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Abstract. The need for expressing temporal constraints in conceptual
models is well-known, but it is unclear which representation is preferred
and what would be easier to understand by modellers. We assessed five
different modes of representing temporal constraints, being the formal
semantics, Description logics notation, a coding-style notation, tempo-
ral EER diagrams, and (pseudo-)natural language sentences. The same
information was presented to 15 participants in an experimental eval-
uation. Principally, it showed that 1) there was a clear preference for
diagrams and natural language versus a dislike for other representations;
2) diagrams were preferred for simple constraints, but the natural lan-
guage rendering was preferred for more complex temporal constraints;
and 3) a multi-modal modelling tool will be needed for the data analysis
stage to be effective.

1 Introduction

Modelling of temporal constraints for information systems has received attention
since the mid-1990s and continues to do so (e.g., [9, 15, 16]), for it adds expres-
siveness to the model so as to ensure data integrity. For instance, to ensure that
each Alumnus must have been a Student at that university before (evolving ob-
ject), that a couple registered as divorcing in a census database must have been
marrying before (an evolving relation), or that flex-workers may not always have
an Office assigned (temporal attribute). This need has not subsided, and, perhaps,
even increased with Big Data and the Internet of Things, for that data is inher-
ently temporal. Capturing such information may be achieved with a temporal
conceptual data modelling language. This adds a challenge during the data anal-
ysis stage, however, for modelling temporal aspects of the universe of discourse is
non-trivial. This is due in part to the limited language options available to cap-
ture all these constraints. For instance, TimERplus [10] does not consider tran-
sition constraints for evolving entities, ERV T [2] omits transition constraints for
relationships and attributes (other than freezing), and TimeER [7], while includ-
ing more on temporal attributes, has no specification for temporal relationships
either. Another reason may be the graphical modelling languages, which have
only recently been evaluated on whether the temporal adornments make sense
to modellers, and which ones they prefer [21]. That evaluation [21] also demon-
strated that graphical notations are not unambiguous and that there was a steep



learning curve. An alternative is to verbalise information in natural language, as
is common for the ORM language [12]. One also could present modellers with the
more precise logic-based semantics. This smorgasbord of representation options
raises the following main questions:
1. Which representation is preferred for representing temporal information: for-

mal semantics, Description Logics (DL), a coding-style notation, diagrams,
or (pseudo-)natural language sentences?

2. What would be easier to understand by modellers: a succinct logic-based
notation, a graphical notation, or a ‘coding style’ notation?
The aim of this paper is to answer these questions. We conducted a survey

of modeller preference and understanding of these representation modes. For the
formal semantics, slightly more succinct DL notation, coding-style representa-
tion, and graphical notation, we use an extended version of ERV T [2]. Because
new temporal constraints have been added since ERV T was proposed, and to
ensure the, with current knowledge, ‘best’ graphical representation, we devised
an updated and extended notation in line with findings of [21]. This extended
and updated notation resulted in the Temporal information Representation in
Entity-Relationship Diagrams, TREND language. Finally, verbalisations—or:
(pseudo-)natural language sentences—of the temporal constraints were eluci-
dated in a separate research activity [13], which were added as a fifth option to
choose from. The evaluation with 15 modellers showed 1) a clear preference for
graphical or verbalised temporal constraints over the other three representations
2) ‘simple’ temporal constraints were preferred graphically and complex tempo-
ral constraints preferred in natural language and 3) their English specification
of temporal constraints was inadequate. This suggests the need for multi-modal
modelling languages in the process of temporal conceptual model development,
especially among graphical and verbalised temporal constraints.

The remainder of the paper is structured as follows. We describe the five
modes of representation in Sect. 2 and the experiment and its results in Sect. 3.
We discuss the results and related works in Sect. 4 and conclude in Sect. 5.

2 Representing the same information in different ways

This section provides a succinct overview of the different notations for temporal
elements and constraints. Because we use the logic-based reconstruction into
DLRUS [1] as the foundation for both the semantics and DL notation, this will
be introduced first. This is followed by the creation of the diagrammatic notation
in the extended ERV T , TREND, and finally basic information is provided for
the verbalisation into natural language.

