On the unification of conceptual data modelling languages

C. Maria Keet

Department of Computer Science, University of Cape Town, South Africa,

mkeet@cs.uct.ac.za

Seminar at the Poznan University of Technology, Poland, June 16, 2015

Joint work with Pablo Rubén Fillotrani, Universidad Nacional del Sur,
Bahía Blanca, Argentina
Outline

1. Motivation

2. Unification approach
 - Metamodel
 - Transformations and intermodel assertions

3. Quantitative analysis

4. Conclusions
Outline

1. Motivation

2. Unification approach
 - Metamodel
 - Transformations and intermodel assertions

3. Quantitative analysis

4. Conclusions
Motivation

Unification approach

Quantitative analysis

Conclusions

Context

- Bilateral project “ontology-driven unification of conceptual data modelling languages” (mid 2012 - mid 2015)\(^2\), funded by SA Dept. of Sci & Tech and AR’s MINCyT

- Conceptual data modelling for complex system development and information integration

- Languages for conceptual modelling: UML Class Diagram, ER and EER, ORM and ORM2

- Develop formal basis for model linking and integration, tools and techniques

\(^2\)Project page: http://www.meteck.org/SAAR.html
Example: isiZulu termbank (simplified)
Example: ICOM (Franconi and others)
Previous work

- Inter-model assertions between models in the same language [Atzeni et al.(2008), Fillottrani et al.(2012)]
- Inter-model assertions between models in different languages, but subset only [Atzeni et al.(2012), Boyd and McBrien(2005), Venable and Grundy(1995), Zhu et al.(2004)]
- Limited model transformations [Atzeni et al.(2012), Boyd and McBrien(2005)]
- Limited or no automated reasoning, verification [Calvanese et al.(1999), Fillottrani et al.(2012), Keet(2009)]
Outline

1 Motivation

2 Unification approach
 - Metamodel
 - Transformations and intermodel assertions

3 Quantitative analysis

4 Conclusions
Overview

- All static, structural elements of main CDM languages
- First ontological, then logical, finally implement
 - Develop unifying and ontology-driven metamodel, then formalise it
 - Mechanism for inter-model assertions and transformations
 - Quantitative evaluation to prioritise rule specification
 - Language profile specification (tractable languages?)
 - Implement, and look at modularisation (ongoing)
Overview

- All static, structural elements of main CDM languages
- First ontological, then logical, finally implement
- Develop *unifying* and *ontology-driven* metamodel, then formalise it
- Mechanism for inter-model assertions and transformations
- Quantitative evaluation to prioritise rule specification
 - Language profile specification (tractable languages!)
- Implement, and look at modularisation (ongoing)
Metamodel: overview

- Captures all structural elements in the selected languages\(^3\)\(^4\)
- Captures also their relations and constraints
- Describes the rules in which they may be combined
- The metamodel is designed in UML Class Diagram, and formalized in FOL (precision) and OWL (practical usability)\(^5\)

\(^3\) Keet, C.M., Fillottrani, P.R. Toward an ontology-driven unifying metamodel for UML Class Diagrams, EER, and ORM2. ER’13. W. Ng, V.C. Storey, and J. Trujillo (Eds.). Springer LNCS vol. 8217, 313-326.

\(^5\) Fillottrani, P.R., Keet, C.M.. *KF metamodel formalization*. Technical Report, Arxiv.org

Static entities

{Disjointness axioms among the subclasses of Relationship are:
\{PartWhole, Attributive property, Subsumption\} and
\{Qualified relationship, Attributive property, Subsumption\} }
Constraints
Selection of constraints between them (1/2)
A Weak identification is a combination of one or more Attributive property of the Weak object type it identifies together with the Identification constraint of the Object type it has a Relationship with and this Object type is disjoint with the Weak object type.

The Single identification has a Mandatory constraint on the participating Role and the Relationship that Role is contained in has a 1:1 Cardinality constraint declared on it.

Qualified identification and External identification are declared on only Attributive property.

