
Bootstrapping a Runyankore CNL from an
isiZulu CNL

Joan Byamugisha, C. Maria Keet, Brian DeRenzi

Department of Computer Science, University of Cape Town, South Africa,
{jbyamugisha,mkeet,bderenzi}@cs.uct.ac.za

Abstract. Runyankore is one of the top five languages spoken in Uganda.
It is a Bantu language, thus it possesses the characteristic agglutinative
structure, which is known to be challenging for the development of com-
putational resources. It is also computationally under-resourced, which
compounds the problem further. Given the recent progress in the ver-
balization (the process of writing the semantics expressed in axioms as a
CNL) of most constructors in the Description Logic ALC in isiZulu, we
take a bootstrapping approach to the verbalization of similar construc-
tors in Runyankore. The key variables affecting verbalization in isiZulu
indeed also hold for Runyankore, allowing us to build on existing back-
ground theory. We present verbalization patterns for mostALC construc-
tors, also covering the ‘hasX’ role naming. An evaluation of the generated
text with 18 non-linguists found a clear preference for verbalization in
the singular for subsumption (as with isiZulu), existential quantification,
and negation in the context of subsumption; but the plural form of verb
negation.

1 Introduction

Runyankore is one of the top five most widely spoken languages in Uganda [2,
18, 20]. Wider internet access in Africa has led to the expansion of technology lo-
calization for indigenous languages. Large technology companies, such as Google
and Mozilla, have made efforts to provide localized versions of their software.
For Uganda, the Google search engine is available in Ekinyarwanda, Kiswahili,
Luganda, Luo, and Runyakitara.

For any language, the development of computational components is resource-
intensive [4]. However, when dealing with a very under-resourced language like
Runyankore, it is justifiable to tailor what has already been done in a similar
language, as a means of reducing development time and effort [4, 7]. One way
of doing this is through the bootstrapping approach. Specifically, and similarly
to [4], this means using the existing isiZulu verbalization patterns to generate
sentences from axioms in a Description Logic (DL) as the starting point from
which Runyankore ones can be tailored.

Bootstrapping has been applied to develop CNLs using templates [11] and
the Grammatical Framework (GF) [1]. However, the template approach is inap-
plicable to languages with an agglutinating morphology [13, 14], and Runyankore

is too under-resourced for GF, which requires a large resource grammar library;
hence the need for bootstrapping for CNLs of agglutinated languages based on
a grammar engine, which has not yet been done. The benefits of the bootstrap-
ping approach for the development of language resources has been documented
[4, 7, 12], most important of which is a reduction in development time and effort
without sacrificing accuracy [4, 7].

We therefore seek to find out whether: (1) verbalization in Runyankore is
affected by the same variables as isiZulu, namely the noun class of the name
of the concept, the category of the concept, whether the concept is atomic or
an expression, the quantifier used in the axiom, and the position of the concept
in the axiom; and if so, (2) the existing isiZulu verbalization patterns can be
tailored to Runyankore grammar to generate correct Runyankore text.

We define a Controlled Natural Language (CNL) as a constructed language
based on a particular natural language, with a restricted lexicon, syntax, and
semantics, but which still maintains its natural properties [15], and verbalization
as the process of writing the semantics expressed in axioms as a CNL [11]. As
a substantial amount of rules are necessary for the Runyankore CNL, it effec-
tively blurs the line with NLG in the back-end. The Attributive Concept Lan-
guage with Complements (ALC) was used because of its expressiveness [3]. Here,
we present how Runyankore verbalizations of subsumption (‘is a’), conjunction
(‘and’), negation (‘not’), existential quantification (‘at least one’), and universal
quantification (‘for all’/‘each’) were tailored from isiZulu. The evaluation with
18 non-linguists showed preference for the singular form in the verbalisation for
most constructors.

The paper is structured as follows: Section 2 introduces the basics of Run-
yankore; Section 3 presents related work in bootstrapping for language resource
development; Section 4 illustrates how Runyankore verbalization patterns have
been tailored from those of isiZulu; the evaluation is presented in Section 5;
Section 6 discusses the implications of this work; and we conclude in Section 7.