2.1 The Description Logic DLRUS : syntax and semantics

The temporal Description Logic DLRUS [1] is an expressive fragment of first
order logic that combines the propositional temporal logic with Since and Until
operators with the (atemporal) DL DLR [6] so that the temporal operators



C → > | ⊥ | CN | ¬C | C1 u C2 | ∃≶k[Uj ]R | ∃[F ]A |
♦+C | ♦−C | �+C | �−C | ⊕C | 	C | C1 U C2 | C1 S C2

R→ >n | RN | ¬R | R1 u R2 | Ui/n : C |
♦+R | ♦−R | �+R | �−R | ⊕R | 	R | R1 U R2 | R1 S R2

A→ >A | AN | ¬A | F : C |
♦+A | ♦−A | �+A | �−A | ⊕A | 	A | A1 U A2 | A1 S A2

>I(t) = ∆IO
⊥I(t) = ∅

CNI(t) ⊆ >I(t)
(¬C)I(t) = >I(t) \ CI(t)

(C1 u C2)
I(t) = C

I(t)
1 ∩ CI(t)2

(∃≶k[Uj ]R)I(t) = { o ∈ >I(t) | ]{〈o1, . . . , on〉 ∈ RI(t) | oj = o} ≶ k}
(∃ [F ]AI(t) = { o ∈ >I(t) | ]{〈o, d〉 ∈ AI(t) ≥ 1}}

(C1 U C2)
I(t) = { o ∈ >I(t) | ∃v > t.(o ∈ CI(v)

2 ∧ ∀w ∈ (t, v).o ∈ CI(w)
1 )}

(C1 S C2)
I(t) = { o ∈ >I(t) | ∃v < t.(o ∈ CI(v)

2 ∧ ∀w ∈ (v, t).o ∈ CI(w)
1 )}

(>n)
I(t) = (∆IO)n

RNI(t) ⊆ (>n)
I(t)

(¬R)I(t) = (>n)
I(t) \ RI(t)

(R1 u R2)
I(t) = R

I(t)
1 ∩ RI(t)2

(Ui/n : C)I(t) = { 〈o1, . . . , on〉 ∈ (>n)
I(t) | oi ∈ CI(t)}

(R1 U R2)
I(t) = { 〈o1, . . . , on〉 ∈ (>n)

I(t) | ∃v > t.(〈o1, . . . , on〉 ∈ RI(v)
2 ∧

∀w ∈ (t, v). 〈o1, . . . , on〉 ∈ RI(w)
1 )}

(R1 S R2)
I(t) = { 〈o1, . . . , on〉 ∈ (>n)

I(t) | ∃v < t.(〈o1, . . . , on〉 ∈ RI(v)
2 ∧

∀w ∈ (v, t). 〈o1, . . . , on〉 ∈ RI(w)
1 )}

(♦+R)I(t) = {〈o1, . . . , on〉 ∈ (>n)
I(t) | ∃v > t. 〈o1, . . . , on〉 ∈ RI(v)}

(⊕R)I(t) = {〈o1, . . . , on〉 ∈ (>n)
I(t) | 〈o1, . . . , on〉 ∈ RI(t+1)}

(♦−R)I(t) = {〈o1, . . . , on〉 ∈ (>n)
I(t) | ∃v < t. 〈o1, . . . , on〉 ∈ RI(v)}

(	R)I(t) = {〈o1, . . . , on〉 ∈ (>n)
I(t) | 〈o1, . . . , on〉 ∈ RI(t−1)

(>A)I(t) = ∆IO ×∆
I
D

ANI(t) ⊆ (>A)I(t)

(F : C)I(t) = { 〈o, d〉 ∈ (>A)I(t) | o ∈ CI(t)}
(A1 U A2)

I(t) = { 〈o, d〉 ∈ (>A)I(t) | ∃v > t.(〈o, d〉 ∈ A2 ∧I(v) ∀w ∈ (t, v).〈o, d〉 ∈ AI(w)
1 )}

