
Patterns for Heterogeneous TBox Mappings to
Bridge Different Modelling Decisions

Pablo Rubén Fillottrani1,2 and C. Maria Keet3

1 Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional
del Sur, Bah́ıa Blanca, Argentina, prf@cs.uns.edu.ar

2 Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires, Argentina
3 Department of Computer Science, University of Cape Town, South Africa

mkeet@cs.uct.ac.za

Abstract. Correspondence patterns have been proposed as templates
of commonly used alignments between heterogeneous elements in on-
tologies, although design tools are currently not equipped with handling
these definition alignments nor pattern alignments. We aim to address
this by, first, formalising the notion of design pattern; secondly, defin-
ing typical modelling choice patterns and their alignments; and finally,
proposing algorithms for integrating automatic pattern detection into
existing ontology design tools. This gave rise to six formalised pattern
alignments and two efficient local search and pattern matching algo-
rithms to propose possible pattern alignments to the modeller.

1 Introduction

Ontology developers face choices on how to represent the subject domain knowl-
edge during the ontology authoring stage. In some instances, there really is
a right and a wrong way of representing it—e.g., not confusing subsumption
with parthood—but this is not always the case. For instance, whether Marriage
should be represented as a class or as an object property. Some OWL files may
also lean more toward being a logic-based conceptual data model for a single
application, rather than have its knowledge represented such that many appli-
cations may avail of it, such as with ontologies for ontology-based data access
applications [2] versus foundational ontologies such as DOLCE [16], respectively.
In the context of ontology alignment, such different modelling decisions result in
modeller-intended alignments that cannot be found automatically with current
alignment tools [19, 23] and may have a mismatch logically despite a deemed ‘suf-
ficient semantic equivalence’ conceptually. For instance, ontology O1 may have
Employee v Person, which is a typical subsumption in conceptual modelling, ver-
sus Person v PhysicalObject, Employee v Role, and Employee v ∃inheresIn.Person
in ontology O2 that is inspired by foundational ontology modelling practices,
and where PhysicalObject v ¬Role is also asserted. Aligning Employee and Person
across these two ontologies with a simple 1:1 equivalence axiom will then result
in an unsatisfiable Employee in O1. This and similar situations raise the question
of how to link or integrate O1 with O2 when there is no single vocabulary element

to match with in both ontologies, or when intuitively the knowledge represented
is deemed sufficiently the same with respect to the subject domain knowledge,
but an alignment will result in an inconsistency nevertheless.

This question can be recast as one of somehow having to manage and resolve
heterogeneous modelling patterns, rather than the customary pairwise align-
ments of single elements [3, 19]. This requires the capability to align patterns as
a whole, and thus also involve different types of elements that will have to be
bridged, such as a class and an object property, which has been noted widely as
an open issue in ontology matching [19]. Ontology Design Patterns (ODPs) have
a type of pattern called correspondence pattern, with a few correspondences pro-
posed in [20–22] and several submissions are included in the ODP catalogue1.
They are mostly definition alignments, however, i.e., with a class on the left-
hand side of the equivalence and a pattern (the definition of the class) on the
right-hand side (automated only recently [7]), rather than patterns on both sides.
Ghidini et al [8] focus on logic and reasoning complexity and cover only a small
subset of possible correspondences with single heterogeneous elements. In short,
heterogeneous alignments between modelling patterns is a manual, individual,
process at present.

We aim to address this mapping impasse by identifying common modelling
patterns, their rationale, and providing a formalisation of the corresponding
ODPs, inclusive of a formalisation of an ontology pattern itself. This resulted
in six complex alignments between modelling patterns. Secondly, we show that
automated finding of the patterns and checking correctness of a possible pattern-
based alignment is indeed possible. Algorithmically, finding such patterns can
be reduced to localised pattern matching in the ontology. We present two such
algorithms for one of the pattern alignments to demonstrate that feasibility; the
algorithms for the other patterns follow the same design. They are being imple-
mented in the ICOM tool [4] that already caters for inter-ontology assertions
between single elements in different OWL ontologies and reason over them.

The remainder of this paper is structured as follows. Section 2 describes re-
lated work. Sections 3 and 4 present the main theoretical contribution of the
paper with the formal representation of a design pattern and the pattern align-
ments. Section 5 describes the optimised algorithms, which is followed by a
discussion (Section 6) and conclusions (Section 7).

2 Related works

The work most closely related to ours is that of [20–22], who present mostly
definition alignments as correspondence patterns within the context of ontol-
ogy design patterns. That is, there is one named concept in ontology O1 that
matches with an axiom in O2, such as PinotageWine in a simple wine ontology
O1 being aligned to Wine u ∃grapeVariety.Pinotage from a more detailed wyn on-
tologie O2. Based on the alignment naming, Scharffe et al.’s (no longer available)

1 http://www.ontologydesignpatterns.org

library [22] also includes a few homogeneous mappings that involve more than
one element, such as a range restriction. Somewhat related to this are entity
transformations within the same ontology [25], which covers single-entity swaps
and one pattern similar to one in [21]. Such correspondences were, at the time, a
substantial extension to the 1:1 mappings common in ontology matching [3, 19]
and independent of later automated alignment efforts [19]. Definition alignments
and automatic finding thereof now has a logic-based tool to assist with this [7].

