Bottom-up overview

Relational databases

Models in biology

Thesauri

Outline

Bottom-up overview

Relational databases

Data analysis

Automatic Extraction of Ontologies

Example: manual extraction

Models in biology

General idea

Case study

Thesauri

Bottom-up

- From some seemingly suitable legacy representation to an OWL ontology
 - Database reverse engineering
 - Conceptual model (ER, UML)
 - Frame-based system
 - OBO format
 - Thesauri
 - Formalizing biological models
 - Excel sheets
 - Text mining, machine learning, clustering
 - etc...

A few languages
Levels of ontological precision

(from Gangemi, 2004)

Examples: OBO and Protégé-frames

• Frame (as in Protégé) into OWL-DL (see Zhang & Bodenreider, 2004), and its problems doing that to the FMA
 • Not a formal transformation
 • Slot values generally correspond to necessary conditions—so they took a first guess to define an anatomical entity as the sum of its parts
 • Global axioms dropped (with an eye on the reasoner)
 • After the conversion of the 39,337 classes and 187 slots from FMA in Protégé (ignoring laterality distinctions), FMAinOWL contains 39,337 classes, 187 properties and 85 individuals
 • Additional optimizations: optimizing domains and subClassOf axioms
 • But still caused Racer to fail to reason over the whole file; restricting properties further obtained results

General considerations

• Let us for a moment ignore the issues of data duplication, violations of integrity constraints, hacks, outdated imports from other databases to fill a boutique database, outdated conceptual data models (if there was one), and what have you
• Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
• each tuple is assumed to denote an instance and, by virtue of key definitions, to be unique in that table, but such a tuple has values in each cell of the participating columns; however, OWL ABox expects objects (impedance mismatch)
• instances-but-actually-concepts-that-should-become-OWL-classes and real-instances-that-should-become-OWL-instances
General considerations

- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But,
 - Assumes there was a fully normalised conceptual data model,
 - Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
 - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the ‘ontology’ into an ontology?
- Establish some mechanism to keep a ‘link’ between the terms on the ontology and the source in the database?

Manual Extraction

- Most database are not neat as assumed in the ‘Automatic Extraction of Ontologies’ (e.g., denormalised)
- Then what?
 - Reverse engineer the database to a conceptual data model
 - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)
Manual mapping to DL-$Lite_A$

- Basic statistics:
 - 38 classes
 - 34 object properties of which 17 functional
 - 55 data properties of which 47 functional
 - 102 subclass axioms

- Subsequently used for Ontology-Based Data Access (more about that in the next block)

Overview

- Pure and applied life sciences use many diagrams
- Some diagram hand drawn, but more and more with software
- Come with their own ‘icon vocabulary’ and many diagrams
- Exploit such informal but structured representation of information to develop automatically (a preliminary version of) a domain ontology
- Formalize the ‘icon vocabulary’ in a suitable logic language, choose a foundational ontology (taxonomy, relations), categorise the formalised icons accordingly, load each diagram into the ontology, verify with the domain expert

Example of a PathwayAssist diagram

Motivation

- Experiment in 2005 (Keet, 2005), but progress made in ecology (Madin et al, 2008; MTSR’09 proceedings)
- Extensive use of modelling in ecology, but not much shared (depending on sub-discipline)
- Models used with independent software tools (DB and other applications)
- ‘Legacy code’ (procedural), moving toward more OO, and ontologies
- Requirement for (re re-)analysis to upgrade legacy SW), develop new SW to meet increasing, complexities and rising demands.
- use the opportunity to create a more durable, yet computationally usable, shared, agreed upon representation of the knowledge about reality

Key aspects in the ecological model: Flow, Stock, Converter, Action Connector

Informal ‘Translation’

- A Stock correspond to a noun (particular or universal)
- Flow to verb
- Converter to attribute related to Flow or Stock
- Action Connector relates the former
- Object is candidate for an Endurant
- Event_or_activity for a method or Perdurant
- Converter maps to Attribute_or_property
- Action Connector candidate for relationship between any two of Flow, Stock and Converter
‘Translation’ w.r.t. DOLCE categories

