
NOMSA: Automated modularisation for
abstraction modules

Zubeida Casmod Khan1 and C. Maria Keet2

1 Council for Scientific and Industrial Research, Pretoria, South Africa
zkhan@csir.co.za

2 Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

Abstract. Large and complex ontologies lead to difficulty in usage by
humans and causes processing problems with software agents. Modular-
ity has been proposed to address this problem. Current methods and
tools can be used to create only some of the existing types of required
modules. To augment options for modularisation, we present novel meth-
ods to create five types of abstraction modules: axiom abstraction, vo-
cabulary abstraction, high-level abstraction, weighted abstraction, and
feature expressiveness. They have been implemented in the novel tool
NOMSA for automated modularisation, which also offers a GUI.

1 Introduction

Ontologies that describe large, well-defined domains are consequently large and
complex in nature, such as the FMA [7] and SNOMED CT [5]. Current software
tools face inherent difficulties to process such ontologies due to computational
limitations while humans face cognitive overload in trying to understand them.
Therefore, the need for modularisation of ontologies is becoming more prevalent
as it may offer benefits such as carving up the knowledge into manageable chunks
for humans and tools alike.

There has been an increase in methods and tools to assist with such a mod-
ularisation process [1, 6, 2]. While there are many modularisation tools, most
types of modules are still manually created. One such type is abstraction mod-
ules. Abstraction is the principle of simplifying complex models by removing
unnecessary details based on some criteria, such as reducing a class hierarchy’s
depth or removing axioms to fit the ontology in a language of lower expressive-
ness. We have investigated methods for creating abstraction modules, towards
creating new algorithms for them. These algorithms have been implemented in
a GUI called NOMSA (Novel Ontology Modularisation SoftwAre).

Section 2 briefly describes the methods, which are illustrated with a sample
ontology. Details of the implementation are described in Section 3.

2 Modularisation methods

We focus on designing algorithms to match those modularisation options that do
not have any means of realising them, as was observed in an existing evidence-



based ontology modularisation framework [4]. In particular, there are five types
of abstraction modules that are fall short with respect to algorithms and imple-
mentations, which we summarise here and are illustrated afterward.

– Axiom abstraction Axiom abstraction generates a module without complex
relations between classes; therefore, the technique decreases the mesh struc-
ture of the ontology (if present) and makes it a ‘bare’ taxonomy of classes
and unused object properties.

– Vocabulary abstraction Applying this abstraction to an ontology generates a
module where a certain vocabulary element is removed from the ontology,
or a whole group of elements is removed (e.g., all data types, if present).

– High-level abstraction generates a module where entities at a higher level in
the hierarchy are regarded more important than others. This introduces the
notion of desired depth to specify in the abstraction process.

– Weighted abstraction deals with removing entities from an ontology that are
deemed less important than others by assigning weight to the classes, prop-
erties, and individuals in an ontology. We determine importance by assessing
entities that other entities are highly dependent on. For instance, in the pizza
ontology, the class TomatoTopping is the most widely used, being referenced
61 times by other entities. Of course, what is used ‘often’ and what is ‘less
important’ may be relative and thus depend on the ontology. Therefore,
the weighted abstraction includes a user-definable threshold, which may be
absolute or relative.

– Feature expressiveness modules deal with removing some axioms of the ontol-
ogy based on the language features, e.g., cardinality constraints, disjointness,
object property features etc. By manipulating complex constructs of the on-
tology language features, the feature expressiveness algorithm results in a
simplified model of the ontology. We have designed 7 rules for this. The algo-
rithm takes these 7 rules, and removes them, from the least important to the
most important. At each rule removal, a ‘layer’ of the ontology is produced
where that ontology is represented in a language of lower expressivity than
the previous layer. Once the algorithm is complete, seven modules (layers)
are produced, each having a lower level of expressivity than the previous.
We summarise the seven rules here, with the type of axioms that are to
be removed. R1: Qualified cardinality deals with cardinality constraints be-
tween classes and properties. R2: Domain and range pertains to axioms that
have been specified using domain and range for object properties. R3: Object
property characteristics are those axioms pertaining to logical characteristics
of object properties such as symmetry and transitivity. R4: Disjointness are
those axioms pertaining to the disjointness of classes. R5: Assertions are
those axioms that are assertions between individuals and classes, or proper-
ties. R6: Atomic equivalence and equality are those axioms that state equiv-
alence between entities. R7: Complex classes are those axioms that contain
intersection and union logical operators.