A Qualified relationship participates in a Qualified identification only if the Cardinality constraint is 1.
Transformation Rules and Inter-model assertions

- Process for linking and translating models
- Based on different kinds of rules: mappings, transformations, approximations
- Together with the (formalised) metamodel, it can be used to verify inter-model assertions

6 Fillottrani, P.R., Keet, C.M. Conceptual Model Interoperability: a Metamodel-driven Approach. RuleML’14,
A. Bikakis et al. (Eds.). Springer LNCS vol. 8620, 52-66.
Approach (inter-model assertions)

- classify entities of M1 and M2 into MM entities;
- process mapping assertions using the transformation algorithms and compare output with element in M2;

input model M1 and M2 in language X and Y, resp.

formalised metamodel

input inter-model assertion

output model M12 or NO

vocabulary with lists which entities should be mapped, transformed, approximated, non-mappable

1:1 mappings
UML class : ORM Entity Type
... : ...

Transformations
UML attribute : ORM Value type
... : ...

Approximation
... : ...

No mappings
ORM role equality : UML x
...

∀(x) Relationship(x) → Entity(x)
...

∀(x) (¬(Datatype(x) ∧ Qualifier(x)))
...

Inter-model assertions
UML class `Flower`: ORM Entity Type `Flower`
... : ...

name:string
colour:string
Flower

name:string
colour:string
Flower

name
colour
Flower (ID)

name
colour
Flower (ID)
1:1 mapping rules and the metamodel (selection)

(R1) Association $\xrightarrow{\text{UML to MM}}$ Relationship

in:
Association(AssociationEnd : Class, AssociationEnd : Class)

out: AssociationEnd \rightarrow Role \hspace{1cm} // i.e., using (Ro1)
out: Association \rightarrow Relationship
out: Class \rightarrow Object Type \hspace{1cm} // i.e., using (O1)
out: Relationship(Role:Object type, Role:Object Type)

(1R) Relationship $\xrightarrow{\text{MM to UML}}$ Association

in: Relationship(Role:Object type, Role:Object Type)

out: Role \rightarrow AssociationEnd \hspace{1cm} // i.e., using (1Ro)
out: Relationship \rightarrow Association
out: Object Type \rightarrow Class \hspace{1cm} // i.e., using (1O)
out:
Association(AssociationEnd : Class, AssociationEnd : Class)
Generating and mapping

