
The isiZulu verbalisation algorithms: design and documentation

C. Maria Keet

Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

May 27, 2018

Abstract

Automatically generating text in isiZulu—the largest language by first language speak-
ers in South Africa—has been investigated over the past few years. This was done in an
incremental fashion, covering one feature at a time. The principal three components are
generating plurals from a noun in the singular, the main axiom types in an ontology, such as
subsumption of named classes and existential quantification, and the phonological condition-
ing that is required in certain cases. This document lists the core algorithms and contains
brief explanatory descriptions, which serve as implementation-independent documentation
of the code and to describe those algorithms not included in the respective papers.
The code is available as a downloadable zip file from the project website at http://www.

meteck.org/geni/, with as cut-off date the state in February 2018.

Keywords: Natural Language Generation, Controlled Natural Language, Pluralisation,
Phonological Conditioning, isiZulu, OWL

Contents

1 Pluralisation of nouns 2

2 Verbalisation algorithms for (almost) ALC 4

3 Algorithms for basic part-whole relations 8
3.1 Whole-part reading direction . 8
3.2 Part-whole reading direction . 12

4 Phonological conditioning 15

5 Architecture of the verbaliser 19

1

1 Pluralisation of nouns

The algorithm to pluralise nouns in the singular included here (Algorithm 1) is slightly changed
cf. the one described in [1] and implemented in its related supplementary material, for there it
was a stand-alone file and read in the test sets, whereas here that ‘wrapping’ is omitted.

Algorithm 1 Pluralise isiZulu noun (full version)

1: procedure pluralise(n)
2: input: noun in singular {note: n noun, nc noun class, p plural}
3: if n in exceptionList then
4: p ← plural exception {check exceptions list}
5: else
6: nc ← getNC(n) {lookup noun class of noun n}
7: {pluralise compound nouns}
8: if ’ ’ ∈ n and not endswith(nc, m) then
9: main, rest ← split(n) {to pluralise main noun and modify the modifier word (rest)}

10: switch
11: case nc == 1 and rest[0] /∈ {a, e, i, o, u}
12: rest′ = b + rest[1:]
13: case nc == 1 and rest[0] ∈ {a, e, i, o, u}
14: rest′ = aba + rest[1:]
15: case nc == 3a
16: rest′ = aba + rest[1:]
17: case (nc == 9 or nc == 7) and rest[0] /∈ {a, e, i, o, u}
18: rest′ = z + rest[1:]
19: case (nc == 9 or nc == 7) and rest[0] ∈ {a, e, i, o, u}
20: rest′ = rest[0] + zi + rest[3:]
21: break {cases for other ncs are yet to be investigated}
22: end switch
23: p′ ← pluralise(main)
24: p ← p′ + ’ ’ + rest′

25: else
26: {pluralise the regular nouns}
27: switch
28: case (startswith(n, um) or startswith(n, uM)) and n[2]!= u and nc == 1
29: p = aba + n[2:]
30: case (startswith(n, um) or startswith(n, uM)) and n[2] ∈ {a, e, i, o}
31: p = ab + n[2:]
32: case startswith(n, umu) and nc == 1
33: p = aba + n[3:]
34: case startswith(n, u) and nc == 1a or nc == 3a
35: p = o + n[1:]
36: case startswith(n, um) and n[2] != u and nc == 3
37: p = imi + n[2:]
38: case startswith(n, umu) and nc == 3
39: p = imi + n[3:]

2

40: case startswith(n, i) and n[0:2] != ili and (nc == 5 or nc == 9a)
41: p = ama + n[1:]
42: case startswith(n, ili) and nc == 5
43: p = ama + n[3:]
44: case startswith(n, isi) and nc == 7
45: p = izi + n[3:]
46: case startswith(n, is) and nc == 7 and n[2] ∈ {a, e, o, u}
47: p = iz + n[2:]
48: case startswith(n, im) and nc == 9
49: p = izi + n[1:]
50: case (startswith(n, in) or startswith(n, iN)) and nc == 9
51: p = izin + n[2:]
52: case startswith(n, ulu) and nc == 11
53: p = izi + n[3:]
54: case startswith(n, u) n[1:2] != lu and nc == 11
55: p = izi + n[1:]
56: case (startswith(n, ubu) and nc == 14
57: p = n
58: case (startswith(n, uku) or startswith(n, uk)) and (nc == 15 or nc == 17)
59: p = n {nc15 and nc17 don’t pluralise}
60: case endswith(nc, m)
61: p ← n {mass nouns don’t pluralise}
62: case nc ∈ {2, 4, 6, 8, 2a, 10} {noun exists only in plural form}
63: p = n
64: break
65: end loop
66: end if
67: end if
68: return p
69: end procedure

3

2 Verbalisation algorithms for (almost) ALC
The following list of algorithms are included in this document, which were first described in
[2, 3] and more comprehensively in [6]:

• Simple taxonomic subsumption, i.e., named class subsumption of the axiom type C v D,
in Algorithm 2;

• Simple existential quantification with named classes, i.e., of the axiom type C v ∃R.D,
in Algorithm 3;

• Negation in an axiom, covering both the axiom types C v ¬D and C v ¬∃R.D, in
Algorithm 4. This algorithm has been updated with vowel-commencing verb roots cf. the
one presented in [6].