Other recent efforts in automated ontology matching has commenced consid-
ering aligning domain ontologies to a foundational ontology [23], which brings
afore a separate set of issues. One is that such matching involves mostly subsump-
tion rather than equivalence [23]. The domain ontology↔foundational ontology
alignment issues regarding modelling choices, such as a process as a class (e.g.,
Running) or an object property (Op) (e.g., runs) and those mentioned in the intro-
duction of this paper, were not addressed. Logic-based approaches for heteroge-
nous alignments were investigated in [8] that focussed on the class↔Op mappings
(DL concept, role), such as the marriage example mentioned in the introduction,
and Op↔Dp (DL role, attribute) mappings, using bridge rules. These two pat-
terns are a subset of the range needed for heterogeneous alignments and the
logic is a subset of OWL (ALCQIb). The Distributed Ontology Language [17]
takes another approach by defining a framework by which to link and extend
logical theories. This is useful for the case where the ontologies are represented
in different logics, but it does not consider patterns yet.

Conceptual model alignment patterns have been proposed by [5, 14], which
resemble some of the cases in ontologies, such as their class↔relationship and
the relationship↔attribute, and ORM Value Type↔UML Attribute. They used
a rule-based approach to inter-model links in general and more applied with
ATL in particular, which is popular in model-driven engineering but not imme-
diately usable for ontologies, and they avail of a particular unifying metamodel
to mediate between the conceptual models, which is different for OWL.

In sum, while some reusable ideas have been proposed, logic-based linking of
heterogeneous patterns between ontologies it yet to be solved.

3 Formal representation of patterns and alignments

We need a way to formally describe a pattern before being able to declare links
between patterns. Such precision is useful for determining a logical or a ‘subject
domain semantics’ equivalence or subsumption or another motivation for aligning
the patterns. To the best of our knowledge, there is no formal definition of an
ODP yet, therefore we introduce this first before the actual alignment patterns.
Note that the focus is on the ontology and logic aspects; for a specification of
ODP documentation and metadata, the reader is referred to [12].

Definition 1 (Language of pattern instantiation). OWL Ontology O with
language specification adhering to the W3C standard [18], which has classes C ∈
VC , object properties OP ∈ VOP , data properties D ∈ VD, data types DT ∈ VDT

of the permitted XML schema types, axiom components (‘language features’)
X ∈ VX , and such that Ax ∈ VAx are the axioms.

Of course, this could be another ontology language, but it is easier for the cur-
rent presentation to cast it in the context of OWL. The ‘axiom components’ in
Definition 1 include features such as functionality on an object property “≤ 1 ”,
transitivity, ‘at least one’ “∃”, and cardinality that can be used according to the
syntax of the language.

The pattern itself is a meta-level specification, alike UML’s stereotyping.
In addition, because some patterns will refer to categories from a foundational
ontology, yet which are also included in the ontology, we acknowledge their status
here with respect to the context of a pattern.

Definition 2 (Language for patterns: Vocabulary V). The meta-level (sec-
ond order) elements (or stereotypes) for patterns are:
– class C ∈ VC as C in the pattern;
– object property OP ∈ VOP as R in the pattern;
– data property D ∈ VD as D in the pattern;
– data type DT ∈ VDT as DT in the pattern;
– reserved set of entities from a foundational ontology, as F in the pattern;

where added subscripts i with 1 ≤ i ≤ n may be different elements. Two elements
in the vocabulary are called homogeneous iff they belong to the same type, i.e.,
they are both classes, or both object properties, and so on. Elements can be used
in axioms Ax ∈ VAx that consists of axiom components x ∈ VX in the pattern
such that the type of axioms are those supported in the ontology language in
which the instance of the pattern is represented.

Subsumption and equivalence axiom components relate homogeneous elements;
functionality and at least one axiom components relate heterogeneous elements
from the vocabulary. The set of “reserved entities” in F depends on which foun-
dational ontology is used; e.g., for DOLCE, this set includes, among others,
Perdurant, Endurant, and qt and for BFO, Independent Continuant and Quality.

An ontology pattern P can now be defined as follows.

Definition 3 (Ontology Pattern P). An ontology pattern P consists of more
than one element from vocabulary V which relate through at least one axiom
component from VX . Its specification contains the:
– pattern name;
– pattern elements from V;
– pattern axiom component(s) from VX ;
– pattern’s full formalisation.

For instance, a simple named class subsumption pattern with axiom component
v (in VX) and two named classes is formalised as C1 v C2, which can be instanti-
ated with classes, e.g., Human,Animal ∈ VC as, in DL notation, Human v Animal.
A slightly more comprehensive one, the basic all-some pattern, then has as spec-
ification: pattern name: basic all-some, with pattern elements: C1, C2, R, the pat-
tern axiom component(s): v, ∃, and the pattern’s full formalisation: C1 v ∃R.C2.
An instantiation of this pattern is, e.g., Professor v ∃teaches.Course.