GenOT Class $\xrightarrow{\text{UML to ORM}}$ Entity type

- in: C
- out: (O1)
- out: (2O)
 // i.e., an ORM EntityType named C

MapR Association $\xrightarrow{\text{UML to ER}}$ Relationship

- in: $A(ae_1 : C_1, ae_2 : C_2)$
- out: (R1)
- out: (3R)
- out: match pattern out(3R) with $R(rc_1 : E_1, rc_2 : E_2)$
∀(x, y)(Contains(x, y) → Relationship(x) ∧ Role(y))
∀(x)∃≥^2 y(Contains(x, y))
∀(x)(Role(x) → ∃(y)(Contains(y, x)))
∀(x, y, z)(Contains(x, y) ∧ Contains(z, y) → (x = z))
∀(x, y, z)(RolePlaying(x, y, z) → Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x) → ∃(y, z)(RolePlaying(x, y, z)))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(x, v, w) → (y = v) ∧ (z = w))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(v, y, w) → (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x) → ∃(y)(MinimumCardinality(x, y) ∧ Integer(y))))
∀(x)(CardinalityConstraint(x) → ∃(y)(MaximumCardinality(x, y) ∧ Integer(y))))
∀(x, y)(Identifies(x, y) → (∃(y)(IdentificationConstraint(x) ∧ ObjectType(y)))))
∀(x)(IdentificationConstraint(x) → ∃(y)(Identifies(x, y))))
∀(x, y, z)((Identifies(x, y) ∧ Identifies(x, z)) → (y = z))
∀(x)(ObjectType(x) → ∃(y)(Identifies(y, x))))
∀(x, y, z)((DeclaredOn(x, y) ∧ DeclaredOn(x, z) ∧ IdentificationConstraint(x) ∧ (¬(y = ValueProperty(y) ↔ ¬AttributiveProperty(z)))))
∀(x)(IdentificationConstraint(x) → ∃(y)(DeclaredOn(x, y))))
∀(x, y)((DeclaredOn(x, y) ∧ SingleIdentification(x)) → (Attribute(y) ∨ ValueType(y))}
∀(x)(SingleIdentification(x) → ∃(y)(DeclaredOn(x, y)))
∀(x, y, z)((SingleIdentification(x) ∧ DeclaredOn(x, y) ∧ DeclaredOn(x, z)) → (y = z))
∀(x, y)(Contains(x, y) → Relationship(x) ∧ Role(y))
∀(x)∃≥2y(Contains(x, y))
∀(x)(Role(x) → ∃(y)(Contains(y, x)))
∀(x, y, z)(Contains(x, y) ∧ Contains(z, y) → (x = z))
∀(x, y, z)(RolePlaying(x, y, z) → Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x) → ∃(y, z)(RolePlaying(x, y, z)))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(x, v, w) → (y = v) ∧ (z = w))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(v, y, w) → (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x) → ∃(y)(MinimumCardinality(x, y) ∧ Integer(y))))
∀(x)(CardinalityConstraint(x) → ∃(y)(MaximumCardinality(x, y) ∧ Integer(y))))
∀(x, y)(Identifies(x, y) → (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x) → ∃(y)(Identifies(x, y)))
∀(x, y, z)((Identifies(x, y) ∧ Identifies(x, z)) → (y = z))
∀(x)(ObjectType(x) → ∃(y)(Identifies(y, x))))
∀(x, y, z)((DeclaredOn(x, y) ∧ DeclaredOn(x, z) ∧ IdentificationConstraint(x) ∧ (¬(y = z)) (ValueProperty(y) ↔ ¬AttributiveProperty(z))))
∀(x)(IdentificationConstraint(x) → ∃(y)(DeclaredOn(x, y))))
∀(x, y)((DeclaredOn(x, y) ∧ SingleIdentification(x)) → (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x) → ∃(y)(DeclaredOn(x, y)))
∀(x, y, z)((SingleIdentification(x) ∧ DeclaredOn(x, y) ∧ DeclaredOn(x, z)) → (y = z))
Formalised metamodel (section), highlighted for step 5

\forall (x, y) (\text{Contains}(x, y) \rightarrow \text{Relationship}(x) \land \text{Role}(y))
\forall (x) \exists \geq 2 y (\text{Contains}(x, y))
\forall (x) (\text{Role}(x) \rightarrow \exists (y) (\text{Contains}(y, x)))
\forall (x, y, z) (\text{Contains}(x, y) \land \text{Contains}(z, y) \rightarrow (x = z))
\forall (x, y, z) (\text{RolePlaying}(x, y, z) \rightarrow \text{Role}(x) \land \text{CardinalityConstraint}(y) \land \text{EntityType}(z))
\forall (x) (\text{Role}(x) \rightarrow \exists (y, z) (\text{RolePlaying}(x, y, z)))
\forall (x, y, z, v, w) (\text{RolePlaying}(x, y, z) \land \text{RolePlaying}(x, v, w) \rightarrow (y = v) \land (z = w))
\forall (x, y, z, v, w) (\text{RolePlaying}(x, y, z) \land \text{RolePlaying}(v, y, w) \rightarrow (x = v) \land (z = w))
\forall (x) (\text{CardinalityConstraint}(x) \rightarrow \exists (y) (\text{MinimumCardinality}(x, y) \land \text{Integer}(y)))
\forall (x) (\text{CardinalityConstraint}(x) \rightarrow \exists (y) (\text{MaximumCardinality}(x, y) \land \text{Integer}(y)))
\forall (x, y) (\text{Identifies}(x, y) \rightarrow (\text{IdentificationConstraint}(x) \land \text{ObjectType}(y)))
\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{Identifies}(x, y)))
\forall (x, y, z) ((\text{Identifies}(x, y) \land \text{Identifies}(x, z)) \rightarrow (y = z))
\forall (x) (\text{ObjectType}(x) \rightarrow \exists (y) (\text{Identifies}(y, x)))
\forall (x, y, z) ((\text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z) \land \text{IdentificationConstraint}(x) \land (\neg (y = z)) \rightarrow (\text{ValueProperty}(y) \leftrightarrow \neg \text{AttributiveProperty}(z)))
\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{DeclaredOn}(x, y)))
\forall (x, y) ((\text{DeclaredOn}(x, y) \land \text{SingleIdentification}(x)) \rightarrow (\text{Attribute}(y) \lor \text{ValueType}(y)))
\forall (x) (\text{SingleIdentification}(x) \rightarrow \exists (y) (\text{DeclaredOn}(x, y)))
\forall (x, y, z) ((\text{SingleIdentification}(x) \land \text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z)) \rightarrow (y = z))
Outline