Algorithm 3 and Algorithm 4 have functions to look up things from a list. They are the ‘lookup
tables’ for noun classes, and their corresponding quantitative, relative, and (negative) subject
concords, which are included in Table 1 for easy readable reference.

Table 1: Zulu noun classes with examples and a selection of concords. NC: Noun class; PRE:
prefix; QC: quantitative concord; RC: relative concord; SC: subject concord; NEG SC: negative
subject concord; PC: possessive concord. Updated cf. the tables in [1, 5, 6] (deviant cases of
prefixes not included).

NC Full PRE QC (∀) RC QC (∃) SC NEG SC PC

1 um(u)- wonke o- ye- u- aka- wa-
2 aba- bonke aba- bo- ba- aba- ba-
1a u- wonke o- ye- u- aka- wa-
2a o- bonke aba- bo- ba- aba- ba-
3a u- wonke o- ye- u- aka- wa-
2a o- bonke aba- bo- ba- aba- ba-
3 um(u)- wonke o- wo- u- awu- wa-
4 imi- yonke e- yo- i- ayi- ya-
5 i(li)- lonke eli- lo- li- ali- la-
6 ama- onke a- wo- a- awa- a-
7 isi- sonke esi- so- si- asi- sa-
8 izi- zonke ezi zo- zi- azi- za-
9a i- yonke e- yo- i- ayi- ya-
6 ama- onke a- wo- a- awa- a-
9 i(n)-, i(m)- yonke e- yo- i- ayi- ya-
10 izi(n)-, izi(m)- zonke ezi- zo- zi- azi- za-
11 u(lu)- lonke olu- lo- lu- alu- lwa-
10 izi(n)-, izi(m)- zonke ezi- zo- zi- azi- za-
14 ubu- bonke obu- bo- bu- abu- ba-
15 uku- konke oku- ko- ku- aku- kwa-
17 ku- lonke olu- lo- lu- kwa-

Further, note that these algorithms require pluralisation of the head noun, whose algorithm
is included in Section 1 (Algorithm 1).

There are specific cases with the part-whole relations, which are described in Section 3.
Both they and ‘regular irregular’ verbs require phonological conditioning, which is described in
Section 4.

4

Algorithm 2 (TaxSubs) Verbalisation of taxonomic subsumption, named classes (C v D).

Require: C set of classes, language L with v for subsumption and ¬ for negation; variables:
A axiom, NCi nounclass, c1, c2 ∈ C, a1 term, a2 letter; functions: getF irstClass(A),
getSecondClass(A), getNC(C), checkNegation(A), getF irstChar(C).

Require: axiom A with a v has been retrieved and named classes on the lhs and rhs
1: c1 ← getF irstClass(A) {get subclass}
2: c2 ← getSecondClass(A) {get superclass}
3: NC1 ← getNC(c1) {determine noun class by augment and prefix or dictionary}
4: NC2 ← getNC(c2) {determine noun class by augment and prefix or dictionary}
5: if checkNegation(A) == true then
6: {use negation (Algorithm 4)}
7: else
8: a2 ← getF irstChar(c2) {retrieve first letter of c2}
9: switch

10: case a2 = ‘i’ then
11: Result ← ‘c1 yc2.’ {verbalise as taxonomic subsumption with y}
12: case a2 = {‘a’, ‘o’, ‘u’} then
13: Result ← ‘c1 ngc2.’ {verbalise as taxonomic subsumption with ng}
14: case a2 6∈ {‘a’, ‘i’, ‘o’, ‘u’,} then
15: Result ← ‘this is not a well-formed isiZulu noun.’
16: end switch
17: end if
18: return result

5

Algorithm 3 (AllSome)Verbalisation of “all-some” axiom type (C v ∃R.D)

Require: C set of classes, language L with v for subsumption and ∃ for existential quantifi-
cation; variables: A axiom, NCi noun class, c1, c2 ∈ C, o ∈ R, a1 a term; r2, q2 concords;
functions: getF irstClass(A), getSecondClass(A), getNC(C), getRC(NCi), getQC(NCi),
getV SofOP (o).