Consider the axioms in a toy Burger ontology in Fig. 1 (entity declaration
axioms omitted). Running axiom abstraction on this ontology would remove



Fig. 1. The burger ontology to which the algorithms are applied; see text for details.

the axioms numbered 4, 10, and 24-28, for they involve object properties of
classes. For vocabulary abstraction there are several options. Let us remove all
the instances, as most ontologies focus on the TBox anyway. This would remove
the axioms numbered 30-33 and as knock-on effect, also axiom numbers 29 and
36. The high level abstraction is, perhaps, not of much interest in this sample
ontology, for there are few hierarchies. Setting the depth at level 1 is the only
way to actually have something removed, as there are only two levels. This would
remove all the types of burgers, of buns, and of fillings, i.e., the axioms numbered
2, 3, 5-13, and 15-21.

To generate a weighted abstraction module, let us assume we wish to create
a module whereby we remove 25% of the entities. To achieve this, we set the
threshold value to 25%. The threshold value represents an amount of the ontology
that is to be removed. First we weigh each class in the ontology with its number
of referencing axiom. Thereafter, 25% of the classes with the lowest values are
removed (amounting to 5), as displayed in Table 1. That is, the classes that are
deemed least important are those with the lowest number of referencing axioms;
e.g., WhiteBun is only referred to in axioms 19 and 21, whereas Filling is referred
to in axioms 4, 6, 12, 16, 17, hence, WhiteBun is removed. We omit the feature
abstraction illustration due to space limitations.

3 Implementation of NOMSA

To solve the problem of manual modularisation, we have created the tool NOMSA
to modularise ontologies, which incorporates the five abstraction algorithms.
NOMSA allows the user to upload an ontology (including any imports), and
select an approach to modularise it. Each approach is satisfied by a novel algo-
rithm which correspond to the abstractions described in Sect. 2. The algorithms
are available as online supplementary material (http://www.thezfiles.co.za/



Table 1. The classes of the Burger ontology with the number of referencing axioms.
For the weighted abstraction module, those in bold font are the classes to be removed.

WhiteBun 2 Medium 3 Patty 4

Customer 2 Lettuce 3 BeefBurger 4

Cheese 2 HealthyBurger 3 BurgerBun 4

Sauce 2 BeefPatty 3 Hamburger 4

Chef 2 Tomato 3 Filling 5

WholeWheat Bun 2 WellDone 3 PattyCook 6

Person 3 Rare 3 Burger 7

modularisation). NOMSA is a stand-alone application that can be downloaded
from the aforementioned URL as well as a screencast.

We have evaluated the algorithms on 128 ontologies. All the generated mod-
ules are notably different from the source ontologies, as is the case also for the
Burger example (see Table 2) whose metrics were generated with TOMM [3].
We are looking into refining and module quality metrics to compare modules.

Table 2. Selected metrics of the Burger WeiAbs module and original ontology.

Size No. of axioms Correctness Completeness

Burger (Original) 29 58 - -

Burger (WeiAbs) 15 26 True False

Burger (AxAbs) 29 44 True False

Burger (HLAbs level 3) 26 52 True True

References

1. Amato, F., Santo, A.D., Moscato, V., Persia, F., Picariello, A., Poccia, S.R.: Parti-
tioning of ontologies driven by a structure-based approach. In: IEEE ICSC’15. pp.
320–323. IEEE (2015), anaheim, CA, USA, Feb 7-9, 2015

2. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.A.: Swoop: A Web
Ontology Editing Browser. J. of Web Semantics 4(2), 144–153 (2006)

3. Khan, Z.C., Keet, C.M.: Dependencies between modularity metrics towards im-
proved modules. In: Proc. of EKAW’16. LNAI, vol. 10024, pp. 400–415. Springer
(2016)

4. Khan, Z.C., Keet, C.M.: An empirically-based framework for ontology modularisa-
tion. Applied Ontology 10(3-4), 171–195 (2015)

5. Lee, D., Cornet, R., Lau, F., de Keizer, N.: A survey of SNOMED CT implementa-
tions. J. of Biomedical Informatics 46(1), 87 – 96 (2013)

6. Romero, A.A., Kaminski, M., Grau, B.C., Horrocks, I.: Module extraction in expres-
sive ontology languages via datalog reasoning. J. of Artificial Intelligence Research
55, 499–564 (2016)

7. Rosse, C., Mejino Jr, J.L.V.: A reference ontology for biomedical informatics: the
foundational model of anatomy. J. of Biomedical Informatics 36(6), 478–500 (2003)