2 Basics of Runyankore

Runyankore is a Bantu language spoken in the south-western part of Uganda by
over two million people and is one of the top five most widely spoken languages
in Uganda [2, 18, 20]. Runyankore, like other Bantu languages, is a highly agglu-
tinative language [2, 18]—a word can be composed of over five constituents [6].
As the following example demonstrates, word formation involves the addition of
affixes to a base word, where each affix carries meaning such as tense and as-
pect [18] (AU: augment, PRE: prefix, NC: noun class, CONT: continuous tense
marker, SC: subject concord, FV: final vowel):

Abaana nibazaana A-ba-aana ni-ba-zaan-a
‘The children are playing’ AU-PRENC2-child CONT-SCNC2-play-FV

There are several similarities between the structure of isiZulu and Run-
yankore, which make it seem feasible to tailor isiZulu verbalization patterns
to Runyankore grammar. In both languages, the verbal morphology is very com-
plex, with five different tenses in isiZulu [13] and fourteen in Runyankore [20].

Each noun is associated with one of several noun classes [14, 6]. The noun class
determines the affixes of the nouns belonging to it, and subsequently agreement
markers on the associated lexical categories such as adjectives and verbs [13, 6].
Noun class prefixes are coupled as singular/plural pairs [14]. Nouns comprise of
two formatives, the prefix and the stem [14], where prefixes express number and
are used to determine the class to which a particular noun belongs [14]. Table 1
shows the noun class system for isiZulu and Runyankore, using Meinhof’s 1948
noun class system, which is a standard for defining noun classes among linguists,
and thus facilitates cross-language comparisons and use. There are, however, sev-
eral differences that make the direct reuse of the isiZulu verbalization patterns
impossible (e.g., vocabulary and grammatical differences).

Table 1. IsiZulu and Runyankore noun classes, with their respective standard list of
prefixes; NC: Noun class, AU: augment, PRE: prefix, n/a: class is not used.

NC isiZulu Runyankore NC isiZulu Runyankore
AU PRE AU PRE AU PRE AU PRE

1 u- m(u)- o- mu- 9 i(n)- - e- n-, m-
2 a- ba- a ba- 10 i- zi(n)- e- n-

1a u- - n/a 11 u- (lu)- o- ru-
2a o- - n/a (10) i- zi(n)- n/a

3a u- - n/a 12 n/a a- ka-
(2a) o- - n/a 13 n/a o- tu-

3 u- m(u)- o- mu- 14 u- bu- o- bu-
4 i- mi- e- mi- 15 u- ku- o- ku-
5 i- (li)- e- i-, ri- 6 n/a a- ma-
6 a- ma- a- ma- 16 n/a a- ha-

7 i- si- e- ki- 17 - ku- - ku-
8 i- zi- e- bi- 18 n/a o- mu-

9a i- - n/a 20 n/a o- gu-
(6) a- ma- n/a 21 n/a a- ga-

3 Related Work

Davel and Barnard [7] applied the bootstrapping approach to extend a German
pronunciation dictionary, using automatically extracted rules to generate addi-
tional word/pronunciation pairs, which were then used to extract better rules
[7]. They managed to reduce development time to less than a quarter of that
required for manual development and still maintain a high level of accuracy [7].

Bootstrapping has also been used in the development of CNLs [11, 1]. Jarrar
et al. [11] used templates to develop multilingual verbalizations of logical theo-
ries. The initial verbalization template file would be tailored to a grammatically
related language by varying the text in the text tags and their position, to reflect
the language structure of the target language [11]. Through the bootstrapping
approach, e.g., a German verbalization template was tailored from the Dutch

template [11]. Angelov and Ranta [1] instead used GF to develop their CNL first
in English, and this was then ported to Finish, French, German, Italian, and
Swedish. Bootstrapping reduced development time from four days for English to
a matter of hours for each of the languages [1].

For Bantu languages, however, the biggest drawback to developing computa-
tional language resources is their complex agglutinating morphology [4, 13, 14].
Bosch et al. [4] considerably reduced development time by applying an experi-
mental bootstrapping approach in developing morphological analyzers for isiX-
hosa, Swati, and Ndebele based on the existing one for isiZulu [4]. Starting with
the isiZulu morphological analyzer, they made the following language-specific
modifications for each language: word roots lexicon, grammatical morpheme
lexicon, as well as the language appropriate morphophonological rules [4]. The
reduction in development time was from over 3,000 hours for the initial isiZulu
morphological analyzer to a total of about 300 hours for all three new ones,
with a further improvement using language-specific resources and rules from an
average accuracy of 71.3% to 95.6% [4].