Require: axiom A with a v has been retrieved and an ∃ on the rhs of the inclusion
1: c1 ← getF irstClass(A) {get subclass}
2: c2 ← getSecondClass(A) {get superclass}
3: o← getObjProp(A) {get object property}
4: v ← getV SofOP (o) {get verb stem of object property}
5: NC1 ← getNC(c1) {determine noun class by augment and prefix or dictionary}
6: NC2 ← getNC(c2) {determine noun class by augment and prefix or dictionary}
7: NC ′1 ← lookup plural nounclass of NC1 {from known list}
8: c′1 ← pluralise(c1, NC ′1) {call algorithm pluralise to generate a plural from o}
9: a1 ← lookup quantitative concord for NC ′1 {from quantitative concord (QC(all)) list}

10: r2 ← getRC(NC2) {get relative concord for c2 from the QCdwa-list}
11: q2 ← getQC(NC2) {get quantitative concord for c2 from the QCdwa-list}
12: if checkNegation(A) == true then
13: {use negation (Algorithm 4)}
14: else
15: if o annotated with present tense then
16: conjnc1 ← lookup SC of NC ′1 {from known SC list}
17: o′ ← conjnc1v {generate conjugated verb}
18: Result ← ‘a1 c′1 o′a c2 r2q2dwa.’ {verbalise the axiom}
19: else
20: Result ← ‘passive voice and inverses are not supported yet.’
21: end if
22: end if
23: return result

6

Algorithm 4 (Negation) Verbalisation of negation in an axiom, as disjointness or negated
object property (i.e., axioms of type C v ¬D and C v ¬∃R.D).

Require: C set of classes, language L with v for subsumption and ¬ for negation; variables:
A axiom, NCi noun class, c1, c2 ∈ C, a1 term, a2 letter and n, p are concords, v verb stem;
functions: checkNegation(A), getNSC(NCi), getPNC(NCi).

Require: checkNegation(A) == true
1: if negation directly preceded by v and directly followed by c2 then
2: NC ′1 ← lookup plural nounclass of NC1 {from known list}
3: c′1 ← pluralise(c1, NC ′1) {call algorithm pluralise to generate a plural from o}
4: a1 ← lookup quantitative concord for NC ′1 {from quantitative concord (QC(all)) list}
5: n← getNSC(NC ′1) {get negative subject concord for c′1}
6: p← getPNC(NC2) {get pronomial for c2}
7: Result ← ‘a1 c′1 np c2.’ {verbalise the disjointness (a1 is QC(all))}
8: else if negation in front of OP then
9: v′ ← remove final vowel of v {i.e., obtain the (possibly extended) verb root}

10: n← getNSC(NC ′1) {get negative subject concord for c′1}
11: if v′ ∈ {a, e, i, o, u, } then
12: negv ← phonoCondNegSc(v′, n)
13: else
14: negv ← n + v′

15: end if
16: Result ← ‘a1 c′1 negvi c2 r2q2dwa.’ {verbalise the axiom}
17: else {negation in front of c2 and A contains an OP}
18: Result ← ‘verbalisation of this class negation is not supported yet.’
19: end if
20: return result

7

3 Algorithms for basic part-whole relations

The algorithms are here presented as functions that integrate with the other algorithms pre-
sented in the preceding sections, in the sense that only the “all some” the axiom type is consid-
ered, i.e., C v ∃R.D, where in these cases, R is the ‘has part’ or the ‘part of’ reading direction.
For rationale and descriptions of the verbalisation patterns, see the corresponding paper [5]; an
informal summary of the part-whole relations is shown in Figure 1. The ‘has part’ direction
algorithm (Algorithm 5) was first published in [5].

Figure 1: Preliminary taxonomy based on the verbalisation patterns in [5] (source: [4]).

3.1 Whole-part reading direction

Algorithm 5 Determine the verbalisation of basic whole-part in an axiom. This covers the
structural, involvement, containment, membership, part-subquantities, and participation whole-
part relations

Require: C set of classes, language L, v for subsumption, ∃ for existential quantification;
variables: A axiom, NCi noun class, w, p ∈ C, o ∈ R, aw a term; rp, qp concords;

Require: axiom of the form W v ∃wp.P has been retrieved for verbalisation
1: w ← getF irstClass(A) {get whole}
2: p← getSecondClass(A) {get part}
3: wp← getObjProp(A) {get wp type (‘default’ parthood here)}
4: NCw ← getNC(w) {obtain noun class whole}
5: NCp ← getNC(p) {obtain noun class part}
6: wpl ← pluralise(w,NCw) {generate plural, using the pluraliser algorithm}
7: NC ′w ← getP lNC(NCw) {obtain plural NC, from known list}
8: aw ← getQCAll(NC ′w) {obtain quantitative concord (QC(all))}
9: sw ← getSC(NC ′w) {obtain subject concord}

10: conjp← phonoCondition(’na’,p) {prefix P with the CONJ, phonologically conditioned}
11: rp ← getRC(NCp) {obtain relative conc. for p}
12: qp ← getQC(NCp) {obtain quant. concord for p from the QC (exists)-list}
13: Result ← ‘ aw wpl swconjp rpqpdwa. ’ {verbalise the simple axiom}
14: return result

Because there is quite some duplication, like fetching the classes, pluralising, and adding
the quantitative concords, we put this now in a separate algorithm, commonFunctWP, being
Algorithm 6, that will be called by all the other functions. In some cases, it fetches a bit more
than strictly needed (e.g., an RC and QC too much), but it saves a lot of duplication in the
presentation here, and it’s not computationally costly (linear, with a small list). The solid
portions deviate from this, due to mostly dealing with a noun phrase (e.g., ‘sample of blood’),
so it is written in full there (Algorithm 10).