Now that we have a precise notion of patterns and instantiations, we can
proceed to define mappings between elements in different ontologies in two steps:
the component of common homogeneous mappings and the homogeneous with
heterogeneous alignments that are typically needed to align patterns as a whole.
The former is defined in Definition 4, which is a shorthand version of the lengthy
specification in [3], and the latter in Definition 5.

Definition 4 (Homogeneous mapping). Let O,O′ be two ontologies with
vocabularies V,V ′. A mapping is a subsumption or equivalence axiom relating
two homogeneous elements, one in V and the other in V ′.

For example, to relate the class Teacher in O to Instructor in O′ with the mapping
Instructor v Teacher. Mappings provide bindings between homogeneous elements
in different ontologies, constituting the basis for ontology pattern alignment.

Definition 5 (Ontology Pattern Alignment, OPA). An ontology pattern
alignment OPA consists of two ontology patterns, P and P ′, such that its sig-
nature Σ is a subset of the signature of the respective ontologies O and O′, i.e.,
Σ(P) ⊆ Σ(O) and Σ(P ′) ⊆ Σ(O′), and alignment axioms
– alignment pattern name;
– pattern elements;
– alignment patterns’ context, consisting of:
• O’s pattern P
• O′’s pattern P ′

– alignment pattern axiom component(s) from VX ;
– pattern alignment’s formalisation, composed of:
• a (possibly empty) set of mappings between homogeneous elements in P

and P ′

• a set of axioms made from components in VX connecting heterogeneous
elements in P and P ′

An OPA thus relates different patterns in separate ontologies, based on previous
knowledge of class or Op alignments.

Note that here, and in the remainder of the paper, a pattern must neither
be inconsistent nor have unsatisfiable classes or Ops. That is, a pattern is well-
formed, and verified to be so before any alignment of patterns will occur.

4 Aligning alternate modelling patterns

In presenting the patterns, we first introduce those motivated by ‘conceptual’
or ‘subject domain semantics-motivated’ mappings that have sufficient semantic
approximation and are typical for differences in modelling decisions between
domain ontologies and foundational ontologies (Section 4.1). Subsequently, we
analyse, update, and formalise those presented elsewhere, which are mostly of
the definitorial type rather than true pattern mappings (Section 4.2). In interest
of space, we omit from the presentation the “pattern axiom component(s)”, for
they they are principally relevant for the language fragments aspects, which is
not the current scope and they can be seen from the full formalisation anyway.

Person

Employee *1Person Employee

*1Physical object Social Objectinherence

E. vs.

B. vs.**Runner Marathonruns
Perdurant

RunningRunner

Endurant

inherence

Marathon*1

participation

1*
involvement

A. vs.
Person married to

Marriage Personparticipation

Book Person
borrowed by

Bookloan
Book

participation
Person

vs.

**Person SkillC. vs.
hasSkill: String

Person
hasSkill

D. vs.hasColour: RGBvalue
Apple

Quality

ColourApple

Endurant

Physical
Region

1..

has quality

1..**
quale

Region

2***

* *
1..*

1
1..*

0..1

1..

has quality
1..**

quale

Fig. 1. Examples of the modelling patterns. A: generic class vs Op; B: Perdurant class
vs Op; C: class vs. Dp; D: qualities vs Dps; E: example on representing roles.

4.1 Matching modelling patterns

Five pattern alignments are introduced, of which common examples are shown
in Fig. 1. While they may look different, some are slight variants of the same
pattern, so, in the interest of space, we formalise the principal cases only.

A: Class vs. object property (Op) is the more generic, unconstrained ver-
sion of Fig 1-B (‘Perdurant class vs. Op’; see below), which is called granularity
mismatch in [6]. The typical example is Marriage. It may well be that most practi-
cal cases turn out to be of that pattern because typically verbs are used as names
of Ops, which, in turn, are typically reified as dolce:Perdurant or bfo:Occurrent.
– alignment pattern name: class-OP
– pattern elements: C1, C2,R1 from O, C′3, C′4, C′5,R′2,R′3 from O′

– alignment pattern’ contexts:
• pattern P in O: ∃R1.C2 v C1 and ∃R−1 .C1 v C2;
• pattern P ′ in O′: ∃R′2.C′4 v C′3, ∃R′−2 .C′3 v C′4, ∃R′3.C′5 v C′3, ∃R′−3 .C′3 v
C′5, C′3 v (∃R′2), and C′3 v (∃R′3).

– pattern’s full formalisation:
• homogeneous mappings: between C1 and C′4 and between C2 and C′5, which

may be subsumption or equivalence relations.
• heterogeneous alignments: ∃R1 v C′3, ∃R−1 v C′3, C′3 v ∃R1 u ∃R−1 u (≤

1R1) u (≤ 1R−1).
Fig. 1-A includes two instantiations of this pattern. In the first one, C1 ≡ C2 for
Person, C′4 ≡ C′5 for Person as well, and the pattern associates the role married to

(R1) with the class Marriage (instantiating C′3). There must be an equivalence
or a subsumption mapping between the Person classes in both ontologies. Note
that due to cardinality constraints in P ′ that are not in P , the alignment de
facto generates a new property that is a sub property of R1.

