
Verbalising OWL ontologies in isiZulu with
Python

C. Maria Keet1, Musa Xakaza1, and Langa Khumalo2

1 Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za, XKZMUS001@myuct.ac.za

2 Linguistics Program, University of KwaZulu-Natal, South Africa
khumalol@ukzn.ac.za

Abstract. Ontologies as a component of Semantic Web technologies are
used in Sub-Saharan Africa mainly as part of ontology-driven informa-
tion systems that may include an interface in a local language. IsiZulu is
one such local language, which is spoken by about 23 million people in
South Africa, and for which verbalisation patterns to verbalise an ontol-
ogy exist. We have implemented the algorithms corresponding to these
patterns in Python so as to link it most easily to the various technolo-
gies that use ontologies and for other NLP tasks. This was linked to
Owlready, a new Python-based OWL API, so as to verbalise an ontology
in isiZulu. The verbaliser can run in ‘ontology inside’ mode, outputting
the sentences in the terminal for further processing in an ontology-driven
information system, and in GUI mode that displays colour-coded natural
language sentences for users such as domain experts and linguists. The
demo will showcase its features.

1 Introduction

The use of Semantic Web technologies in Sub-Saharan Africa focuses predomi-
nantly on ontology-driven information systems. Examples include the integration
of flower-visiting biodiversity data from natural history museums [3], agriculture
and health data in Senegal [9], e-government monitoring for development projects
[5], learning platforms [4], and localisation of OpenMRS3 that uses the medical
ontology SNOMED CT [11]. While some existing ontologies obviously can be
reused, others are being developed to represent the knowledge more relevant for
the region, and several existing ontologies would benefit from localisation. For
instance, with a localised SNOMED CT and OpenMRS, one should be able to
use it to generate patient discharge notes in an indigenous language.

To accommodate the varied use of ontologies especially for ontology-mediated
natural language interfaces, an OWL verbaliser was developed for isiZulu, which
is one of the 11 official languages in South Africa and the most popular language
by first language speakers. This was based on the isiZulu verbalisation patterns
and algorithms presented in [6, 7] and the Python OWL API Owlready [8]. It is a

3 https://www.transifex.com/openmrs/OpenMRS/

proof-of-concept verbaliser that shows it can be done, despite having a grammar
that does neither fit in existing language annotation models nor in pre-existing
verbalisers, and in such a way that the core linguistic knowledge as well as the
data and technologies can be reused independently.

We will describe the system design and implementation, provide brief notes
on evaluation and what an attendee may expect from the demo.

2 System Design and Implementation

Design considerations. Unlike ontology verbalisation for English that uses mostly
a template-based approach to insert the vocabulary elements, for isiZulu, there
are verbalisation patterns that take into account context, such as verb conju-
gation and the strings for the quantifiers (examples further below). Also, the
verbaliser had to meet multiple use case scenarios. This made it unfeasible to
implement it with one or more existing technologies. Importantly, the use cases
focus on text generation in intelligent user interfaces and patient discharge notes
from electronic health records, rather than the sole purpose of facilitating user in-
teraction with the ontology (knowledge acquisition, validation, documentation).
This means that the language and linguistics components have to be reusable
across applications, rather than tailor-made to OWL. Noting that isiZulu (and
related languages) are under-resourced, any ‘most generic’ design and technol-
ogy possible was preferred, so that the few resources available can be reused, cf.
highly specialised formats that still would need to be adapted to accommodate
the grammar [2]. For instance, it is helpful to make a separate list of nouns with
their respective noun class (there are 17 for isiZulu), rather than extending, e.g.,
lemon [10]: the noun class of the noun determines the surface realisation for uni-
versal and existential quantification, conjugation, and negation, yet that list of
nouns with their respective noun class can be reused in morphological analysers
and in computer-assisted language learning.
Architecture and implementation. The components of the verbaliser and their
interaction are shown in Fig. 1. The verbaliser algorithms file consists of the al-
gorithms for named class subsumption (C v D) and disjointness (C v ¬D), sim-
ple existential quantification in the ‘all-some’ pattern (C v ∃R.D) and negation
thereof (C v ¬∃R.D) and simple conjunction (C uD), based on the algorithms
and patterns in [6] and extended with the patterns for part-whole relations [7].
Some of these patterns require the name of the OWL class—assumed to be
in the singular, as by good design practices—to be pluralised, hence requiring
the isiZulu pluraliser of [1]. The implementation of the algorithms in Python
is such that the corresponding functions can be linked to a variety of source
files as well as individual statements in the interpreter for quick generation of
a single sentence. For instance, for some axiom of the pattern C v ∃R.D, e.g.,
uSolwazi v ∃fundisa.Isifundo, then the input would be