8

Algorithm 6 Common functions for wp verbalisation, commonFunctWP.

Require: C set of classes, language L, v for subsumption, ∃ for existential quantification;
variables: A axiom, NCi noun class, w, p ∈ C, o ∈ R, aw a term; rp, qp concords;

Require: axiom of the form W v ∃wp.P has been retrieved for verbalisation
1: w ← getF irstClass(A) {get whole}
2: p← getSecondClass(A) {get part}
3: wp← getObjProp(A) {get wp type}
4: NCw ← getNC(w) {obtain noun class whole}
5: NCp ← getNC(p) {obtain noun class part}
6: wpl ← pluralise(w,NCw) {generate plural, using the pluraliser algorithm}
7: NC ′w ← getP lNC(NCw) {obtain plural NC, from known list}
8: aw ← getQCAll(NC ′w) {obtain quantitative concord (QC(all))}
9: sw ← getSC(NC ′w) {obtain subject concord}

10: conjp← phonoCondition(’na’,p) {prefix P with the CONJ, phonologically conditioned}
11: rp ← getRC(NCp) {obtain relative conc. for p}
12: qp ← getQC(NCp) {obtain quant. concord for p from the QC (exists)-list}

Algorithm 7 Determine the verbalisation of basic whole-part in an axiom. Specifically: wp
for spatial portions, without -dwa. (wp spatial)

1: input: two named classes that have the role w and p, respectively
2: commonFunctWP(w,p)
3: if wp == spatial portion then
4: Result ← ‘ aw wpl swconjp.’ {verbalise the axiom}
5: end if
6: return result

Algorithm 8 Determine the verbalisation of basic whole-part in an axiom. Specifically: par-
ticipation with collectives, and w in singular (wp cp)

1: input: two named classes that have the role w and p, respectively
2: commonFunctWP(w,p)
3: if wp == collective participation then
4: aw ← getQCAll(NCw) {obtain quantitative concord (QC(all))}
5: sw ← getSC(NCw) {obtain subject concord}
6: Result ← ‘ aw w swconjp rpqpdwa.’ {verbalise the axiom}
7: end if
8: return result

Algorithm 9 Determine the verbalisation of basic whole-part in an axiom. That is: subquan-
tities [as parts] in singular, and no -dwa (wp s)

1: input: two named classes that have the role w and p, respectively
2: commonFunctWP(w,p)
3: if wp == subquantities then
4: aw ← getQCAll(NCw) {obtain quantitative concord (QC(all))}
5: sw ← getSC(NCw) {obtain subject concord}
6: Result ← ‘ aw w swconjp.’ {verbalise the simple axiom}
7: end if
8: return result

9

Algorithm 10 Determine the verbalisation of basic whole-part in an axiom. Specifically: solid
portion has W in singular, and the P with the PC, assuming that the part-quantity component
is one word only (wp solid p).

Require: axiom of the form W v ∃wp.P has been retrieved for verbalisation
1: w ← getF irstClass(A) {get whole}
2: p← getSecondClass(A) {get part}
3: wp← getObjProp(A) {get wp type}
4: if wp == solid portion then
5: NCw ← getNC(w) {obtain noun class whole}
6: q ← first word of p {p is typically a noun phrase or compound noun, first part the quantity, like slice, sample, etc}
7: if length(p) == 2 then
8: stuff ← second word of p
9: else

10: stuff ← remainder of p
11: end if
12: NCq ← getNC(q) {obtain noun class quantity}
13: aw ← getQCAll(NCw) {obtain quantitative concord (QC(all))}
14: sw ← getSC(NCw) {obtain subject concord}
15: conjp← phonoCondition(’na’,q) {prefix the quantity-part of P with the CONJ, phonologically conditioned}
16: pcq ← getPC(q) {obtain possessive conc. for q, for the ‘of’}
17: os← phonoCondition(pcq,stuff) {generate “of stuff”}
18: rp ← getRC(NCq) {obtain relative conc. for p}
19: qp ← getQC(NCq) {obtain quant. concord for p from the QC (exists)-list}
20: Result ← ‘ aw w swconjp os rpqpdwa.’ {verbalise the axiom}
21: end if
22: return result

Algorithm 11 Determine the verbalisation of basic whole-part in an axiom. Specifically:
constitution, of the built type (renamed this function after the inlg16). (const a)