B: Perdurant class vs. Op This mismatch tends to occur more often when
aligning a domain ontology to a foundational ontology (FO). FOs typically have
a class Perdurant (Occurrent) for objects unfolding in time (cf. endurants that are
wholly present at each time instant they exist), which is the branch in the TBox
to represent entities such as Running and Performance. They relate to endurants,
like a runner participates in a running (event) like a marathon. Domain ontologies
may use a modelling approach more typical of conceptual modelling, where there
would not be a ‘running’, but an Op runs between a class runner and the class
marathon, and an Op performs etc. That is, the choice between the verb or
its reification. For the FO, there are thus three classes (runner, running, and
marathon) with two Ops, whereas in the domain ontology, there are two classes
(runner and marathon) and one Op. The formalisation of this pattern is similar
to case A, but F is non-empty such that C′3 v PD (DOLCE’s Perdurant, or an
equivalent [13]) and at least C1, C2, C′4 and C′5 in the pattern are subsumed by
ED (Endurant) or its equivalent.

C: Class vs data property (Dp) A typical example that also persists in
conceptual modelling, is whether ‘skill’ should be modelled as a class Skill with
subclasses or as a Dp hasSkill with data values. From an ontological viewpoint,
the former is better, as the latter diminishes the chances of interoperability and
usability of ontologies, but it does occur. Note that in the pattern alignment,
we take Dps to be specialisations of Ops, which are recast as a subsumption
between two unnamed classes.
– alignment pattern name: class-DP
– pattern elements: C1,D1,DT 1 from O, C′2, C′3,R′1 from O′.
– alignment pattern contexts:
• pattern P in O: ∃D1 v C1 and ∃D1.DT 1 v C1;
• pattern P ′ in O′: ∃R′1 v C′2, and ∃R′−1 v C′3.

– pattern’s full formalisation:
• homogeneous mappings: C1 v C′2;
• heterogeneous alignments: ∃D1.DT 1 v ∃R′1.C′3

Op vs Dp This is a consequence of the ‘class vs data property’ choice, for
the Dp turns into a class, which therewith forces the introduction of an Op. The
details of Op vs. Dp are a fragment of the previous one, and is therefore omitted.

D: Qualities vs. Dps This distinction is another case of FO modelling vs
the more widely-known option from conceptual modelling practices. Instead of a
Dp such as hasColour and hasHeight that are known in philosophy as attributions,
one can turn that into a class of type Quality (or similar) and then have two
properties, one from the class of type Endurant to the Quality and one from the
Quality to a Region for the value space. This is a modification of case C, for it

entails ‘class vs. data property’ as the attribute is turned into a class, yet it
is not just any class but specifically Quality from a FO (i.e., it is in F), with
associated Ops and a subclass of Abstract ∈ F for the category of value regions,
and associated constraints.
– alignment pattern name: quality-DP
– pattern elements: C1,D1,DT 1 from O, C′2, C′3, C′4, C′5, C′6, C′7,R′1,R′2 from O′

where C′3, C′5, C′7,R′1,R′2 ∈ F .
– alignment pattern contexts:
• pattern P in O: ∃D1.DT 1 v C1;
• pattern P ′ in O′: C′2 v C′3, C′4 v C′5, C′6 v C′7 ∃R′1.C′5 v C′3, ∃R′−1 .C′3 v C′5,
∃R′2.C′7 v C′5, ∃R′−1 .C′5 v C′7, C′5 v ∃R′−1 .C′3, C′5 v ∃R′2.C′7, and these are
inherited down the hierarchy for C′2, C′4, and C′6.

– pattern’s full formalisation: (in addition to the “alignment pattern contexts”)
• homogeneous mappings: C1 v C′2;
• heterogeneous alignments: ∃D1.DT 1 v ∃R′1.(∃R′2.C′6)

If F draws from DOLCE’s vocabulary, then C′3 ≡ ED (Endurant), C′5 ≡ Q
(Quality), C′7 ≡ R (Region), R′1 ≡ qt (‘has quality’), and R′2 ≡ ql (‘has quale’); see
[13] for their mappings to BFO and GFO.

E: Representing roles The differences for this case can be traced back to both
conceptual modelling practices and OntoClean [9] that conflict with FO guide-
lines. For instance, one can represent Employee v Person in an ontology, or, more
generally in OntoClean terminology, that an anti-rigid property (like Employee)
is subsumed by a rigid one (like Person). FOs put those anti-rigid properties—
they being the roles played by rigid properties (Independent Continuant in BFO
or Physical Object in DOLCE)—in another branch in the taxonomy, typically as
subclasses of, e.g., Role in BFO or Social Object in DOLCE. The two are then
related through an Op generally known as inherence, where the role inheres in
the physical object or the physical object is the bearer of the role.
– alignment pattern name: subs-Role-inherence
– pattern elements: C1, C2 fromO, C′3, C′4, C′5, C′6,R′1 fromO′ and C′4, C′6, R′1 ∈ F .
– alignment pattern contexts:
• pattern P in O: C1 v C2;
• pattern P ′ in O′: C′3 v C′4, C′5 v C′6, ∃R′1.C′6 v C′4, ∃R′1.C′5 v C′3,
∃R′−1 .C′4 v C′6, ∃R′−1 .C′3 v C′5, C′6 v= 1R′1.C′4, C′5 v= 1R′1.C′3.

