On the unification of conceptual data modelling languages

C. Maria Keet¹

Department of Computer Science, University of Cape Town, South Africa, mkeet@cs.uct.ac.za

Seminar at the Poznan University of Technology, Poland, June 16, 2015

¹Joint work with Pablo Rubén Fillottrani, Universidad Nacional del Sur, Bahía Blanca, Argentina <□> <♂> <≥> <≥> <≥> <≥>

Outline

2 Unification approach

- Metamodel
- Transformations and intermodel assertions
- 3 Quantitative analysis

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ ()
2/36

Outline

2 Unification approach

- Metamodel
- Transformations and intermodel assertions
- 3 Quantitative analysis
- 4 Conclusions

Context

- Bilateral project "ontology-driven unification of conceptual data modelling languages" (mid 2012 - mid 2015)², funded by SA Dept. of Sci & Tech and AR's MINCyT
- Conceptual data modelling for complex system development and information integration
- Languages for conceptual modelling: UML Class Diagram, ER and EER, ORM and ORM2
- Develop formal basis for model linking and integration, tools and techniques

²Project page: http://www.meteck.org/SAAR.html> () () () ()

Unification approach

Quantitative analysis

Conclusions

Example: isiZulu termbank (simplified)

Quantitative analysis

Conclusions

Example: ICOM (Franconi and others)

6/36

Previous work

- Inter-model assertions between models in the same language [Atzeni et al.(2008), Fillottrani et al.(2012)]
- Inter-model assertions between models in different languages, but subset only [Atzeni et al.(2012), Boyd and McBrien(2005), Venable and Grundy(1995), Zhu et al.(2004)]
- Limited model transformations [Atzeni et al.(2012), Boyd and McBrien(2005)]
- Limited or no automated reasoning, verification [Calvanese et al.(1999), Fillottrani et al.(2012), Keet(2009)]

Outline

2 Unification approach

- Metamodel
- Transformations and intermodel assertions
- 3 Quantitative analysis

Overview

- All static, structural elements of main CDM languages
- First ontological, then logical, finally implement
- Develop *unifying* and *ontology-driven* metamodel, then formalise it
- Mechanism for inter-model assertions and transformations
- Quantitative evaluation to prioritise rule specification
- Implement, and look at modularisation (ongoing)

Overview

- All static, structural elements of main CDM languages
- First ontological, then logical, finally implement
- Develop *unifying* and *ontology-driven* metamodel, then formalise it
- Mechanism for inter-model assertions and transformations
- Quantitative evaluation to prioritise rule specification
 - Language profile specification (tractable languages!)
- Implement, and look at modularisation (ongoing)

Metamodel: overview

- Captures all structural elements in the selected languages^{3 4}
- Captures also their relations and constraints
- Describes the rules in which they may be combined
- The metamodel is designed in UML Class Diagram, and formalized in FOL (precision) and OWL (practical usability)⁵

³Keet, C.M., Fillottrani, P.R. Toward an ontology-driven unifying metamodel for UML Class Diagrams, EER, and ORM2. ER'13. W. Ng, V.C. Storey, and J. Trujillo (Eds.). Springer LNCS vol. 8217, 313-326.

⁴Keet, C.M., Fillottrani, P.R. Structural entities of an ontology-driven unifying metamodel for UML, EER, and ORM2. MEDI'13. A. Cuzzocrea and S. Maabout (Eds.). Springer LNCS vol. 8216, 188-199.
 ⁵Fillottrani, P.R., Keet, C.M.. *KF metamodel formalization*. Technical Report, Arxiv.org
 http://arxiv.org/abs/1412.6545. Dec 19, 2014, 266.

Static entities

Unification approach

Quantitative analysis

Conclusions

Constraints

13/36

э.