(A1 S A2)
I(t) = { 〈o, d〉 ∈ (>A)I(t) | ∃v < t.(〈o, d〉 ∈ AI(v)

2 ∧ ∀w ∈ (v, t).〈o, d〉 ∈ AI(w)
1 )}

(♦+A)I(t) = {〈o, d〉 ∈ (>A)I(t) | ∃v > t.〈o, d〉 ∈ AI(v)}
(⊕A)I(t) = {〈o, d〉 ∈ (>A)I(t) | 〈o, d〉 ∈ AI(t+1)}

(♦−A)I(t) = {〈o, d〉 ∈ (>A)I(t) | ∃v < t.〈o, d〉 ∈ AI(v)}
(	A)I(t) = {〈o, d〉 ∈ (>A)I(t) | 〈o, d〉 ∈ AI(t−1)}

Fig. 1. Syntax and semantics of DLRUS ; o denote objects, d domain values, v, w, t ∈ Tp.

can be used with relationships, entity types, and attributes. The syntax and
semantics are included in Fig. 1. In short, as usual for DLs, there are concepts C
(declared from atomic ones, CN), n-ary roles R (relationships, with n ≥ 2, RN),
binary attributes A between a class and a datatype, and DL role components
(U , of which F denotes a role component in an attribute, F ⊆ U, and F =
{From, To}). The selection expression Ui/n : C denotes an n-ary relation whose
i-th argument (i ≤ n) is of type C and [Uj ]R denotes the j-th argument (j ≤ n)—
i.e., a DL role component, alike a projection over the role—in role R (we omit
subscripts i and j if it is clear from the context). Until and Since together with
⊥ and > suffice to define the relevant temporal operators: ♦+ (some time in the
future) as ♦+C ≡ >U C, ⊕ (at the next moment) as ⊕C ≡ ⊥U C, and likewise
for their past counterparts. Analogously, we have �+ (always in the future) and
�− (always in the past) are the duals of ♦+ and ♦−. The operators ♦∗(at some



moment) and its dual �∗(at all moments) are defined as ♦∗C ≡ C t♦+C t♦−C
and �∗C ≡ C u�+C u�−C, respectively.

The model-theoretic semantics of DLRUS assumes a linear flow of time T =
〈Tp, <〉,where Tp is a set of countably infinite time points (chronons) and <
is isomorphic to the usual ordering on the integers. The language of DLRUS
is interpreted in temporal models over Tp, which are triples in the form I =
〈Tp, ∆I , ·I(t)〉, where ∆I is the union of two non empty disjoint sets, the domain
of objects, ∆IO, and domain of values, ∆ID, and ·I(t) the interpretation function
such that, for every t ∈ Tp, every class C, and every n-ary relation R, we have
CI(t) ⊆ ∆IO and RI(t) ⊆ (∆IO)n; also, (u, v) = {w ∈ Tp | u < w < v}. A
knowledge base is a finite set Σ of DLRUS axioms of the form C1 v C2 and
R1 v R2, and with R1 and R2 being relations of the same arity. An interpretation
I satisfies C1 v C2 (R1 v R2) if and only if the interpretation of C1 (R1) is

included in the interpretation of C2 (R2) at all time, i.e. C
I(t)
1 ⊆ CI(t)2 (R

I(t)
1 ⊆

R
I(t)
2 ), for all t ∈ Tp.

This enables one to capture not only temporal entity types, relationships,
and attributes, but also transition constraints for them. One can use either the
DLRUS semantics notation directly, or its DL notation. For instance, the axiom
o ∈ PersonI(t) → ∀t′.o ∈ CI(t

′) (with t, t′ ∈ Tp) states that an object o is
a member of the temporal interpretation (the “I(t)”) of the concept Person
at time t, and if that holds, then (the “→”) for all times t′ in the set of time
points Tp, object o is still a member of Person; i..e, it holds at all time points
in the past, present, and in the future. In DLRUS notation, this is represented
as Person v �∗Person. In contrast, o ∈ StudentI(t) → ∃t′ 6= t.o /∈ StudentI(t′)
states there is a time t′ that is different from time t where an object is not a
student (whereas at time t it was, is, or will be). This is captured in DLRUS as
Student v ♦∗¬Student.