>>> exists_zu(’uSolwazi’,’fundisa’,’isifundo’)

that will instantly generate Bonke oSolwazi bafundisa isifundo esisodwa ‘all pro-
fessors teach at least one course’.

vroots

verbaliser
algorithms

- quantification
- subsumption
- negation
- etc.

nncPairs

nounExcept

isakhiwo,7
igumbi,5
…

dl
hamb
…

indoda,amadoda
umZulu,amaZulu

pluraliser

GUI with sentences
generated

OWL/XML
file

Sentences and errors
generated, in terminal

Tkinter

verbaliser

calls
referenced/imported into
generates

Owlready

Fig. 1. Principal components of the OWL verbaliser.

To make it truly Semantic Web enabled, we have linked the verbalisation
module to the novel OWL API for Python, Owlready [8], which works with
OWL/XML serialisations. Using Owlready, the verbaliser fetches automatically
the knowledge from the ontology and passes it on to the verbalisation module
so as to compute the sentences and output the generated sentences in batch to
the terminal for possible further processing. Consider, e.g., named class subsump-
tion, whose serialisation in OWL/XML is <SubClassOf> <Class IRI="..."/>

<Class IRI="..."/> </SubClassOf>, which is mapped to the isa zu(sub,super)

function in the .py file. For instance, the serialisation of impala v isilwane,

<SubClassOf>

<Class IRI="http://www.example.org/ex.owl#impala"/>

<Class IRI="http://www.example.org/ex.owl#isilwane"/>

</SubClassOf>

is fetched and passed on and processed as isa zu(’impala’,’isilwane’) to gen-
erate impala yisilwane ‘impala is an animal’. This holds likewise for the other
supported types of axioms, with one category of exceptions: part-whole rela-
tions. There is no single string for the ‘has part’ object property in isiZulu.
Therefore, a stub is used that is mapped to a specific part-whole relation and
corresponding function; e.g., ‘has portion’ is realised with an object property
named eeee in the OWL/XML file, which is mapped to the Python function
wp solid p(whole,part) that, when used in an axiom, will generate the correct
isiZulu surface realisation of ‘has portion’. For instance, in shorthand notation,
isinkwa v ∃eeee.ucezu isinkwa generates, with the ‘has portion’ underlined, Sonke
isinkwa sinocezu lwesinkwa olulodwa yet igazi v ∃eeee.isampula igazi generates
Lonke igazi linesampula legazi elilodwa, where the difference is due to the con-
jugation determined by the noun class (si- for the noun isinkwa in noun class 7
and li- for igazi in noun class 5) and phonological conditioning (na- + ucezu =
nocezu and na + isampula = nesampula).

Although most ontology-driven information system use cases have an ontol-
ogy ‘in the background’ rather than as end product for users, a GUI was deemed

useful both for the common purpose of validation of an ontology’s content as well
as a better understanding of the sentence components from a language learning
and linguistics viewpoint. To this end, the Python module Tkinter4 was used to
create a GUI with colour-coded elements. A screenshot of the GUI is shown in
Fig. 2, which has been annotated for clarity.

-dwa for existential quantification (‘at least one’)

-nke for universal
quantification

(‘for all’)
a- ... -i for negating a verb (e.g.: ‘does not eat’), and conjugation

(e.g., ‘all leopards do not eat some apple’)

conjugation of the verb (e.g., zi-, ba- added to the root, such as -dl- and -fundis-)
(e.g., ‘all professors teach at least one course’)

‘constituted of’ part-whole relation, and conjugation
(e.g. ‘all vases are constituted of clay’)

generic ‘part of’ part-whole relation, and conjugation
(e.g., ‘each heart is part of some human’)

Fig. 2. Section of the GUI interface of the Semantic Web-enabled isiZulu verbaliser.
Colour coding: existential and universal quantification is shown in blue, the classes
(nouns) in red, and the object properties and simple subsumption (verbs) in green.