- Basic mapping to DOLCE categories:
 - $\forall x ((\text{Stock}(x) \leftrightarrow \text{Entity}(x)) \rightarrow \text{ED}(x))$
 - $\forall x ((\text{Flow}(x) \leftrightarrow \text{Entity}(x)) \rightarrow \text{PD}(x))$
 - $\forall x ((\text{Converter}(x) \leftrightarrow \text{Entity}(x)) \rightarrow (Q(x) \lor \text{ST}(x)))$
 - $\forall x (\text{ActionConnector}(x, y) \rightarrow \text{Relationship}(x, y))$

ML to Microbial Loop domain ontology

- Aim: to test translations with a real STELLA model
- ML’s initial mapping to ontological categories contain 38 STELLA elements: 11 Stock/ED, 21 Flow/PD, 2 Converters/ST, 4 Action Connectors/Relationships
- The MicrobialLoop ontology has 59 classes and 10 properties
- Increase due to including DOLCE categories and implicit knowledge of ML that is explicit in MicrobialLoop
Section of more refined mapping to DOCLE categories

<table>
<thead>
<tr>
<th>Phyto C</th>
<th>NAPO</th>
<th>Phyto C = phytoplankton organic carbon. Phytoplankton is an APO, but 'phyto C' is part of the APO: only the organic carbon of the phytoplankton, not the organism as an active agent as such</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyto N</td>
<td>NAPO</td>
<td>Phyto N = phytoplankton nitrogen</td>
</tr>
<tr>
<td>DOC</td>
<td>NAPO</td>
<td>DOC = dissolved organic carbon. DOC is an ED with no unity, thus an amount of matter (M), but here, like with the organisms, there is focus on only a part of the NAPO</td>
</tr>
<tr>
<td>Nitrate</td>
<td>NAPO</td>
<td>Dissolved nitrate. Molecules are non-aggregative physical objects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow</th>
<th>PRO</th>
<th>To phytoplankton N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration</td>
<td>PRO</td>
<td>From phytoplankton N</td>
</tr>
<tr>
<td>Prot gr bac</td>
<td>PRO</td>
<td>Prototrozoa that are grazing on the Bacterial C</td>
</tr>
</tbody>
</table>

Grazing pressure

- **ST** acts on a PRO affecting the process of grazing: 'grazing pressure' is there (might reach zero), hence a ST.
- **T** acts on the mesozooplankton grazing on the protozoa, and acts on the mesozooplankton grazing on the phytoplankton: relation hasGrazingPressure

more mappings at http://www.meteck.org/supplDILS.html

Discussion

- **Formalising ecological natural, functional and integrative concepts**
- aids comparison of scientific theories
- makes the implicit explicit, and more expressive than other modelling practices, therefore useful:
 - points to ambiguous sections,
 - part of/extra tool for doing science,
 - importance ontology maintenance, comparisons
- **Modular, backbone or all-encompassing ontology/ies**
- With the mappings, a quicker bottom-up development of ecological ontologies
To summarize

- Taxonomies insufficiently expressive compared to existing ecological modelling techniques
- Perspective of flow in ecological models cannot be represented adequately in a taxonomy
- More comprehensive semantics of formal ontologies
- Formalised mapping between STELLA and ontology elements facilitates bottom-up ontology development and has excellent potential for semi-automated ontology development
- STELLA as intermediate representation, widely used by ecologists and is translatable to a representation usable for ontologists

Overview

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus:
 - reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk
 - NT cow milk
 - NT milk fat
- How to go from this to an ontology?

Problems

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as is_a, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

A rules-as-you-go approach

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go)

see (Soergel et al, 2004)
A rules-as-you-go approach

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go); e.g.
 - observation: cow NT cow milk should become cow
 <hasComponent> cow milk
 - pattern: animal <hasComponent> milk (or, more generally animal <hasComponent> body part)
 — derive automatically: goat NT goat milk should become goat <hasComponent> goat milk
 other pattern examples, e.g., plant <growsIn> soil type and geographical entity <spatiallyIncludedIn> geographical entity

see (Soergel et al, 2004)