The core transition constraints are dynamic extension (Dex) and dynamic
evolution (Dev). In an extension, the entity is also an instance of the other entity
type whereas with evolution, the entity ceases to be an instance of the source en-
tity type. An example of extension is Employee u ¬Manager u ⊕Manager, and of
evolution is Caterpillar u ¬Butterfly u ⊕ (¬Caterpillar u Butterfly). We use short-
hand notation for these constraints, as in [2]: DexEmployee,Manager and
DevCaterpillar,Butterfly, respectively.

2.2 ERV T , EER++
V T , and further extensions to TREND

The basic graphical and a textual version of ERV T was introduced with DLRUS
as its logic-based reconstruction [1] and fully described as a temporal conceptual
modelling language in [2]. ERV T focused on temporalising classes, but DLRUS
is expressive enough to allow capturing temporal relationships and attributes,
hence this was added by [14] and [15], respectively, and quantitative transition
constraints, resulting EER++

V T . The graphical notation, like with other temporal
conceptual data modelling languages (e.g., [7, 11, 10, 16, 17, 19]), was ad hoc. This
was investigated systematically by [21], with the relevant outcome that clocks



Fig. 2. Selection of the notation of the TREND diagram language.

on temporal elements were preferred over any other icon and over ERV T ’s S and
T, and arrows labeled with text for the transition constraints (Dev and Dex)
were preferred over the icons tested.

In preparing the questions for the evaluation, especially in finding examples
and the natural language generation (NLG) part for the pseudo-natural language
sentences, it came afore that mandatory transition constraints are likely to be
more interesting for conceptual modelling than optional ones. All prior versions
did not address this distinction, so we devised our own notation for it, in line with
ERD notation practices: maintaining the arrow notation, where a dashed shaft
denotes an optional transition and a solid shaft denotes a mandatory transition.
It appeared than none of the previous works had a sample diagram with quan-
titative transition constraints, so a notation was devised for that. To ‘unclutter’
the textual adornments, only Dev and Dex are used cf. EER++

V T ’s RDex and
ADex etc for the relationship and attribute transitions, for it can be easily de-
duced from the diagram (which elements are linked). A summary of the notation
for temporal elements is listed in Fig. 2, with the other constraints following the
same principles. Given that the primitives for the diagrammatic language are
different from ERV T and EER++

V T , we refer to this language as TREND.

An example of such a TREND diagram is shown in Fig. 3. Office is a temporal
attribute, for with flex-work, employees may not always have an office. The
mandatory transition Dex− indicates that a manager must have been working
for the company as a regular employee before being promoted to manager, and
thus that the transition from employee to manager happened in the past. Not all
employees will be promoted to manager, hence, the optional Dex from employee
to manager. Likewise, the transition from work to manage is optional.



Fig. 3. Example of a temporally extended ER diagram in TREND notation.

2.3 Verbalising temporal conceptual models

Verbalising atemporal conceptual data models is well established for the Object-
Role Modeling (ORM) language [8, 12], SBVR [18], and to some extent also for
UML class diagrams [5]. These approaches are based on templates, where the nat-
ural language rendering of the constraint is the ‘fixed’ part of the sentence that
then takes the vocabulary from the model with the constraints represented for
it. A mandatory participation of an entity type in a relationship has a template
like “Each <class1> <relationship1> at least one <class2>”. Then if, say,
<class1> = Professor, <relationship1> = teaches, and <class2> = Course
in some conceptual model, it will generate the sentence Each Professor teaches
at least one Course. The sentence planning stage of NLG [20] deals with which
words to choose. For instance, the mandatory constraint also can be verbalised
as “Each <class1> must <relationship1> at least one <class2>” to empha-
sise mandatory participation. Just like for atemporal constraints, it is possible
to verbalise the temporal constraints and likewise decisions have to be taken on
word choice. For instance, for a mandatory transition in the future, the ‘nicer
sounding’ auxiliary verb “will” could be used, or a more strict auxiliary verb
with a reference to the future, such as “must be ... a later point in time”.