– pattern’s full formalisation:
• homogeneous mappings: C1 ≡ C′5, C2 ≡ C′3;
• heterogeneous alignments: the subsumption relation in O aligns with R1,

which is not expressible in DL or OWL.
If F draws from DOLCE, then C′4 ≡ POB (Physical object), C′6 ≡ SOB (Social
object), and R′1 ≡ OD (one-sided constant dependence) or R′1 ≡ OGD (one-sided
generic constant dependence); see [13] for their mappings to BFO and GFO.

4.2 Assessment and formalisation of other correspondence patterns

As noted, correspondence patterns have been proposed before in [20–22] and
there are several submissions in the ODP catalogue. The analysis of these CPs

brings afore the difference between patterns that are patterns and those that are
essentially definition mappings. That is, the former has more than one vocabulary
element on the left-hand side of the mapping (recall Definition 3 of an ODP)
and more than one vocabulary element on the right-hand side of the inclusion or
equivalence, whereas the latter has one vocabulary element on the left-hand side
and more than one on the right-hand side (or vv.). We first provide the analysis
of the proposed CPs and refine and formalise the the patterns afterward.

Ritze et al. [20] surveyed multiple sources, and proposed four patterns based
on that, three of which are of the definition-mapping type:

CAT: Class Attribute Type: C1 ≡ ∃R2.C2, where R can be an Op or Dp, with
as example: PositiveReviewedPaper ≡ Paper u ∃hasEvaluation.positive [20]. By
that example, R is a Dp, not an Op, and the right-hand side in the pattern
misses a parent class. This would need to be separated into a CAT for Ops
and and CAT for Dps, so as to recognise the pattern properly in alignment
tools. The omission of the named class on the rhs seems to have been unin-
tended, for [20] note it is the same as the CAT in the ODP catalogue (see
below), which does include the class on the rhs, as does its ‘inverse’, below.

CAT−: C1 ≡ C2 u ∃R−2 .C3; e.g., Researcher ≡ Person u ∃researchedBy−.> [20].
CAV: Class Attribute Value, with nominals: C1 ≡ ∃R2.{...}, with as example

submittedPaper ≡ submission.{true}, where ‘true’ is discussed as if it were
a Boolean but is represented as one of the values, like the one for passing
the course as hasExamScore.{A,B,C,D} [20]. However, with nominals/one-of,
which is a class, CAV turns out to be a variant of CAT.

PC: R1 ≡ S2 ◦ S3, where S3 is a Dp [20]. However, OWL2 does not permit a
chain combining Ops and a Dp, and if S3 were to be an Op, then the ontolo-
gies+mapping assertion goes beyond OWL 2 DL, for true role composition
is undecidable. This can be corrected by asserting subsumption rather than
equivalence, which brings us back to our pattern D.

Scharffe and Fensel [21, 22] claim to have a library of 35 patters, but the URL in
the paper is broken, therefore, we assess only those described in [21, 22], three of
which are definitorial. Those patterns all have observed instances, such as when
trying to align the wine ontology with the ontologie du vin, DOAP with OSSV,
and FOAF with itself, whose examples are omitted here for brevity.

CAT: Class Attribute Type: C1 ≡ C2 u ∃R2.C3 [21], as intended by [20].
CRD: C1 v ∃R2.(∃S2.datatype) ≡ D3 v ∃R3.datatype, so S2 and R3 are Dps

[21], and noting that the ‘Property-Relation Correspondence’ in [22] is a
fragment of CRD. This is a sort of specialisation of our pattern D, as a Dp is
a kind of Op.

UI: Union and intersection patterns: they were not formalised in [21, 22], but
are obvious, being: C1 ≡ C2 t C3 and C1 u C2 ≡ C3.

The other correspondence patterns listed in [22] include homogeneous mappings
of one or more entities, such as ‘Equivalent Attribute’ and domain/range axioms,
whereas a ‘Class to instance’ mapping constitutes a modelling error in either O
or O′ and is therefore not considered here.

The ODP catalogue (see fn. 1) has two types of correspondence patterns:
reengineering and alignment patterns. The former can be seen as a ‘swapping’ of
elements within the same ontology for syntax refactoring, whereas the latter are
matchings between two ontologies. There are 13 submitted alignment patterns.
They include the aforementioned Class Union (UI), CAT, CAV, Class by path
attribute value (alike the PC of [20]), Class correspondence by relation domain
with an unsupported AttributeOccurenceCondition, (named) Class Equiva-
lence, (named) Class Subsumption, disjointness between (named) classes, and
three Vocabulary Alignment Patterns (VAP) that have the same formalisation
in the catalogue, amounting to an Op subsumption where the subsumed one has
a domain and range axiom whose classes are aligned as well.
This results in the following two heterogeneous alignments inspired by [21]’s
CRD and the catalogue’s VAP:

Class-role-attribute pattern
– alignment pattern name: class-OP-DP
– pattern elements: C1, R1, D1, DT 1

from O, and C′2, D′2, DT ′2 from O′.
– alignment pattern’ contexts:
• pattern P in O: C1 v
∃R1.(∃D1.DT 1);

• pattern P ′ in O′: C′2 v ∃D′2.DT ′2.
– pattern’s full formalisation:
• homogeneous mappings: C1 ≡ C′2,
DT 1 ≡ DT ′2;

• heterogeneous alignments: ∃D′2 v
∃R1.(∃D1.DT 1).