Conclusions

Selection of constraints between them (1/2)

Selection of constraints between them (2/2)

- {A Weak identification is a combination of one or more Attributive property of the Weak object type it identifies together with the Identification constraint of the Object type it has a Relationship with and this Object type is disjoint with the Weak object type. }
- { The Single identification has a Mandatory constraint on the participating Role and the Relationship that Role is contained in has a 1:1 Cardinality constraint declared on it. }
- { Qualified identification and External identification are declared on only Attributive property. }
- { A Qualified relationship participates in a Qualified identification only if the Cardinality constraint is 1. }

Transformation Rules and Inter-model assertions⁶

- Process for linking and translating models
- Based on different kinds of rules: mappings, transformations, approximations
- Together with the (formalised) metamodel, it can be used to verify inter-model assertions

⁶Fillottrani, P.R., Keet, C.M. Conceptual Model Interoperability: a Metamodel-driven Approach. RuleML'14, (日) (周) (日) (日) (日)

A. Bikakis et al. (Eds.). Springer LNCS vol. 8620, 52-66.

Quantitative analysis

Conclusions

Approach (inter-model assertions)

17 / 36

Conclusions

1:1 mapping rules and the metamodel (selection)

(R1) Association $\xrightarrow{\text{UML to MM}}$ Relationship in: Association(AssociationEnd: Class, AssociationEnd: Class) // i.e., using (Ro1) out: AssociationEnd \rightarrow Role out: Association \rightarrow Relationship // i.e., using (01) out: Class \rightarrow Object Type out: Relationship(Role:Object type, Role:Object Type) (1R) Relationship $\xrightarrow{\text{MM to UML}}$ Association in: Relationship(Role:Object type, Role:Object Type) // i.e., using (1Ro) out: Role \rightarrow AssociationEnd out: Relationship \rightarrow Association // i.e., using (10) out: Object Type \rightarrow Class out: Association(AssociationEnd: Class, AssociationEnd: Class)

Generating and mapping

Conclusions

Formalised metamodel (section), highlighted for step 2

 $\forall (x, y) (\texttt{Contains}(x, y) \rightarrow \texttt{Relationship}(x) \land \texttt{Role}(y))$ $\forall (x) \exists \geq^2 y (\text{Contains}(x, y))$ $\forall (x) (\operatorname{Role}(x) \to \exists (y) (\operatorname{Contains}(y, x)))$ $\forall (x, y, z) (\texttt{Contains}(x, y) \land \texttt{Contains}(z, y) \rightarrow (x = z))$ $\forall (x, y, z) (\text{RolePlaying}(x, y, z) \rightarrow \text{Role}(x) \land \text{CardinalityConstraint}(y) \land \text{EntityType}(z))$ $\forall (x)(\texttt{Role}(x) \rightarrow \exists (y, z)(\texttt{RolePlaying}(x, y, z)))$ $\forall (x, y, z, v, w) (\texttt{RolePlaying}(x, y, z) \land \texttt{RolePlaying}(x, v, w) \rightarrow (y = v) \land (z = w))$ $\forall (x, y, z, v, w) (\texttt{RolePlaying}(x, y, z) \land \texttt{RolePlaying}(v, y, w) \rightarrow (x = v) \land (z = w))$ $\forall (x) (CardinalityConstraint(x) \rightarrow \exists (y) (MinimumCardinality(x, y) \land Integer(y)))$ $\forall (x) (\texttt{CardinalityConstraint}(x) \rightarrow \exists (y) (\texttt{MaximumCardinality}(x, y) \land \texttt{Integer}(y)))$ $\forall (x, y) (\text{Identifies}(x, y) \rightarrow (\text{IdentificationConstraint}(x) \land \text{ObjectType}(y)))$ $\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{Identifies}(x, y)))$ $\forall (x, y, z) ((\text{Identifies}(x, y) \land \text{Identifies}(x, z)) \rightarrow (y = z))$ $\forall (x) (\texttt{ObjectType}(x) \rightarrow \exists (y) (\texttt{Identifies}(y, x)))$ $\forall (x, y, z) ((\text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z) \land \text{IdentificationConstraint}(x) \land (\neg (y = x)))$ $(ValueProperty(y) \leftrightarrow \neg AttributiveProperty(z)))$ $\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{DeclaredOn}(x, y)))$ $\forall (x, y) ((\texttt{DeclaredOn}(x, y) \land \texttt{SingleIdentification}(x)) \rightarrow (\texttt{Attribute}(y) \lor \texttt{ValueType}(y))$ $\forall (x) (\texttt{SingleIdentification}(x) \rightarrow \exists (y) (\texttt{DeclaredOn}(x, y))$ $\forall (x, y, z) ((\text{SingleIdentification}(x) \land \text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z)) \rightarrow (y = z))$