1. Motivation

2. Unification approach
 - Metamodel
 - Transformations and intermodel assertions

3. Quantitative analysis

4. Conclusions
Few elements belong to all three language families

⇒ Is it worth trying to link or integrate or translate their models?

- Collected available models on each language, and studied the usage of metamodel elements on them (approx. 35 on each language)
 - Only 64% of the entities are the kind of entities that appear in all three language families
 - When more features are available in a language, they are used in the models (though some very few times)
 - Specification of a feature-based 'characteristic profile' for each family

Keet, C.M., Fillottrani, P.R. An analysis and characterisation of publicly available conceptual models. ER'15. Springer LNCS. (accepted)
Few elements belong to all three language families

⇒ Is it worth trying to link or integrate or translate their models?

Collected available models on each language, and studied the usage of metamodel elements on them (approx. 35 on each language)

- Only 64% of the entities are the kind of entities that appear in all three language families
- When more features are available in a language, they are used in the models (though some very few times)
- Specification of a feature-based ‘characteristic profile’ for each family

7 Keet, C.M., Fillottrani, P.R. An analysis and characterisation of publicly available conceptual models. ER’15. Springer LNCS. (accepted)
Table: Prevalence of particular entity in the models, as percent of total number of entities for that family, aggregated by model family and rounded off to one decimal. OT: Object type; VT: Value type; Rel.: Relationship; Int. Unique.: Internal uniqueness constraint; ID: Identifier.

<table>
<thead>
<tr>
<th>Top-5</th>
<th>UML CD</th>
<th>ORM/2</th>
<th>(E)ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute (31.2%)</td>
<td>OT cardinality (29.0%)</td>
<td>Attribute (39.5%)</td>
<td></td>
</tr>
<tr>
<td>OT (21.2%)</td>
<td>OT (14.5%)</td>
<td>OT cardinality (22.1%)</td>
<td></td>
</tr>
<tr>
<td>OT cardinality (17.5%)</td>
<td>2-ary Rel. (14.4%)</td>
<td>2-ary Rel. (11.6%)</td>
<td></td>
</tr>
<tr>
<td>2-ary Rel. (12.4%)</td>
<td>Int. unique. (13.1%)</td>
<td>OT (11.5%)</td>
<td></td>
</tr>
<tr>
<td>OT subsumption (9.6%)</td>
<td>VT (10.4%)</td>
<td>single ID (7.7%)</td>
<td></td>
</tr>
</tbody>
</table>
Ratios of entities aggregated by family and combined