Vocabulary alignment pattern
– alignment pattern name: OP-subs
– pattern elements: C1, R1, C2 from O,

and C′3, R′2, and C′4 from O′.
– alignment pattern’ contexts:
• pattern P in O: C1, R1, C2 (i.e.,

three independent entities);
• pattern P ′ in O′: ∃R′2.> v C′3,
∃R′−2 .> v C′4.

– pattern’s full formalisation:
• homogeneous mappings: C1 v C′3,
C2 v C′4, R1 v R′2;

• heterogeneous alignments:
∃R1.> v C1, ∃R−1 .> v C2.

The formalisation of the six OPAs, and thus 12 ODPs, presented in this section
constitute typical cases of modelling decisions. Although this might still be shown
to be not exhaustive, it does comprise a systematic approach for extension with
other complex alignments.

5 Alignment pattern search and checking algorithms

In order to show viability of our proposal, we introduce in this section two al-
gorithms for automated finding of, and checking correctness for, for handling
pattern A from Section 4.1. These algorithms can be incorporated in an ontol-
ogy development tool based on a DL/OWL reasoner, evidencing patterns are
practically relevant in ontology engineering (lest the pattern becomes an ab-
stract constraint relegated to a handwaiving manual check at best). We assume
the tool already has the capability of simultaneously handling two or more on-
tologies, and also can represent inter-ontology homogeneous mappings between
classes and between Ops. ICOM [4] is an example of such a tool.

Inter-ontology mappings can be explicitly added by the user, or implicitly
detected by the tool assisted by the reasoner. Both algorithms are described

using calls to OWLink [15] services in order to make them independent of the
actual DL/OWL reasoner used in the tool.

Algorithm 1 searches for all possible pattern matching instantiations in any
pair of ontologies such that the homogeneous mappings have already been anal-
ysed. The search is done based on reasoner services and proposes to the user
to select which of the instantiations found are meaningful for the ontology inte-
gration process. It uses OWLink’s IsOPSatisfiable for checking Op satisfiability
and GetSubClasses with the ‘direct’ flag activated in order to get the immedi-
ate descendants of a class expression, and it needs to be run each time before
accepting a suggestion made by the user. Algorithm 1’s running time is propor-
tional to m2r3c, where m is the number of detected homogeneous mappings,
r the number of Ops and c the number of classes in the integration scenario.
This is acceptable for being on-demand available when the user considers the
homogeneous mappings stable.

Algorithm 1 Alignment pattern A Search

Precondition: All mappings between ontologies O and O′ already found. Mappings
are of the form CrelC′ with C ∈ VC , C′ ∈ V ′C and rel ∈ {v,w,≡}.

1: function Alignment Pattern A Candidates()
2: A ← ∅ . A is the set of candidate alignments
3: for each pair of mappings C1rel1C

′
4 and C2rel2C

′
5, and relations R1 ∈ VOP and

R′2, R
′
3 ∈ V ′OP do

4: for each ClassSynset S in GetSubClasses(O′,∃R′2 u ∃R′3,direct=true) do
5: C′3 ← a representative class in S
6: if (IsOPSatisfiable(O′, (∃R′2.C′4 v C′3) u (∃R′−2 .C′3 v C′4)) and
7: IsOPSatisfiable(O′, (∃R′3.C′5 v C′3) u (∃R′−3 .C′3 v C′5)) and
8: IsOPSatisfiable(O, (∃R1.C2 v C1) u (∃R−1 .C1 v C2))) then
9: Add 〈R1 ∈ O,C′3, R

′
2, R

′
3 ∈ O′〉 to A

10: end if
11: end for
12: end for
13: return A
14: end function

To illustrate the algorithm with an example, suppose we are integrating
two pre-existing ontologies, represented as different ICOM schemas within the
same grand project as shown in Fig. 2. The TennisCircuit ontology (top one)
contains knowledge about tennis matches and the Olympiad ontology (second
one) describes athletes who participated in Olympic competitions (setting aside
whether they are ‘good’). ICOM’s homogeneous mappings are shown with thin
cross-ontology lines, being TennisPlayer v Athlete and Tennis v Tournament,
which may have been explicitly added by the user, detected by deduction from
the tool, or (when integrated) suggested by an ontology alignment technique [1].
After assessing the mappings, the user may ask the tool to find possible align-
ment patterns. It runs Algorithm 1, and in line 5 it finds class Match such that
it is connected to partOf and played. Then it asks the reasoner to check if these

Fig. 2. ICOM integration project with mappings (top) and pattern alignment sugges-
tion (inset).

two Ops are related to the already mapped classes Tournament and TennisPlayer
from TennisCircuit (lines 6-7), and finds participated that connects the mapped
classes Tennis and Athlete from Olympiad in line 8. Given everything is satisfi-
able, it sets a new candidate alignment connecting a subproperty of participated
in Olympiad with the concept Match in TennisCircuit, and presents it to the
user in a different colour as depicted in Fig. 2 (inset). Observe that the matched
Op in Olympiad is not directly defined over the mapped class, but instead over
a class higher in the hierarchy. Therefore, the suggested alignment is based on
the restriction of the original Op. The role of the reasoner in the algorithm is
essential in order to resolve which Op is applicable for the alignment.