This has been investigated elsewhere [13], which we summarise here. For
each of the relatively more interesting constraints (34 in total), 1-7 templates
were designed and evaluated by three experts in temporal logic on whether each
sentence captures the semantics adequately and which of the sentences were pre-
ferred. One of those questions is included in Fig. 4 for illustration. Observe here
that with respect to the logic counterpart, often there is no literal 1:1 mapping
between the axiom and the natural language sentences, but instead a ‘free’ ren-
dering in natural language. For instance, consider the fairytale country where
each non-tenured professor eventually will become a tenured professor, which
can be formalised in DLRUS as NTProf v ♦+DevNTProf,TProf , but one would
not want to read Each NTProf is a subclass of some time in the future evolves
from NTProf to TProf. Instead, a sentence like Each NTProf must evolve to
TProf, ceasing to be NTProf sounds more natural. The outcome of this evalua-
tion were the preferred sentences by majority voting, largely having chosen for
the more natural-sounding templates. These selected sentences were used in the
experiment that we will describe in Section 3.



(DevM−) Mandatory dynamic evolution, past: o ∈ DevM−
I(t)
C1,C2

→ (o ∈ C1
I(t) →

∃t′ < t.o ∈ Dev
I(t′)
C1,C2

). For instance, Butterfly and the Caterpillar it used to be.
a. Each ..C1.. must have been a(n) ..C2.. , but is not a(n) ..C2.. anymore.
b. Each ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. now.
c. If ..C1.. , then ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. anymore.

Fig. 4. Verbalisation question for DevM− (mandatory dynamic evolution in the past)
with three templates to choose from. The experts preferred option b.

3 Evaluation of Temporal CDMLs

The aim of the experimental evaluation is to find out which mode of represen-
tation ‘regular modellers’ prefer regarding temporal entities and constraints in
temporal conceptual modelling languages. Regular modellers refers to the typical
computer scientist who is conversant in conceptual modelling and has a basic
understanding of logic. Because theoretical computer science and logic is not
popular and the results on graphical notations not encouraging, the hypothesis
to test is: The natural language rendering of the temporal aspects is the preferred
mode of representation among modellers. We will test this by means of a ques-
tionnaire with a selection of elements and constraints that are represented in five
different modes among which the participants have to choose, an extra question
on whether they understand some of the representations, and auxiliary questions
(such as their mother tongue).

3.1 Materials and Methods

Methods The method followed a standard procedure for in-person questionnaires.
In short, after purposive recruiting—honours or masters students who had at-
tended either the Ontology Engineering or Logics for AI module—participants
were informed about the aim of the experiment and given the consent form, and
time to read the task and the provided background information on the notations.
This was followed by about an hour in which to complete the questionnaire at
their own pace. They did so in the same venue, with a researcher present at
all times to answer any questions and to ensure that choices were given serious
attention. All subjects volunteered for this experiment and were offered a small
monetary incentive for participation.

After the experiment, submitted spreadsheets were combined with the typed-
up paper-based data. Both researchers independently assessed the interpreta-
tions submitted for the DLRUS , coding-style, and TREND questions. Excel
was used to analyse the data and chart results.

Materials The materials consisted of a Consent Form to sign, a softcopy and
printed copy of the questionnaire, and a spreadsheet for entering answers.