In summary, it has been shown that the bootstrapping approach has so far
been used to develop a pronunciation dictionary, morphological analyzer, and
generate language using templates and GF. As explained in Section 1, templates
cannot be applied to an agglutinative language like Runyankore, and GF re-
quires a wide coverage grammar specification which currently does not exist in
Runyankore, and will require a lot of time and effort to develop.

4 Comparing Verbalization in isiZulu and Runyankore

In the bootstrapping approach, machine-learning analyses are corrected by a
human “trainer” and the corrections are then further used to update the system’s
rules, and the cycle continues until the system achieves a satisfactory level of
accuracy [12] (as was the case in [4, 7]). We apply the same concept but perform
a manual analysis instead of machine learning. Instead of developing Runyankore
verbalization patterns from scratch, isiZulu verbalization patterns are manually
analyzed and tailored to the Runyankore grammar and lexicon [19].

Here we describe how this was done for subsumption (v), conjunction (u),
negation (¬), existential quantification (∃), and universal quantification (∀), i.e.,
most of the basic Description Logic language ALC [3], which is a proper fragment
of the OWL 2 DL ontology language that is a relatively popular and standardised
input for CNLs and NLG [5, 17].

Runyankore verbalizations were derived by analyzing the similarities in fac-
tors. In both languages, the main variables that affect verbalization are the noun
class of a concept’s name, the concept name’s category, whether the concept is
atomic or an expression, the quantifier, and the position of the concept in the
axiom [14]. The isiZulu verbalization patterns were then changed to reflect Run-
yankore grammar rules. Table 2 depicts the similarities and customizations. The
enumerations in the isiZulu and Runyankore columns indicate that the use de-
pends on the context, which may be the category or noun class it applies to, or
other aspects in the axiom before or after the symbol [14].

Table 2. A few constructors, their typical verbalization in English, basic options in
isiZulu and Runyankore; columns 1-3 were obtained from [14].

DL English Verbalization options isiZulu Verbalization options
Runyankore

v ... is a ... Depends on what is on the rhs of
v; requires either a semantic (liv-
ing vs non-living thing) or syntac-
tic (noun starts with either i or a,
o, u) distinction

Depends on whether the noun
on the RHS of v starts with a
vowel

≡ 1) ... is the
same as ...
2) ... is
equivalent
to ...

I. Depends on what is on the rhs of
≡: whether a person or not II. De-
pends on grammatical number on
lhs of ≡: whether singular or plu-
ral

I. Depends on what is on the
LHS of ≡ to obtain the subject
prefix II. Depends on whether
what is on the RHS of ≡ starts
with a vowel or not

t ... or ... 1) ... okanye ...
2) ... noma ...

... nainga ...

u ... and ... Depends on whether u is used to
enumerate lists or connect clauses

Also depends on whether u is
used to enumerate lists or con-
nect clauses

¬ not ... angi/akusiso/akusona/akubona
/akulona/....

Depends on:
I. both nouns, with the noun
after ¬ dropping its initial
vowel II. on the noun class of
the concept in the relation

∃ 1) some ...
2) there ex-
ists ...
3) at least
one ...

Depends on position in axiom:
I. quantified over concept, depends
on meaning of concept (living or
non-living) II. includes relation
(preposition issue omitted)

Depends on the noun class of
the concept quantified over

∀ 1) for all ...
2) each ...

Depends on the semantic distinc-
tion of what is quantified over:
I. (non)living thing II. noun class
distinction

Depends on the noun class of
the concept quantified over

We illustrate the grammar rules associated with the verbalization of the se-
lected constructors using examples of verbalizations. Although these grammar
rules are different for isiZulu and Runyankore, it is important to keep in mind
that the resulting Runyankore verbalizations were obtained from analyzing how
it was done in isiZulu. For some constructors, there were several possible alter-
native verbalizations. The ones presented below were selected as the best during
the survey (described in Section 5).