Unification approach

Quantitative analysis

Conclusions

Highlighted section for step 3

 $\forall (x, y) (\texttt{Contains}(x, y) \rightarrow \texttt{Relationship}(x) \land \texttt{Role}(y))$ $\forall (x) \exists \geq^2 y (\text{Contains}(x, y))$ $\forall (x) (\operatorname{Role}(x) \to \exists (y) (\operatorname{Contains}(y, x)))$ $\forall (x, y, z) (\texttt{Contains}(x, y) \land \texttt{Contains}(z, y) \rightarrow (x = z))$ $\forall (x, y, z) (\text{RolePlaying}(x, y, z) \rightarrow \text{Role}(x) \land \text{CardinalityConstraint}(y) \land \text{EntityType}(z))$ $\forall (x)(\text{Role}(x) \rightarrow \exists (y, z)(\text{RolePlaying}(x, y, z)))$ $\forall (x, y, z, v, w) (\text{RolePlaying}(x, y, z) \land \text{RolePlaying}(x, v, w) \rightarrow (y = v) \land (z = w))$ $\forall (x, y, z, v, w) (\text{RolePlaying}(x, y, z) \land \text{RolePlaying}(v, y, w) \rightarrow (x = v) \land (z = w))$ $\forall (x) (CardinalityConstraint(x) \rightarrow \exists (y) (MinimumCardinality(x, y) \land Integer(y)))$ $\forall (x) (CardinalityConstraint(x) \rightarrow \exists (y) (MaximumCardinality(x, y) \land Integer(y)))$ $\forall (x, y) (\text{Identifies}(x, y) \rightarrow (\text{IdentificationConstraint}(x) \land \text{ObjectType}(y)))$ $\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{Identifies}(x, y)))$ $\forall (x, y, z) ((\text{Identifies}(x, y) \land \text{Identifies}(x, z)) \rightarrow (y = z))$ $\forall (x) (\texttt{ObjectType}(x) \rightarrow \exists (y) (\texttt{Identifies}(y, x)))$ $\forall (x, y, z) ((\text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z) \land \text{IdentificationConstraint}(x) \land (\neg (y = x)))$ $(ValueProperty(y) \leftrightarrow \neg AttributiveProperty(z)))$ $\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{DeclaredOn}(x, y)))$ $\forall (x, y) ((\text{DeclaredOn}(x, y) \land \text{SingleIdentification}(x)) \rightarrow (\text{Attribute}(y) \lor \text{ValueType}(y))$ $\forall (x) (\texttt{SingleIdentification}(x) \rightarrow \exists (y) (\texttt{DeclaredOn}(x, y))$ $\forall (x, y, z) ((\text{SingleIdentification}(x) \land \text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z)) \rightarrow (y = z))$

Conclusions

Formalised metamodel (section), highlighted for step 5

 $\forall (x, y) (\texttt{Contains}(x, y) \rightarrow \texttt{Relationship}(x) \land \texttt{Role}(y))$ $\forall (x) \exists \geq^2 y (\text{Contains}(x, y))$ $\forall (x) (\operatorname{Role}(x) \to \exists (y) (\operatorname{Contains}(y, x)))$ $\forall (x, y, z) (\texttt{Contains}(x, y) \land \texttt{Contains}(z, y) \rightarrow (x = z))$ $\forall (x, y, z) (\text{RolePlaying}(x, y, z) \rightarrow \text{Role}(x) \land \text{CardinalityConstraint}(y) \land \text{EntityType}(z))$ $\forall (x)(\texttt{Role}(x) \rightarrow \exists (y, z)(\texttt{RolePlaying}(x, y, z)))$ $\forall (x, y, z, v, w) (\texttt{RolePlaying}(x, y, z) \land \texttt{RolePlaying}(x, v, w) \rightarrow (y = v) \land (z = w))$ $\forall (x, y, z, v, w) (\text{RolePlaying}(x, y, z) \land \text{RolePlaying}(v, y, w) \rightarrow (x = v) \land (z = w))$ $\forall (x) (CardinalityConstraint(x) \rightarrow \exists (y) (MinimumCardinality(x, y) \land Integer(y)))$ $\forall (x) (\texttt{CardinalityConstraint}(x) \rightarrow \exists (y) (\texttt{MaximumCardinality}(x, y) \land \texttt{Integer}(y)))$ $\forall (x, y) (\text{Identifies}(x, y) \rightarrow (\text{IdentificationConstraint}(x) \land \text{ObjectType}(y)))$ $\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{Identifies}(x, y)))$ $\forall (x, y, z) ((\text{Identifies}(x, y) \land \text{Identifies}(x, z)) \rightarrow (y = z))$ $\forall (x) (\texttt{ObjectType}(x) \rightarrow \exists (y) (\texttt{Identifies}(y, x)))$ $\forall (x, y, z) ((\text{DeclaredOn}(x, y) \land \text{DeclaredOn}(x, z) \land \text{IdentificationConstraint}(x) \land (\neg (y = x)))$ $(ValueProperty(y) \leftrightarrow \neg AttributiveProperty(z)))$ $\forall (x) (\text{IdentificationConstraint}(x) \rightarrow \exists (y) (\text{DeclaredOn}(x, y)))$ $\forall (x, y) ((\text{DeclaredOn}(x, y) \land \text{SingleIdentification}(x)) \rightarrow (\text{Attribute}(y) \lor \text{ValueType}(y))$ $\forall (x) (\texttt{SingleIdentification}(x) \rightarrow \exists (y) (\texttt{DeclaredOn}(x, y))$ $\forall (x, y, z) ((\texttt{SingleIdentification}(x) \land \texttt{DeclaredOn}(x, y) \land \texttt{DeclaredOn}(x, z)) \rightarrow (y = z))$