Algorithm 2 checks whether a proposed pattern A instantiation follows the
formalised pattern properties. This would admit the alignment pattern to be
included in the integration process. The application scenario for this algorithm
is that the designer suspects the pattern is relevant for the integration, and
has already set the alignments in the project. Then she asks tool to verify all
conditions for the alignment pattern are met. For this algorithm there is no
precondition for its execution, and it simply communicates with the reasoner
checking satisfiability of the pattern formalisation within both ontologies.

Algorithms for the other patterns can be developed analogously, and are not
shown due to space limitations. If the pattern references a FO, as in pattern

Algorithm 2 Alignment pattern A Check

1: function Alignment Pattern A Check(R1 ∈ VOP , C′3 ∈ V ′C , R′2.R
′
3 ∈ V ′OP)

2: for each ClassSynSet S1 in GetSubClasses(O, ∃R1, direct=true) do
3: for each ClassSynSet S2 in GetSubClasses(O, ∃R−1 , direct=true) do
4: C1, C2 ← a representative class in S1, S2

5: if not IsOPSatisfiable(O, (∃R1.C2 v C1) u (∃R−1 .C1 v C2) then
6: return false
7: end if
8: end for
9: end for

10: for each ClassSynSet S3 in GetSubClasses(O′, ∃R′−2 , direct=true) do
11: for each ClassSynSet S4 in GetSubClasses(O′, ∃R′−3 , direct=true) do
12: C′4, C

′
5 ← a representative class in S3, S4

13: if not IsOPSatisfiable(O′, (∃R′2.C′4 v C′3)u(∃R′3.C′5 v C′3)u(∃R′−2 .C′3 v
C′4) u (∃R′−3 .C.3′ v C′5) then

14: return false
15: end if
16: end for
17: end for
18: return true
19: end function

B, D, and E, this fact can be used to shorten the algorithm execution time by
restricting the search of candidates to only the descendants of the FO’s elements
in the pattern. Pattern C can be detected by exhaustively analysing each Dp in-
volved in a given mapped class. Pattern D can be handled by similar algorithms
as algorithms 1 and 2 by replacing the Op in the first ontology (O) with a Dp,
and then the search shortened with the FO optimisation.

6 Discussion

The patterns and their alignments proposed in the previous sections allow for
both specifying and finding more complex alignment than the customary 1:1
mappings and definition mappings. Reconsidering the ODP formalisation of Sec-
tion 3, this bears similarity to the framework in [21], for it takes into account
a certain ‘layering’ of components, from the actual pattern instantiations in an
ontology represented in a particular language and their mapping to another one
(called “ground correspondences” in [21]), a “correspondence level” where the
correspondences between the patterns are represented in an abstract format cf.
the ground correspondence in the application, and the abstraction of that as
a correspondence pattern. Having patterns on both sides of the (equivalence
or subsumption) mapping bridge essentially extends these layers to the more
complex scenarios of pattern alignments considered in this paper. Further, the
algorithms have been designed such that one can do a local search compared to
brute force exhaustive searches across the whole ontology. This speeds up the
alignment process.

The pattern alignments do not come ‘for free’ computationally, however.
Some issues and consequences of aligning patterns were already mentioned in
passing: one cannot assert that some relation R in ontology O is the same as
S ◦ T in ontology O′, for R ≡ S ◦ T is undecidable, and thus outside OWL 2
DL. Other combinations may also result in undecidability whilst the separate
ontologies are within OWL 2 DL, especially due to the regularity constraint on
role hierarchies [10]. Our alignments do remain within OWL 2 DL, but it does
not guarantee to remain within the O’s or O′’s fragments; e.g., pattern alignment
A adds a conjunction.

While the scope here is complex alignments of ontologies, one also could use
the results obtained as a basis to replace patterns in one single ontology, i.e.,
moving toward a refactoring of a single ontology as a preparatory step for align-
ment. For instance, to prepare a domain ontology for linking to a foundational
ontology, which thereby can substantially extend the entity transformations of
PatOMat [25]. It is expected to be useful also for the process of transforming
a foundational ontology inspired domain ontology into an ‘application ontology’
for ontologically well-founded conceptual models, whose ideas were proposed in
[11, 24], but that yet still lack a formalisation and automation.

7 Conclusions

The paper introduced a first formalisation of an ontology design pattern, as a pre-
requisite for complex alignments between different common modelling patterns.
Twelve patterns for six pattern alignments were motivated from a modelling
viewpoint and formalised, augmented with two alignments inspired by defini-
tion alignments. They are supported by two efficient local search and pattern
matching algorithms that can propose possible pattern alignments to the mod-
eller. We are currently implementing the algorithms in ICOM. As future work,
the proposed pattern alignments may be recast as refactoring patterns within
a same ontology that may be of use in test-driven development of ontologies or
facilitate the automation of the link to ontology-driven conceptual modelling.