<table>
<thead>
<tr>
<th>Ratio</th>
<th>UML</th>
<th>ORM/2</th>
<th>(E)ER</th>
<th>comb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>model size:total entities</td>
<td>0.8</td>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Attribute or Value type:Object type</td>
<td>1.5</td>
<td>0.7</td>
<td>3.5</td>
<td>1.7</td>
</tr>
<tr>
<td>binaries:n-aries</td>
<td>180.5</td>
<td>12.4</td>
<td>20.9</td>
<td>20.4</td>
</tr>
<tr>
<td>Subsumption(class):Object type</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Relationship (non isa):Object type</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Object type cardinality: other constraint</td>
<td>7.4</td>
<td>1.2</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Single identification:other ID</td>
<td>–</td>
<td>17.3</td>
<td>5.4</td>
<td>8.4</td>
</tr>
<tr>
<td>role:relationship naming</td>
<td>4.3</td>
<td>(readings, mostly)</td>
<td>0.1</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Common features: Object type, Relationship, Object type cardinality, Subsumption (object type), Single identification, Disjoint and Complete object types.

⇒ Seems to fit some tractable language; which one(s)?

- Avail of Description Logic languages to gain insight in language and computational complexity
- Common core that covers ±87%; language-specific profiles
- There is no DL that matches precisely, but a PTIME language is feasible—ALN_\forall for the Core Profile
- Good match is $CFDI_{nc}^\forall^\neg$ (PTIME), with n-aries, identifiers

8 Fillottrani, P.R., Keet, C.M. Evidence-based Languages for Conceptual Data Modelling Profiles. ADBIS’15. Springer LNCS. Poitiers, France, Sept 8-11, 2015. (accepted)

9 Fillottrani, P.R., Keet, C.M., Toman, D. Polynomial encoding of ORM conceptual models in $CFDI_{nc}^\forall^\neg$. DL’15, CEUR-WS vol. 1350, 401-414.
Logic foundation for profiles

- Common features: Object type, Relationship, Object type cardinality, Subsumption (object type), Single identification, Disjoint and Complete object types.

⇒ Seems to fit some tractable language; which one(s)?

- Avail of Description Logic languages to gain insight in language and computational complexity
- Common core that covers ±87%; language-specific profiles
- There is no DL that matches precisely, but a PTIME language is feasible—\(ALN+\) for the Core Profile
- Good match is \(CFDInc^\forall\) (PTIME), with n-aries, identifiers

8 Fillottrani, P.R., Keet, C.M. Evidence-based Languages for Conceptual Data Modelling Profiles. ADBIS’15. Springer LNCS. Poitiers, France, Sept 8-11, 2015. (accepted)

9 Fillottrani, P.R., Keet, C.M., Toman, D. Polynomial encoding of ORM conceptual models in \(CFDInc^\forall\). DL’15, CEUR-WS vol. 1350, 401-414.
Outline

1. Motivation

2. Unification approach
 - Metamodel
 - Transformations and intermodel assertions

3. Quantitative analysis

4. Conclusions
Conclusions

- Unifying ontology-driven metamodel
- Inter-model assertions and model transformation approaches with basic set of rules (1:1, transformations, and approximations)
- Quantitative analysis on feature usages
- Profile characterisation
Ongoing and future work

- Integrate these results into design tools
- ‘Scalability’ of graphical representation and inferences?
- Modularisation
Example: ICOM
References I

Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A. Bernstein, and Giorgio Gianforme.
Model-independent schema translation.

Paolo Atzeni, Giorgio Gianforme, and Paolo Cappellari.
Data model descriptions and translation signatures in a multi-model framework.

Michael Boyd and Peter McBrien.
Comparing and transforming between data models via an intermediate hypergraph data model.

D. Calvanese, M. Lenzerini, and D. Nardi.
Unifying class-based representation formalisms.

Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris.
The ICOM 3.0 intelligent conceptual modelling tool and methodology.

C. Maria Keet.
Positionalism of relations and its consequences for fact-oriented modelling.

Vilamoura, Portugal, November 4-6, 2009.
J.R. Venable and J.C. Grundy.

Integrating and supporting Entity Relationship and Object Role Models.

Pounamu: a metatool for multi-view visual language environment construction.
In IEEE Conf. on Visual Languages and Human-Centric Computing 2004, 2004.
Thank you!