The questionnaire had some written explanation on the logic and diagram
notations, which was kept to a minimum as they had seen similar logic notation



and ER diagrams before, and because models should be sufficiently intuitive
not to require lengthy explanations. Then 33 elements and constraints were pre-
sented where they had to indicate notation preferences. The 33 were ordered
thus: 6 basic examples distinguishing snapshot from temporal classes, relation-
ships and attributes; all 8 possible dynamic constraints for classes (Dev/Dex
x optional/mandatory x past/future); 1 persistent class example (PDex); all 8
quantitative dynamic constraints for classes; all 8 dynamic constraints for re-
lationships; and 2 dynamic constraints for attributes (frozen, and quantitative
evolution). Instructions required entering a value from 5 (most preferred) down
to 1 (least preferred), or 0 if they disliked a notation’s representation of a con-
straint. One of the questions is shown in Fig 5.

(DevM−) Mandatory dynamic evolution, past: For instance, Frog and the Tadpole
it used to be.
a. o ∈ FrogI(t) → ∃t′ < t.o ∈ Dev

I(t′)
Tadpole,Frog

b. Frog v ♦−DevTadpole,Frog

c. DevM−(Tadpole,Frog)

d. Diagram:

Tadpole

DEV -
Frog

e. Each Frog was a(n) Tadpole before, but is not a(n) Tadpole now.

Fig. 5. Question for DevM−, mandatory dynamic evolution in the past.

To ascertain how well they understood the notations, a question asked them
to interpret 3 examples: one comprising 9 DLRUS axioms, one comprising 8
coding-style statements, and one TREND diagram with 5 temporal aspects. In
the final section of the questionnaire they indicated if English was their first
(home) language, if they were 4th year or Masters students, which courses they
had studied (ontologies, logic, both) and which notation they would prefer for
modelling rather than understanding/reading temporal constraints. The ques-
tionnaire ended with an invitation to give any other comments. The question-
naire and data are available at http://www.meteck.org/files/ER17suppl.

zip.

3.2 Results and discussion

We first describe some pertinent details about the participants, which is fol-
lowed by the quantitative results, the participants’ comments, and finally the
assessment on the participants’ understanding of the models.

Participants Fifteen students participated in the experiment, of which 10 were
4th year students and 5 Masters students. Most participants took a full hour



to complete the questionnaire, with three finishing early and two running out
of time due to other commitments and failing to finish the last section or two.
Everyone completed the first section on choosing between the alternative repre-
sentations and all had clearly devoted considerable time to the 33 examples.

Quantitative results Responses were analysed based on 3 metrics: responses cal-
ibrated to a standard competition ranking on a scale of 1-5, a favourite (highest
ranked), and a dislike (0). Aggregating over the participants, the diagrams were
the favourite for 10 constraints and the natural language sentence for 25 (there
being two ‘ties’); no other notation was chosen as favourite for any constraint.
The overall rating totals are summarised in Table 1. Favourites and dislikes
aggregated by group of constraints are shown in Fig. 6.

Fig. 6. The top-rated representation modes and ‘dislike’ ratings.

Zooming into details, a less straightforward picture of ‘general winner’
emerges; the two clearest of these results are shown Fig. 7: the ‘simple’ con-
straints of temporal elements (entity types, relationships, and attributes) were
best represented in the diagram with the clock rather than as a sentence (option
d; 57 favourites vs 28, and average rank 4.1 vs 3.5, respectively), whereas with
transition (dynamic) constraints, the differences between diagrams and natural
language were much smaller in favour of the sentence. For transition constraints
for relationships on the future, the difference was smallest, with 26 vs 33 as
favourite (average 3.9 vs 4.3), in favour of natural language sentences. The great-
est difference was for class transitions on the past (19 vs 42 as favourite in favour

Fig. 7. Top choices by category of constraints, with a category A the ‘simple’
constraints—e.g., “C is a temporal class”—and category C one of the ‘complex’ set
of constraints, being the transition constraints for classes in the past.



Table 1. Summary of the preference data. Percentages include ‘tie’ 1st/2nd choice,
and ‘tie’ last choice.