Universal Quantification. In isiZulu, the ‘all’ or ‘each’ uses the same trans-
lation, -onke [13, 14]. Runyankore, however, has separate translations: -ona ‘all’
and buri ‘each’, with the latter only for nouns in the singular and the noun drops

the initial vowel. In both isiZulu and Runyankore, the -onke and -ona, respec-
tively, are prefixed with the appropriate prefixes of the noun class of the named
concept (oral prefix for isiZulu [13] and genitive for Runyankore). However, in
the isiZulu pattern, -onke is placed before the noun [13, 14], while Runyankore
places -ona after the noun. The example illustrates verbalising Girl v ... with
‘each’ (1z, 1r) and ‘for all’ (2z, 2r), including vowel processing (e.g., -a+o- =
-oo- in Runyankore):
1z: isiZulu: Wonke umfana ... (from u- + -onke)
1r: Runyankore: Buri mwishiki ... (always buri)
2z: isiZulu: Bonke abafana ... (from ba- + -onke)
2r: Runyankore: Abishiki boona (from ba- + -ona)

Simple Taxonomic Subsumption Verbalizations of v in Runyankore and
isiZulu both depend on the first letter of the superclass. In isiZulu, the right
copulative was selected based on the first letter of the noun of the superclass
(ng for nouns starting with a-, o-, or u-, else y) [13]. In Runyankore, ni is used
if the superclass starts with a consonant, and n’ otherwise. For example, the
verbalization of Giraffe v Animal (‘each giraffe is an animal’):

isiZulu: indlulamithi yisilwane
Runyankore: entwiga n’enyamishwa
If the subsumption is followed by negation, then the verbalization changes for

both isiZulu and Runyankore. In isiZulu, the verbalization for subsumption and
negation are combined into one term and the copulative is omitted, regardless
the quantifiers in the verbalization [13]. Runyankore simply replaces ni for ti (‘is
not’); the noun after ¬ drops its initial vowel if it has one. This is illustrated for
Cup v ¬Glass (‘each cup is not a glass’):

isiZulu: zonke izindebe aziyona ingilazi (preferred verbalisation [14])
Runyankore: Ekikopo ti girasi

Conjunction isiZulu verbalizes u depending on whether ‘and’ is used for a list
of things or to connect clauses; in the former case, na is used and kanye or futhi
for the latter [13]. Runyankore follows a similar pattern by using na when u is
used to enumerate lists, and kandi when used to connect clauses. Runyankore
makes a further distinction for lists and uses na only when u is between nouns,
but kandi otherwise. If one of the concepts is an adjective, then the noun class
is required to obtain the adjective prefix in order to form the full translation
of the adjective. Algorithm 4.1 illustrates the verbalization of u, where the first
concept is a noun and the second is either a noun or adjective.

Existential Quantification In both isiZulu and Runyankore, the noun class is
crucial to the verbalization: in obtaining the relative and quantitative concords
in isiZulu, and the subject prefix in Runyankore. Runyankore verbalizes ∃ as
hakiri for ‘at least’ and -mwe with subject prefix of the concept quantified over
in order to form the full word for ‘one’. The latter is similar to isiZulu’s -dwa,
which also relies on the noun class to get the correct concords [13].

Algorithm 4.1 Verbalization of Conjunction (u)

1: A axiom; Variables: a1, a2, p1, p2, c1, sp, ap, a′; and Functions: getLHS(A),
getRHS(A), getPOS(a), getNC(a), getPreviousNoun(A)

2: a1 ← getLHS(A) {get element to the left of u}
3: a2 ← getRHS(A) {get element to the right of u}
4: p2 ← getPOS(a2) {get the part of speech for a2}
5: if p2 = noun then
6: Result ← ‘a1 na a2’ {Verbalize with ‘na’, with vowel assimilation}
7: else
8: c1 ← getNC(a1)
9: ap← getAdjectivePrefix(a1)

10: Result ← ‘a1 kandi apa2’ {Verbalize with ‘kandi’}
11: end if
12: return Result

isiZulu: wonke uSolwazi ufundisa isifundo esisodwa (but pl. preferred [14])
Runyankore: Buri mwegyesa nayegyesa hakiri eishomo rimwe

Algorithm 4.2 includes verbalization of the verb in 3rd pers. sg. and ‘hasX’
named roles (e.g., hasChild).