Require: axiom of the form W v ∃wp.P has been retrieved for verbalisation
1: w ← getF irstClass(A) {get whole}
2: p← getSecondClass(A) {get part}
3: wp← getObjProp(A) {get wp type}
4: if wp == built constitution then
5: NCw ← getNC(w) {obtain noun class whole}
6: wpl ← pluralise(w,NCw) {generate plural, using the pluraliser algorithm}
7: NC ′w ← getP lNC(NCw) {obtain plural NC, from known list}
8: aw ← getQCAll(NC ′w) {obtain quantitative concord (QC(all))}
9: sv ← phonoCondVerb(’akhiwe’,NC ′w) {add SC + phono. cond. for vowel-commencing verbs}

10: op← phonoCondition(‘nga’,p) {generate “of part”}
11: Result ← ‘ aw wpl sv op. ’ {verbalise the axiom}
12: end if
13: return result

10

Algorithm 12 Determine the verbalisation of basic whole-part in an axiom. Specifically:
constitution as well, for other ‘non-construction’ constitution. (const e)

Require: axiom of the form W v ∃wp.P has been retrieved for verbalisation
1: w ← getF irstClass(A) {get whole}
2: p← getSecondClass(A) {get part}
3: wp← getObjProp(A) {get wp type}
4: if wp == the other constitution then
5: NCw ← getNC(w) {obtain noun class whole}
6: wpl ← pluralise(w,NCw) {generate plural, using the pluraliser algorithm}
7: NC ′w ← getP lNC(NCw) {obtain plural NC, from known list}
8: aw ← getQCAll(NC ′w) {obtain quantitative concord (QC(all))}
9: sv ← phonoCondVerb(’enziwe’,NC ′w) {add SC + phono. cond. for vowel-commencing verbs}

10: op← phonoCondition(‘nga’,p) {generate “of part”}
11: Result ← ‘ aw wpl sv op. ’ {verbalise the axiom}
12: end if
13: return result

11

3.2 Part-whole reading direction

For the sake of presentation, also here we put the common functions in a separate algorithm
tha tis used by the others (Algorithm 13).

Algorithm 13 Common functions for pw verbalisation, commonFunctPW.

Require: C set of classes, language L, v for subsumption, ∃ for existential quantification;
variables: A axiom, NCi noun class, w, p ∈ C, o ∈ R, aw a term; rp, qp concords;

Require: axiom of the form P v ∃pw.W has been retrieved for verbalisation
1: p← getF irstClass(A) {get whole}
2: w ← getSecondClass(A) {get part}
3: pw ← getObjProp(A) {get pw type}
4: NCp ← getNC(p) {obtain noun class whole}
5: NCw ← getNC(w) {obtain noun class part}
6: ppl ← pluralise(p,NCp) {generate plural, using the pluraliser algorithm}
7: NC ′p ← getP lNC(NCp) {obtain plural NC, from known list}
8: ap ← getQCAll(NC ′p) {obtain quantitative concord (QC(all))}
9: sp ← getSC(NC ′p) {obtain subject concord}

10: rw ← getRC(NCw) {obtain relative conc. for w}
11: qw ← getQC(NCw) {obtain quant. concord for w from the QC (exists)-list}

Algorithm 14 Determine the verbalisation of basic part-whole in an axiom. Specifically:
structural, involvement, membership, part-subquantities, participation, part-whole relations.
(pw)

1: input: two named classes that have the role w and p, respectively
2: commonFunctPW(p,w)
3: if pw == generic part then
4: pc = ’ya’ {no look-up needed for the PC, because it’s always ya- because always ingxenye (nc9)}
5: pcw ← phonoCondition(pc,w)
6: Result ← ‘ ap ppl spyingxenye pcw rwqwdwa. ’ {verbalise the axiom}
7: end if
8: return result

12

Algorithm 15 Determine the verbalisation of basic part-whole in an axiom. Specifically: part-
whole, in the singular as well, to cater for subquantities that can be both mass and count noun,
depending on context. (pw s)

1: input: two named classes that have the role w and p, respectively
2: commonFunctPW(p,w)
3: if pw == subquantity of then
4: ap ← getQCAll(NCp) {obtain quantitative concord (QC(all))}
5: sp ← getSC(NCp) {obtain subject concord}
6: pc = ’ya’ {no look-up needed for the PC, because it’s always ya- because always ingxenye (nc9)}
7: pcw ← phonoCondition(pc,w)
8: Result ← ‘ ap p spyingxenye pcw. ’ {verbalise the axiom}
9: end if

10: return result

Algorithm 16 Determine the verbalisation of basic part-whole in an axiom. Specifically: solid
portion-of. (pw solid p)

Require: axiom of the form P v ∃pw.W has been retrieved for verbalisation
1: p← getF irstClass(A) {get whole}
2: w ← getSecondClass(A) {get part}
3: pw ← getObjProp(A) {get pw type}
4: if pw == solid portion then
5: q ← first word of p {p is typically a noun phrase or compound noun, first part the quantity, like slice, sample, etc}
6: if length(p) == 2 then
7: stuff ← second word of p
8: else
9: stuff ← remainder of p