References

1. Ardjani, F., Bouchiha, D., Malki, M.: Ontology-alignment techniques: Survey and
analysis. Int. J. of Modern Education and Computer Science 7(11), 67 (2015)

2. Calvanese, D., Liuzzo, P., Mosca, A., Remesal, J., Rezk, M., Rull, G.: Ontology-
based data integration in EPNet: Production and distribution of food during the
Roman Empire. Eng. Appl. of AI 51, 212–229 (2016)

3. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)
4. Fillottrani, P.R., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual

modelling tool and methodology. Semantic Web Journal 3(3), 293–306 (2012)
5. Fillottrani, P.R., Keet, C.M.: Conceptual model interoperability: a metamodel-

driven approach. In: Bikakis, A., et al. (eds.) Proc. of RuleML’14. LNCS, vol.
8620, pp. 52–66. Springer (2014), 18-20 Aug 2014, Prague, Czech Republic

6. Gangemi, A.: Ontology design patterns for semantic web content. In: Gil, Y., et al.
(eds.) Proc. of ISWC’05. pp. 262–276. Springer (2005), galway, Ireland

7. Geleta, D., Payne, T.R., Tamma, V.: An investigation of definability in ontology
alignment. In: Blomqvist, E., et al. (eds.) Proc of EKAW’16. LNAI, vol. 10024, pp.
255–271. Springer (2016), 19-23 Nov 2016, Bologna, Italy

8. Ghidini, C., Serafini, L., Tessaris, S.: Complexity of reasoning with expressive on-
tology mappings. In: Eschenbach, C., et al. (eds.) Proc. of FOIS’08. Frontiers in
Artificial Intelligence and Applications, vol. 183, pp. 151–163. IOS Press (2008)

9. Guarino, N., Welty, C.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.)
Handbook on ontologies, pp. 151–159. Springer Verlag (2004)

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Proceedings
of KR-2006 pp. 452–457 (2006)

11. Jarrar, M., Demy, J., Meersman, R.: On using conceptual data modeling for on-
tology engineering. Journal on Data Semantics 1(1), 185–207 (2003)

12. Karima, N., Hammar, K., Hitzler, P.: How to document ontology design patterns.
In: Proc. of 7th WS on Ontology Patterns (WOP’16) (2016), 18 Oct, Kobe, Japan

13. Khan, Z.C., Keet, C.M.: Foundational ontology mediation in ROMULUS. In: Fred,
A., et al. (eds.) Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement: IC3K 2013 Selected Papers, CCIS, vol. 454, pp. 132–152. Springer (2015)

14. Khan, Z.C., Keet, C.M., Fillottrani, P.R., Cenci, K.: Experimentally motivated
transformations for intermodel links between conceptual models. In: Pokorný, J.,
et al. (eds.) Proc. of ADBIS’16. LNCS, vol. 9809, pp. 104–118. Springer (2016),
28-31 Aug 2016, Prague, Czech Republic

15. Liebig, T., Luther, M., Noppens, O., Wessel, M.: OWLlink. Semantic Web Journal
2(1), 23–32 (2011)

16. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library.
WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003). (2003)

17. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology,
modeling and specification language. In: Proc. of 7th Int. WS Modular Ontologies
(WoMo’13). CEUR-WS, vol. 1081 (2013), 15 Sept 2013, Corunna, Spain

18. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language struc-
tural specification and functional-style syntax. W3c recommendation, W3C (27
Oct 2009), http://www.w3.org/TR/owl2-syntax/

19. Otero-Cerdeira, L., Rodŕıguez-Mart́ınez, F.J., Gómez-Rodŕıguez, A.: Ontology
matching: A literature review. Expert Syst. Appl. 42, 949–971 (2015)

20. Ritze, D., Meilicke, C., Svab-Zamazal, O., Stuckenschmidt, H.: A pattern-based
ontology matching approach for detecting complex correspondences. In: Shvaiko,
P., et al. (eds.) Ontology Matching OM-2009 (2009)

21. Scharffe, F., Fensel, D.: Correspondence patterns for ontology alignment. In:
Gangemi, A., Euzenat, J. (eds.) Proc. of EKAW’08. LNAI, vol. 5268, pp. 83–92.
Springer (2008)

22. Scharffe, F., Zamazal, O., Fensel, D.: Ontology alignment design patterns. Knowl-
edge and Information Systems 40, 1–28 (2014)

23. Schmidt, D., Trojahn, C., Vieira, R.: Analysing top-level and domain ontology
alignments from matching systems. In: Ontology Matching OM-2016 (2016), 18
Oct 2016, Kobe, Japan

24. Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design: An
ontology management and conceptual modeling environment. ACM TODS 31(3),
1064–1094 (2006)

25. Zamazal, O., Svatek, V.: PatOMat - versatile framework for pattern-based ontology
transformation. Computing and Informatics 34, 305–336 (2015)