Algorithm 4.2 Verbalization of Existential Quantification (∃)

1: A axiom; Variables: a1, a2, sp1, r, r′1, r′2, spr, cr, c1; and Functions: getConcept(A),
getRole(A), getRoleElement(r), getNC(a), dropInitialV owel(a), splitRole(r)

2: a1 ← getConcept(A) {get the concept quantified over in the axiom}
3: r ← getRole(A)
4: a2 ← getRoleElement(r) {get the element of the role}
5: c1 ← getNC(a1)
6: sp1 ← getSubjectPrefix(c1)
7: a′

1 ← dropInitialV owel(a1)
8: if r.hasForm(hasX) = true then
9: splitRole(r) {split the role into its constituent terms}

10: r′1 ← r[0] {the role}
11: r′2 ← r[1] {the named concept in the role}
12: cr ← getNC(r′2)
13: spr ← getSubjectPrefix(cr)
14: Result ← ‘Buri a′

1 hakiri sp1r
′
1e r′2 sprmwe sprri c2’

15: else
16: Result ← ‘Buri a′

1 nisp1ra hakiri a2 sp2mwe’ {Verbalize with ‘hakiri ... -mwe’}
17: end if
18: return Result

Negation with Roles Negation of verbs also uses ti (as is the case for sub-
sumption), but additionally requires the subject prefix of the concept and the
infinitive ku. In the case of ‘hasX’-named roles, the subject prefix of X—the

concept contained within the role name—is used. Algorithm 4.3 shows how this
has been achieved for both cases.

Algorithm 4.3 Verbalization of Negation (¬) for ‘hasX’

1: A axiom; Variables: a1, a2, r, r1, r2, c1, cr, sp1, spr; and Functions: getRole(A),
getConcept(A), getNC(a)

2: a1 ← getConcept(A) {get the concept at the start of the axiom}
3: r ← getRole(A) {get the role after ¬}
4: c← getNC(a1)
5: sp1 ← getSubjectPrefix(c)
6: if r.hasForm(hasX) = true then
7: splitRole(r) {split the role into its constituent terms}
8: r′1 ← r[0] {the role}
9: r′2 ← r[1] {the named concept in the role}

10: cr ← getNC(r′2)
11: spr ← getSubjectPrefix(cr)
12: Result ← ‘ ... tisp1r

′
1e r′2 sprri ... ’ {Verbalize with ‘ti’ to negate ‘has’ and the

subject prefix of the named concept in the role}
13: else
14: Result ← ‘ ... tisprikua2a ... ’ {Verbalize with ‘ti’ which negates verbs}
15: end if
16: return Result

5 Evaluation

The verbalizations of ∀, v, ¬, and ∃ produced several alternative texts during
the initial analysis, as they did for isiZulu. In order to decide which verbalization
to implement, an evaluation similar to that of [14, 9] was carried out to ascertain
which pattern was preferred by survey participants.

Survey Design The participants in the evaluation were obtained from Run-
yankore speakers in Kampala, Uganda. WhatsApp was used to conduct the
survey because it is more familiar and widely used than email or online surveys.
18 participants completed the survey, who were middle-class Banyankore and
spoke both English and Runyankore; 78.8% were female and their age ranged
from 24 to 59. Participants were recruited using snowball sampling, starting
with a family WhatsApp group. They were instructed to answer five questions
by subjectively selecting the best verbalization for each question in the form 1c,
2d, 3a, etc. They were also encouraged to explain the reasons for their choices,
though only 3 participants did so. The answers were either directly delivered to
us via WhatsApp, or were sent through an intermediary. Nineteen participants
replied, though one was excluded because it was incomplete.

The five questions in the survey tested verbalisations of the following ax-
ioms: (1) Teacher v ∃teaches.Subject; (2) Cup v ¬Thing; (3) Cat v Animal;

(4) Man v ∃hasChild.Doctor; and (5) Giraffe v ¬∃eats.Meat. The English
verbalization was included before the Runyankore alternatives in order to en-
able the participants to translate to Runyankore, and then compare with the
alternatives generated from the verbalization patterns.