Outline

Motivation

2 Unification approach

- Metamodel
- Transformations and intermodel assertions

3 Quantitative analysis

4 Conclusions

Conceptual modelling in practice – an analysis⁷

- Few elements belong to all three language families
- \Rightarrow Is it worth trying to link or integrate or translate their models?
 - Collected available models on each language, and studied the usage of metamodel elements on them (approx. 35 on each language)
 - Only 64% of the entities are the kind of entities that appear in all three language families
 - When more features are available in a language, they are used in the models (though some very few times)
 - Specification of a feature-based 'characteristic profile' for each family

⁷Keet, C.M., Fillottrani, P.R. An analysis and characterisation of publicly available conceptual models. ER'15. Springer LNCS. (accepted)

Conceptual modelling in practice – an analysis⁷

- Few elements belong to all three language families
- \Rightarrow Is it worth trying to link or integrate or translate their models?
 - Collected available models on each language, and studied the usage of metamodel elements on them (approx. 35 on each language)
 - Only 64% of the entities are the kind of entities that appear in all three language families
 - When more features are available in a language, they are used in the models (though some very few times)
 - Specification of a feature-based 'characteristic profile' for each family

⁷Keet, C.M., Fillottrani, P.R. An analysis and characterisation of publicly available conceptual models. ER'15. イロト 不得 トイヨト イヨト 二日

Table: Prevalence of particular entity in the models, as percent of total number of entities for that family, aggregated by model family and rounded off to one decimal. OT: Object type; VT: Value type; Rel.: Relationship; Int. Unique.: Internal uniqueness constraint; ID: Identifier.

Top-5						
UML CD	ORM/2	(E)ER				
Attribute (31.2%)	OT cardinality	Attribute (39.5%)				
	(29.0%)					
OT (21.2%)	OT (14.5%)	OT cardinality				
		(22.1%)				
OT cardinality	2-ary Rel. (14.4%)	2-ary Rel. (11.6%)				
(17.5%)						
2-ary Rel. (12.4%)	Int. unique.	OT (11.5%)				
	(13.1%)					
OT subsumption	VT (10.4%)	single ID (7.7%)				
(9.6%)						
		・ ロ ト ・ 四 ト ・ 三 ト ・ 三 ト				

26 / 36

Ratios of entities aggregated by family and combined

Ratio	UML	ORM/2	(E)ER	comb.
model size:total entities	0.8	0.5	0.7	0.6
Attribute or Value type:Object type	1.5	0.7	3.5	1.7
binaries:n-aries	180.5	12.4	20.9	20.4
Subsumption(class):Object type	0.5	0.3	0.2	0.3
Relationship (non isa):Object type	0.8	1.1	1.1	1.0
Object type cardinality:	7.4	1.2	2.2	1.8
other constraint				
Single identification:other ID	_	17.3	5.4	8.4
role:relationship naming	4.3	(readings,	0.1	N/A
		mostly)		

