowledge,
KACTUS approach) are for developing one single ontology

• Changing landscape in ontology development towards building
“ontology networks”

• Characteristics: dynamics, context, collaborative, distributed

• E.g. the emerging NeOn methodology (more info at
http://www.neon-project.org/web-
content/images/Publications/neon 2008 d5.4.1.pdf)

46/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Extending the methodologies

• Methontology, MoKi, and others (e.g., On-To-Knowledge,
KACTUS approach) are for developing one single ontology

• Changing landscape in ontology development towards building
“ontology networks”

• Characteristics: dynamics, context, collaborative, distributed

• E.g. the emerging NeOn methodology (more info at
http://www.neon-project.org/web-
content/images/Publications/neon 2008 d5.4.1.pdf)

46/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Extending the methodologies: NeOn

• NeOn’s “Glossary of Activities” identifies and defines 55
activities when ontology networks are collaboratively built

• Among others: ontology localization, -alignment,
-formalization, -diagnosis, -enrichment etc.

• Divided into a matrix with “required” and “if applicable”

• Embedded into a comprehensive methodology (under
development)

47/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Extending the methodologies: NeOn

• NeOn’s “Glossary of Activities” identifies and defines 55
activities when ontology networks are collaboratively built

• Among others: ontology localization, -alignment,
-formalization, -diagnosis, -enrichment etc.

• Divided into a matrix with “required” and “if applicable”

• Embedded into a comprehensive methodology (under
development)

47/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Scenarios for Building Ontology Networks

48/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Tools
• Thus far, no tool gives you everything

• WebODE to support Methontology with a software
application

• Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.

• NeOn toolkit aims to be a “open source multi-platform
ontology engineering environment, which aims to provide
comprehensive support for all activities in the ontology
engineering life-cycle”; 45 plugins

• RacerPro, RacerPorter. a.o.: sophisticated querying
• KAON, SWOOP, etc.
• Specialised tools for specific task, such as ontology integration

and evaluation (e.g. Protégé-PROMPT, ODEClean)
• RDF-based ones, such as Sesame

• Longer list and links to more lists of tools at the end of the
lecture’s blog post

49/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Tools
• Thus far, no tool gives you everything

• WebODE to support Methontology with a software
application

• Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.

• NeOn toolkit aims to be a “open source multi-platform
ontology engineering environment, which aims to provide
comprehensive support for all activities in the ontology
engineering life-cycle”; 45 plugins

• RacerPro, RacerPorter. a.o.: sophisticated querying
• KAON, SWOOP, etc.
• Specialised tools for specific task, such as ontology integration

and evaluation (e.g. Protégé-PROMPT, ODEClean)
• RDF-based ones, such as Sesame

• Longer list and links to more lists of tools at the end of the
lecture’s blog post

49/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Tools
• Thus far, no tool gives you everything

• WebODE to support Methontology with a software
application

• Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.

• NeOn toolkit aims to be a “open source multi-platform
ontology engineering environment, which aims to provide
comprehensive support for all activities in the ontology
engineering life-cycle”; 45 plugins

• RacerPro, RacerPorter. a.o.: sophisticated querying
• KAON, SWOOP, etc.
• Specialised tools for specific task, such as ontology integration

and evaluation (e.g. Protégé-PROMPT, ODEClean)
• RDF-based ones, such as Sesame

• Longer list and links to more lists of tools at the end of the
lecture’s blog post

49/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Tools
• Thus far, no tool gives you everything

• WebODE to support Methontology with a software
application

• Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.

• NeOn toolkit aims to be a “open source multi-platform
ontology engineering environment, which aims to provide
comprehensive support for all activities in the ontology
engineering life-cycle”; 45 plugins

• RacerPro, RacerPorter. a.o.: sophisticated querying
• KAON, SWOOP, etc.
• Specialised tools for specific task, such as ontology integration

and evaluation (e.g. Protégé-PROMPT, ODEClean)
• RDF-based ones, such as Sesame

• Longer list and links to more lists of tools at the end of the
lecture’s blog post

49/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Tools
• Thus far, no tool gives you everything

• WebODE to support Methontology with a software
application

• Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.

• NeOn toolkit aims to be a “open source multi-platform
ontology engineering environment, which aims to provide
comprehensive support for all activities in the ontology
engineering life-cycle”; 45 plugins

• RacerPro, RacerPorter. a.o.: sophisticated querying
• KAON, SWOOP, etc.
• Specialised tools for specific task, such as ontology integration

and evaluation (e.g. Protégé-PROMPT, ODEClean)
• RDF-based ones, such as Sesame

• Longer list and links to more lists of tools at the end of the
lecture’s blog post

49/50

Methodologies overview A collection of parameters Methods Methodologies and tools Summary

Summary

Methodologies overview

A collection of parameters
Purposes of the ontologies
Reusing ontologies
Bottom-up development of ontologies
Representation languages and reasoning services

Methods
Guidance for modelling: OntoClean
Debugging ontologies

Methodologies and tools

50/50

	lecture 5
	Methodologies overview
	A collection of parameters
	Purposes of the ontologies
	Reusing ontologies
	Bottom-up development of ontologies
	Representation languages and reasoning services

	Methods
	Guidance for modelling: OntoClean
	Debugging ontologies

	Methodologies and tools
	Summary