Question (1) had four alternatives, with the difference being either the sin-
gular or plural form, as well as the placement of hakiri before or after the noun.
Question (2) had four alternatives: singular with ti, plural with ti, singular with
ti... ri, and plural with ti... ri. Question (3) had two alternatives: either sin-
gular or plural. The placement of hakiri before or after the verb, the choice of
whether to include -mwe, and either singular or plural resulted in six alternatives
for question (4). Question (5) also had six alternatives, due to singular/plural,
and the difficulty of translating ¬∃eats as ‘never eats’, ‘does not eat’, or ‘is not
eating’.

Results The singular form was generally preferred by the majority of survey
participants. 72.2% chose the singular form for ∃ with hakiri after the verb; 55.6%
preferred the singular with ti for v ¬, and the singular with v was preferred
by 72.2% of the participants. The plural form was only preferred in the case of
negating a verb (¬∃eats) by 33.3%. Three verbalizations were not selected by
any participants: question 4, the plural form with hakiri after the verb, as well as
the plural with no -mwe’ and question 5, the singular form with the translation
as ‘does not eat.’ As no explanations were offered by the participants, we cannot
speculate as to the reasons for this.

The results were not as clear for individual choices for ∃hasChild.Doctor as
the singular with hakiri before or after the verb, and the plural with hakiri before
the verb were all chosen by 27.8% of participants. However, when generalized
along singular/plural lines, then 72.2% selected the singular; when based on the
placement of hakiri and the inclusion of -mwe, then the most preferred by 44.4%
was the one which had hakiri before the verb and included -mwe.

The evaluation of ¬∃eats also produced interesting results. The plural form
for the translation as ‘never eat’ was chosen by the majority of participants
(33.3%). However, because ‘never’ verbalizes the axiom as if it has a temporal
dimension, which OWL does not have, we considered the second best alternative,
which was the plural form of the translation as ‘are not eating’ (27.8%). Despite
this, the evaluation still showed that the plural is preferred for negation of roles.

6 Discussion

Kuhn [15] stated that one of the applications of CNLs is to provide natural and
intuitive representations of formal languages. Verbalization is one of the ways
of doing this, and our work here further solidifies what was done in [13, 14] to
show that it is possible for Bantu languages, despite their complex linguistic
structure. From our evaluation, we are able to control for certain factors during
verbalization, such as the grammatical form as well as the placement of hakiri
and the inclusion of -mwe in the resulting text, thus reducing the number of

construction and interpretation rules. This is important because it ensures a
deterministic outcome of the resulting CNL. Additionally, the subset of Run-
yankore applied during verbalization is restricted by the types of axioms that
can be represented in ALC. This further ensures that a predictable interpreta-
tion is obtained, and this can only be done by having a strict syntactic subset
of natural language [9, 8].

The application of the bootstrapping approach in the development of lan-
guage resources, especially for similar languages, has been mainly associated
with reduction in development time and effort. This paper further highlights its
importance to under-resourced languages like Runyankore. Tailoring Runyankore
verbalizations from those of isiZulu made it a lot easier, because the underlying
theory, like the factors affecting verbalization and the role of the noun class, had
already been identified for isiZulu. Table 2 showed that verbalization in both
languages is affected by similar factors, and Section 4 showed how the tailoring
was done to obtain Runyankore verbalizations. This jumpstarting also facilitated
extending the verbalisations with ‘hasX’ named roles. Our Java implementation
of the above algorithms also creates the possibility to verbalize longer axioms.

Further, with the development of an ontology based on the Bantu noun class
system—for annotating an ontology with noun class information [6]—there is
now the possibility of applying such verbalizations to real-world use cases. Our
research shows that the customization of these patterns is not only possible, but
can obtain good results, as is the case in our evaluation. The same approach
can thus be applied to languages like Rukiga, Rutooro, and Runyoro that are
regarded to be between 78% and 99% similar to Runyankore [2, 18, 20]. Finally,
given that a bootstrapping approach was still possible between Runyankore and
isiZulu, which are in different zones according to Guthrie’s classification of Bantu
languages [10, 16], the same approach could be feasible even for those Bantu
languages which are not classified under the same category.