Logic foundation for profiles

- Common features: Object type, Relationship, Object type cardinality, Subsumption (object type), Single identification, Disjoint and Complete object types.
- \Rightarrow Seems to fit some tractable language; which one(s)?
 - Avail of Description Logic languages to gain insight in language and computational complexity
 - Common core that covers $\pm 87\%$; language-specific profiles⁸
 - There is no DL that matches precisely, but a PTIME language is feasible— \mathcal{ALNI} for the Core Profile
 - Good match is $\mathcal{CFDI}_{nc}^{\forall-}$ (PTIME), with n-aries, identifiers⁹

^o Fillottrani, P.R., Keet, C.M. Evidence-based Languages for Conceptual Data Modelling Profiles. ADBIS'15. Springer LNCS. Poitiers, France, Sept 8-11, 2015. (accepted)

⁹Fillottrani, P.R., Keet, C.M., Toman, D. Polynomial encoding of ORM conceptual models in CFDI^{V−}_n. DL'15, CEUR-WS vol. 1350, 401-414.

Conclusions

Logic foundation for profiles

- Common features: Object type, Relationship, Object type cardinality, Subsumption (object type), Single identification, Disjoint and Complete object types.
- \Rightarrow Seems to fit some tractable language; which one(s)?
 - Avail of Description Logic languages to gain insight in language and computational complexity
 - Common core that covers $\pm 87\%$; language-specific profiles⁸
 - There is no DL that matches precisely, but a PTIME language is feasible— \mathcal{ALNI} for the Core Profile
 - Good match is $CFDI_{nc}^{\forall -}$ (PTIME), with n-aries, identifiers⁹

⁸Fillottrani, P.R., Keet, C.M. Evidence-based Languages for Conceptual Data Modelling Profiles. ADBIS'15.Springer LNCS. Poitiers, France, Sept 8-11, 2015. (accepted)

⁹Fillottrani, P.R., Keet, C.M., Toman, D. Polynomial encoding of ORM conceptual models in $C\mathcal{FDI}_{nc}^{\forall -}$. DL'15, CEUR-WS vol. 1350, 401-414.

Outline

Motivation

2 Unification approach

- Metamodel
- Transformations and intermodel assertions

3 Quantitative analysis

・ロ ・ < 回 ・ < 三 ト < 三 ト ミ の へ ()
30 / 36

Conclusions

- Unifying ontology-driven metamodel
- Inter-model assertions and model transformation approaches with basic set of rules (1:1, transformations, and approximations)
- Quantitative analysis on feature usages
- Profile characterisation

Ongoing and future work

- Integrate these results into design tools
- 'Scalability' of graphical representation and inferences?
- Modularisation

Example: ICOM

References I

Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A. Bernstein, and Giorgio Gianforme. Model-independent schema translation. *VLDB Journal*, 17(6):1347–1370, 2008.

Paolo Atzeni, Giorgio Gianforme, and Paolo Cappellari.

Data model descriptions and translation signatures in a multi-model framework. AMAI 63:1-29, 2012.

Michael Boyd and Peter McBrien.

Comparing and transforming between data models via an intermediate hypergraph data model. Journal on Data Semantics, IV:69–109, 2005.

D. Calvanese, M. Lenzerini, and D. Nardi.

Unifying class-based representation formalisms. Journal of Artificial Intelligence Research, 11:199–240, 1999.

Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris. The ICOM 3.0 intelligent conceptual modelling tool and methodology.

Semantic Web Journal, 3(3):293–306, 2012.

C. Maria Keet.

Positionalism of relations and its consequences for fact-oriented modelling.

In R. Meersman, P. Herrero, and Dillon T., editors, OTM Workshops, International Workshop on Fact-Oriented Modeling (ORM'09), volume 5872 of LNCS, pages 735–744. Springer, 2009. Vilamoura, Portugal, November 4-6, 2009.

3

35 / 36

References II

J.R. Venable and J.C. Grundy.

Integrating and supporting Entity Relationship and Object Role Models.

In Mike P. Papazoglou, editor, Proceedings of the 14th International Conference on Object-Oriented and Entity-Relationship Modelling (ER'95), volume 1021 of LNCS, pages 318–328. Springer, 1995. Gold Coast, Australia, December 12-15, 1995.

N. Zhu, J.C. Grundy, and J.G. Hosking.

Pounamu: a metatool for multi-view visual language environment construction. In IEEE Conf. on Visual Languages and Human-Centric Computing 2004, 2004.

・ロト ・四ト ・ヨト ・ヨト

2

36 / 36

Thank you!