Evaluation. Evaluation of the tool consisted of internal verification of correctness
of encoding and external validation in the sense of testing it with more examples
as described in [6], i.e., with more axioms. We represented in OWL all test cases
of [6, 7], and the axioms used in their respective user evaluations, which were
based on existing ontologies and selected to ensure coverage of permutations for
noun classes, verbs, and part-whole relations. This totalled to 82 logical axioms.
The tool, source code, sample ontology, and screencast video showing the working
code are available from http://www.meteck.org/files/geni/.
Benefits of the chosen design and implementation The principal benefits are:
1) the ease with which the verbaliser algorithms file can be swapped for an
analogous file in another language (e.g., isiXhosa, which is similar to isiZulu), 2)
the reusability of the algorithms beyond OWL files when needed, and 3) the two

4 https://wiki.python.org/moin/TkInter

modes of operation for users (GUI) and further processing in ontology-driven
information systems (terminal output).

3 The Demo

The main aim of the demo is to present the functioning proof-of-concept OWL
verbaliser. Given that isiZulu is not a familiar language to most people, an
English-isiZulu dictionary will be available so that attendees can select terms and
declare axioms that then will be verbalised on the fly. It is also an opportunity to
discuss details of the implementation of the verbalisation patterns that present
challenges to other existing OWL verbalisers and ontology editor tools.

Acknowledgments This work is based on the research supported in part by
the National Research Foundation of South Africa (Grant Number 93397).

References

1. Byamugisha, J., Keet, C.M., Khumalo, L.: Pluralising nouns in isiZulu and similar
languages. In: Gelbkuh, A. (ed.) Proceedings of CICLing’16. p. in print. Springer
(2016)

2. Chavula, C., Keet, C.M.: Is lemon sufficient for building multilingual ontologies for
Bantu languages? In: Proc of OWLED’14. CEUR-WS, vol. 1265, pp. 61–72 (2014),
Riva del Garda, Italy, Oct 17-18, 2014

3. Coetzer, W., Moodley, D., Gerber, A.: A case-study of ontology-driven semantic
mediation of flower-visiting data from heterogeneous data-stores in three south
african natural history collections. In: Semantics for Biodiversity (S4BioDiv’13)
(2013), 27-5-2013, Montpellier, France

4. Dalvit, L., Gunzo, F.T., Maema, M.K.V., Slay, H.: Exploring the Use of Ontologies
in Creating Learning Platforms: HIV and AIDS Education at a South African
University. In: Proc. of ICCSSE’08. vol. 5, pp. 407–410 (Dec 2008)

5. Dombeu, J.V.F.: A conceptual ontology for e-government monitoring of develop-
ment projects in sub saharan africa. In: IST-Africa 2010. pp. 1–8 (May 2010)

6. Keet, C.M., Khumalo, L.: Toward a knowledge-to-text controlled natural language
of isiZulu. Language Resources and Evaluation in print (2016)

7. Keet, C.M., Khumalo, L.: On the verbalization patterns of part-whole relations
in isiZulu. In: Proc. of INLG’16. pp. 174–183. ACL (2016), 5-8 September, 2016,
Edinburgh, UK

8. Lamy, J.: Ontology-oriented programming for biomedical informatics. Studies in
Health Technology and Informatics 221, 64–68 (2016)

9. Lo, M., Camamra, G., Niang, C.A.T., Ndiaye, S.M., Sall, O.: Towards an ontology-
based framework for data integration: application to agriculture and health do-
mains in Senegal. In: Gamatié, A. (ed.) Computing in Research and Development
in Africa: Benefits, Trends, Challenges, and Solutions. pp. 41–57. Springer (2015)

10. McCrae, J., et al.: Interchanging lexical resources on the semantic web. Language
Resources and Evaluation 46(4), 701–719 (2012)

11. SNOMED CT: (last accessed: 27-1-2012), http://www.ihtsdo.org/snomed-ct/