10: end if
11: NCq ← getNC(q) {obtain noun class quantity}
12: NCw ← getNC(w) {obtain noun class whole}
13: NC ′q ← getP lNC(NCq)
14: aq ← getQCAll(NC ′q) {obtain quantitative concord (QC(all))}
15: pcq ← getPC(q)
16: os← phonoCondition(pcq, stuff)
17: qpl ← pluralise(q,NC ′q)
18: sq ← getSC(NC ′q)
19: pc = ’sa’ {no look-up needed for the PC, because it’s always sa- because always isiqephu (nc7)}
20: pcw ← phonoCondition(pc,w)
21: rw ← getRC(NCw) {obtain relative conc. for w}
22: qw ← getQC(NCw) {obtain quant. concord for w from the QC (exists)-list}
23: Result ← ‘ aq qpl os sqyisiqephu pcw rwqwdwa.’ {verbalise the axiom}
24: end if
25: return result

13

Algorithm 17 Determine the verbalisation of basic part-whole in an axiom. Specifically:
spatial portion-of. (pw spatial p)

1: input: two named classes that have the role w and p, respectively
2: commonFunctPW(p,w)
3: if pw == spatial portion of then
4: pc = ’wa’ {no look-up needed for the PC, because it’s always wa- because always umunxa (nc3)}
5: pcw ← phonoCondition(pc,w)
6: Result ← ‘ ap ppl spngumunxa pcw. ’ {verbalise the axiom}
7: end if
8: return result

Algorithm 18 Determine the verbalisation of basic part-whole in an axiom. Specifically:
participates-in, for collective parts, in singular. (pw pi c)

1: input: two named classes that have the role w and p, respectively
2: commonFunctPW(p,w)
3: if pw == collective participates in then
4: ap ← getQCAll(NCp) {obtain quantitative concord (QC(all))}
5: sp ← getSC(NCp) {obtain subject concord}
6: lpre← phonoCondLocPrefix(w, NCw)
7: {add locative prefix to whole (if nc = 1a, 2a, 3a, or 17 then ku+word, else e+word)}
8: lpreWlsuf ← phonoCondLocSuffix(lpre) {add locative suffix to whole (the -ini/-eni/-wini etc)}
9: Result ← ‘ ap p sphlanganyele lpreWlsuf rwqwdwa.’ {verbalise the axiom}

10: end if
11: return result

Algorithm 19 Determine the verbalisation of basic part-whole in an axiom. Specifically:
contained-in. (pw ci)

1: input: two named classes that have the role w and p, respectively
2: commonFunctPW(p,w)
3: if pw == contained in then
4: Wlsuf ← phonoCondLocSuffix(w) {add locative suffix to whole (the -ini/-eni/-wini etc)}
5: lpreWlsuf ← phonoCondLocPrefix(Wlsuf , NCw)
6: {add locative prefix to whole (if nc = 1a, 2a, 3a, or 17 then ku+word, else e+word)}
7: Result ← ‘ ap ppl spslpreWlsuf rwqwdwa.’ {verbalise the axiom}
8: end if
9: return result

14

4 Phonological conditioning

This section first lists the phonological conditioning rules that have been implemented at the
time of writing and which have been mentioned informally in, mainly [5] for locatives and the
vowel-commencing verb roots, but not the others. They still seem incomplete and therefore also
listed outside their algorithm environment. The algorithms are presented afterwards.

• vowel coalescence function (phonoCondition in the algorithms), where X and Y are the
remainder of the word:

– Xa + aY → XaY

– Xa + (iY | eY) → XeY

– (Xa, X 6= ng) + uY → XoY // the ‘X 6= ng’ is an old remnant. as there’s also nga
+ uY = ngoY now, so can be deleted. (or not?)

– Xe + aY → XaY

– Xe + iY → XeY

– Xe + (oY | uY) → XoY

– Xu + (aY | eY | iY | oY | uY) → XuY

– nga + oY → ngoY //can this be generalised, as -a + o- = -o-?

– nga + uY → ngoY //can be included in the 3rd one

• locative prefix (phonoCondLocPrefix in the algorithms), possibly still incomplete

– if nc = 1a, 2a, 3a, or 17 → ku+word (subject to the vowel coalescence listed in the
previous item)

– for other ncs→ e+word (subject to the vowel coalescence listed in the previous item)

• locative suffix (phonoCondLocSuffix in the algorithms)

– regular cases:

∗ Xa → Xeni

∗ Xe → Xeni

∗ Xi → Xini

∗ Xo → Xweni

∗ Xu + (¬ ph) → Xwini // the ph in second and third last position

∗ Xu + ph → Xshini // the ph in second and third last position

∗ otherwise word+ini

– exceptions: imvilophu, idiphu, ifomu → word[0:-1] + ini.