7 Conclusions

The verbalization of most ALC constructors in Runyankore was made easier by
applying the bootstrapping approach to what was done for isiZulu. We have
identified that verbalization in Runyankore is affected by the same factors as
in isiZulu, namely: the noun class of the name of the concept, the category of
the concept, whether the concept is atomic or an expression, the quantifier used
in the axiom, and the position of the concept in the axiom. A few differences
were identified, so the Runyankore ones were tailored to this. The evaluation by
non-linguists provided clear favorites among alternative verbalization options.
We plan to complete an evaluation among linguists concerning grammatical cor-
rectness, as well as a more inclusive sample of participants along age, education,
and socio-economic lines.

Acknowledgements This work is based on the research supported by the Hasso
Plattner Institute (HPI) Research School in CS4A at UCT and the National
Research Foundation of South Africa (Grant Number 93397).

References

1. Angelov, K., Ranta, A.: Implementing controlled languages in GF. In: Proc. of
CNL’09. pp. 82–101. Springer, Marettimo Island, Italy (2009)

2. Asiimwe, A.: Definiteness and Specificity in Runyankore-Rukiga. Ph.D. thesis, Stal-
lenbosch University, Cape Town, South Africa (2014)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logics Handbook – Theory and Applications. Cambridge
University Press, 2 edn. (2008)

4. Bosch, S., Pretorius, L., Fleisch, A.: Experimental bootstrapping of morphological
analyzers for nguni languages. Nordic J. of African Studies 17(2), 66–88 (2008)

5. Bouayad-Agha, N., Casamayor, G., Wanner, L.: Natural language generation in
the context of the semantic web. Semantic Web Journal 5(6), 493–513 (2014)

6. Chavula, C., Keet, C.M.: Is lemon sufficient for building multilingual ontologies
for Bantu languages? In: Proc. of OWLED’14. CEUR-WS, vol. 1265, pp. 61–72
(2014), Riva del Garda, Italy

7. Davel, M., Barnard, E.: Bootstrapping in language resource generation. In: Proc.
of PRASA’13. Langebaan, South Africa (2003)

8. Gruzitis, N., Barzdins, G.: Towards a more natural multilingual controlled language
interface to owl. In: 9th International Conference on Computational Semantics
(IWCS). pp. 335–339 (2011)

9. Gruzitis, N., Nespore, G., Saulite, B.: Verbalizing ontologies in controlled baltic
languages. In: Proc. of Int. Conf. on HLT–The Baltic Perspective. FAIA, vol. 219,
pp. 187–194. IOS Press (2010), Riga, Latvia

10. Guthrie, M.: The Classification of the Bantu Languages. Oxford University Press,
London (1948)

11. Jarrar, M., Keet, C.M., Dongilli, P.: Multilingual verbalization of ORM conceptual
models and axiomatized ontologies. Tech. rep., Vrije Universiteit, Brussels, Belgium
(2006)

12. Joubert, L., Zimu, V., Davel, M., Barnard, E.: A framework for bootstrapping mor-
phological decomposition. In: Proc. of PRASA’04. Grabouw, South Africa (2004)

13. Keet, C.M., Khumalo, L.: Basics for a grammar engine to verbalize logical theories
in isiZulu. In: Proc. of RuleML’14. LNCS, vol. 8620, pp. 216–225. Springer (2014)

14. Keet, C.M., Khumalo, L.: Towards verbalizing ontologies in isiZulu. In: Proc. of
CNL’14. LNAI, vol. 8625, pp. 78–89. Springer, Galway, Ireland (2014)

15. Kuhn, T.: A survey and classification of controlled natural languages. Computa-
tional Linguistics 40(1), 121–170 (2014)

16. Maho, J.F.: Nugl online: The online version of the updated guthrie
list, a referential classification of the bantu languages (2009),
http://goto.glocalnet.net/mahopapers/nuglonline.pdf

17. Safwat, H., Davis, B.: CNLs for the semantic web: a state of the art. Language
Resources & Evaluation in print, DOI: 10.1007/s10579–016–9351–x (2016)

18. Tayebwa, D.D.: Demonstrative Determiners in Runyankore-Rukiga. Master’s the-
sis, Norwegian University of Science and Technology, Norway (2014)

19. Taylor, C.: A Simplified Runyankore-Rukiga-English Dictionary. Fountain Pub-
lishers, Kampala, Uganda (2009)

20. Turamyomwe, J.: Tense and Aspect in Runyankore-Rukiga: Linguistic Resources
and Analysis. Master’s thesis, Norwegian University of Science and Technology,
Norway (2011)