• subject concord (sc) and vowel-commencing verb stem (word) and stem-minus-first-letter
(X), named phonoCondVerb in the algorithms in the preceding sections:

– (length(sc) ≥ 2, ¬ ku,lu) + (aX | eX) → [b/l/s/z]word // the remaining sc
consonants (sc[:-1] to be more precise)

– a + (aX | eX) → word

– i + (aX | eX) → yword

– u + (aX | eX) → wword

– ku,lu + (aX | eX) → [k/l]wword

– (length(sc) ≥ 2, ¬ ku) + oX → [b/l/s/z]word // the remaining sc consonants
(sc[:-1] to be more precise)

15

– a,i + oX → word

– u + oX → wword

– ku + oX → kwword

• negative subject concord (negsc) and vowel-commencing verb stem (word), in the algo-
rithm as phonoCondNegSc:

– (aX | eX) → negscyword

– (iX | oX | uX) → negscngword

Also in this case, the algorithms were gradually extended in the code, so there may be some
duplication (see also above) that may have yet to be refactored.

Algorithm 20 (VowelCoal) Vowel coalescence (or: two [the last letter of the first part and
the first letter of the second part] becoming one)

1: input: two strings, f irst and second, respectively, where the former is to be agglutinated
to the latter into a new word.

2: if f[−1] == ’a’ and s[0] == ’a’ then
3: n← f[0:−1]as[1:] {a+a = a}
4: else if f[−1] == ’a’ and (s[0] == ’i’ or s[0] == ’e’) then
5: n← f[0:−1]es[1:] {a+i/e = e}
6: else if f[−1] == ’a’ and f ! = ’nga’ and s[0] == ’u’ then
7: n← f[0:−1]os[1:] {a+u = o}
8: else if f[−1] == ’e’ and s[0] == ’a’ then
9: n← f[0:−1]as[1:] {e+a = a}

10: else if f[−1] == ’e’ and s[0] == ’i’ then
11: n← f[0:−1]es[1:] {e+i = e}
12: else if f[−1] == ’e’ and (s[0] == ’o’ or s[0] = ’u’) then
13: n← f[0:−1]os[1:] {e+o/u = o}
14: else if f[−1] == ’u’ then
15: n← fs[1:] {assuming the u is a ’stronger’ vowel, for now}
16: else
17: if f == ’nga’ and s[0] == ’o’ then
18: n← ngos[1:]
19: else if f == ’nga’ and s[0] == ’u’ then
20: n← ngos[1:]
21: else
22: n← other {sentinel word to detect a phonological conditioning not covered yet}
23: end if
24: end if
25: return n

16

Algorithm 21 (LocPre) Locative prefix for the noun or named entity.

1: input: word w and noun class nc
2: l← ew {default case}
3: if nc == 1a or nc == 2a or nc == 3a or nc == 17 then
4: l← VowelCoal(’ku’, w)
5: else
6: l← VowelCoal(’e’, w)
7: end if
8: return l

Algorithm 22 (LocSuf) Locative suffix for the noun or named entity.

1: input: word w
2: exceptions = [’imvilophu’,’idiphu’,’ifomu’]
3: if w ∈ exceptions or w[−1] == i then
4: l← w[0:−1]ini {note: ’ini’ is the common case}
5: else if w[−1] == a or w[−1] == e then
6: l← w[0:−1]eni {-a/-e = eni}
7: else if w[−1] == o then
8: l← w[0:−1]weni {-o = weni}
9: else if w[−1] == u and w[−3:−2] != ph then

10: l← w[0:−1]wini {-u = wini}
11: else if w[−1] == u and w[−3:−2] == ph then
12: l← w[0:−3]shini {-u = shini}
13: else
14: l← wini
15: end if
16: return l

17

Algorithm 23 (VowelVerb) Phonological conditioning for conjugation (SC with a vowel-
commencing verb root).

1: input: word w and its noun class nc
2: sc← getSC(nc) {get subject concord for that NC}
3: if (w[0] == ’a’ or w[0] == ’e’) and length(sc) ≥ 2 and sc != ’ku’ and sc != ’lu’ then
4: conjv ← sc[:−1]w {long sc + a-/e- = drop last letter of sc}
5: else if w[0] == ’a’ or w[0] == ’e’) and sc == ’a’ then
6: conjv ← w {a+a-/e- = drop sc}
7: else if (w[0] == ’a’ or w[0] == ’e’) and sc == ’i’ then
8: conjv ← yw {i+a-/e- = y+a-/e-}
9: else if (w[0] == ’a’ or w[0] == ’e’) and sc == ’u’ then

10: conjv ← ww {u+a-/e- = w+a-/e-}
11: else if (w[0] == ’a’ or w[0] == ’e’) and (sc == ’ku’ or sc == ’lu’) then
12: conjv ← sc[0]ww {ku/lu+a-/e- = k/l+w+a-/e-}
13: else if w[0] == ’o’ and length(sc) ≥ 2 and sc != ’ku’ then
14: conjv ← sc[:−1]w {long sc + o- = drop last letter of sc}
15: else if w[0] == ’o’ and (sc == ’a’ or sc == ’i’) then
16: conjv ← w {i/a + o- = o-}
17: else if w[0] == ’o’ and sc == ’u’ then
18: conjv ← ww {u + o- = w + o-}
19: else if w[0] == ’o’ and sc == ’ku’ then
20: conjv ← kww {ku + o- = kw + o-}
21: else
22: conjv ← w {or: don’t do anything}
23: end if
24: return conjv

Algorithm 24 (NegVowelVerb) Phonological conditioning for negated conjugation (NEG
SC with a vowel-commencing verb root).

1: input: word w and its noun class nc
2: nsc← getNEGSC(nc) {get negative subject concord for that NC}
3: if w[0] == ’a’ or w[0] == ’e’ then
4: negconjv ← nscyw {anything + a-/e- = anything + y + a-/e-}
5: else
6: negconjv ← nscngw {anything + i-/o-/u- = anything + ng + i-/o-/u-}
7: end if
8: return negconjv

18

5 Architecture of the verbaliser

The OWL verbaliser is described in [7]. The architecture is depicted in Figure 2 and is such
that one can:

• Run the Python code in the interpreter, feeding it just the strings in the format given by
the definitions in the code;

• Use Owlready to fetch the vocabulary from an ontology stored in OWL/XML format,
where the output is written to stdout/console;

• Use Owlready and Tkinter to fetch the vocabulary from an ontology stored in OWL/XML
format and get pretty printing in colour.

To use the software, see the readme.txt in the zipfile for instructions.

vroots

verbaliser
algorithms

- quantification
- subsumption
- negation
- etc.

nncPairs

nounExcept

isakhiwo,7
igumbi,5
…

dl
hamb
…

indoda,amadoda
umZulu,amaZulu

pluraliser

GUI with sentences
generated

OWL/XML
file

Sentences and errors
generated, in terminal

Tkinter

verbaliser

calls
referenced/imported into
generates

Owlready

Figure 2: Principal components of the OWL verbaliser. (Source: [7])

Acknowledgements

As can be seen for the references, the main collaborator in trying to structure the linguistic
knowledge is Langa Khumalo, and I hereby thank him for the collaboration.

This work is based on the research supported in part by the National Research Foundation
of South Africa (CMK: Grant Number 93397).

19

References

[1] J. Byamugisha, C. M. Keet, and L. Khumalo. Pluralising nouns in isiZulu and similar
languages. In A. Gelbukh, editor, Proceedings of CICLing’16, volume 9623 of LNCS, pages
271–283. Springer, 2018.

[2] C. Keet and L. Khumalo. Basics for a grammar engine to verbalize logical theories in isiZulu.
In A. Bikakis et al., editors, Proceedings of the 8th International Web Rule Symposium
(RuleML’14), volume 8620 of LNCS, pages 216–225. Springer, 2014. August 18-20, 2014,
Prague, Czech Republic.

[3] C. Keet and L. Khumalo. Toward verbalizing logical theories in isiZulu. In B. Davis,
T. Kuhn, and K. Kaljurand, editors, Proceedings of the 4th Workshop on Controlled Natural
Language (CNL’14), volume 8625 of LNAI, pages 78–89. Springer, 2014. 20-22 August 2014,
Galway, Ireland.

[4] C. M. Keet. Representing and aligning similar relations: parts and wholes in isizulu vs
english. In J. Gracia, F. Bond, J. McCrae, P. Buitelaar, C. Chiarcos, and S. Hellmann,
editors, Language, Data, and Knowledge 2017 (LDK’17), volume 10318 of LNAI, pages
58–73. Springer, 2017. 19-20 June, 2017, Galway, Ireland.

[5] C. M. Keet and L. Khumalo. On the verbalization patterns of part-whole relations in isizulu.
In 9th International Natural Language Generation conference (INLG’16), pages 174–183.
ACL, 2016. 5-8 September, 2016, Edinburgh, UK.

[6] C. M. Keet and L. Khumalo. Toward a knowledge-to-text controlled natural language of
isiZulu. Language Resources and Evaluation, 51(1):131–157, 2017.

[7] C. M. Keet, M. Xakaza, and L. Khumalo. Verbalising owl ontologies in isizulu with python.
In E. Blomqvist, K. Hose, H. Paulheim, A. Lawrynowicz, F. Ciravegna, and O. Hartig,
editors, The Semantic Web: ESWC 2017 Satellite Events, volume 10577 of LNCS, pages
59–64. Springer, 2017. 30 May - 1 June 2017, Portoroz, Slovenia.

20