Rank Total Average Favourite Total Dislikes % Top 2 % Last

Formal semantics 785 1.6 49 136 15% 70%
DLRUS 1355 2.7 78 42 27% 16%
Coding-style 1406 2.8 77 45 31% 25%
TREND 1984 4.0 223 14 76% 7%
Natural language 2113 4.3 299 8 81% 3%

of English), which was also their first encounter with arrows for transitions that
constrain the past. For the last examples of constraints on the past, the difference
shrank to 29 vs 41 as favourite in favour of English, indicating that once familiar
with those arrows, several participants favoured these as ‘tie’ best with English.
Statistically, with a Kruskal-Wallis due to non-normal distribution of the data,
the difference between graphical and natural language mode is significant for
both the ‘simple’ (p=0.0003) and ‘complex’ (p=0.0002) constraints.

There is clear general decrease in preference from ‘simple’ temporal con-
straints in the DL representation in favour of natural language for the more
complex (transition) constraints; that is, a natural language sentences such as
“Person married-to Person may be followed by Person divorced-from Person,
ending Person married-to Person.” is deemed easier to understand than 〈o, o′〉 ∈
marriedToI(t) → ∃t′ > t.〈o, o′〉 ∈ divorcedFromI(t′) ∧ 〈o, o′〉 /∈ marriedToI(t′)
or ♦+RDevmarriedTo,divorcedFrom. However, marriedTo v ♦∗¬marriedTo (a temporal
relationship) was deemed easier to understand than the somewhat cumbersome
sentence “The objects participating in a fact in Person married to Person do not
relate through married-to at some time” (rank totals 54 and 49, respectively).

Preferences for class transitions were largely unaffected by the introduction
of quantitative constraints (total rank changed by between 0.1% and 5% for
the 5 notations). The distinction between dynamic extension (DEX) and dy-
namic evolution (DEV) similarly had negligible impact on preferences (total
rank changes between 0.1% and 1.5%). This was also true for mandatory vs
optional constraints (changes between 0.06% and 6%), and past vs future con-
straints(changes between 0.2% and 2%).

Respondent comments General comments made more than once were that the
logic is “fine” for “simple” concepts but not “complex” examples. This is in
agreement with the quantitative results (see Fig. 7). Also, it was noted that
diagrams were best sometimes and natural language best at other times, as also
indicated by the quantitative data. Some comments on the English verbalisation
(option (e)) vs TREND (option (d)) are:

– “I would prefer D for an overview of information, but like E for clearing up
any uncertainty/learning the notation of D”;

– “D=5; E=5; although English sentences may be complicated”;



– “it is quicker to interpret option (d) than most of the other options. Option
(e) requires a lot of reading”;

Feedback on individual examples included:
– ”The +2, -1 are great ways to illustrate future and past”;
– “the use of the clock in the diagrams for dynamic constraints is favoured”;
– “ (English) “since” confusing, I am not sure of meaning” (by an English

home language speaker);
– “Perhaps Dev+6 so syntax matches the ”-” ”;
– “option (c) and (d) are easier to write, however they require more interpre-

tation they do not encode all the information”;
– “(c) and (b) are prefered when having to write the relationship. Option (e)

and (a) are prefered when reading.”;
– “(c) would require memorization of the various “functions” such as “Sa” ”;
– “Since the source of the Dex is (clock) then the (clock) on the dest(ination)

feels redundant”, which indeed are redundant, because it can be inferred
thanks to the logical implications proven in [2, 14];

– “it is not clear why (DEV-) is not the same (as Dev) ... Can this not be
achieved with Dev”, indicating a lack of understanding, which is also evident
from the questions on testing their understanding.

– “(c) has a favourable score because its function name (Freez) is clear”;
Students twice noted that their preferences were changing as they progressed
through the questionnaire due to repeated exposure improving their understand-
ing of the new temporal concepts they were exposed to. One participant stated
this for the diagrams only and another said this applied to (b), (c) and (d).

Interpretations and testing understanding outside the context of individual con-
straints This was shown to be the hardest task. One student did not interpret
any of the examples, and several tackled only some parts of some of the three
notations, possibly through lack of time. Since this data is thus incomplete, we
can state only that at least 3 students understood at least one notation well and
at least 2 all notations. It was clear that precise and complete natural language
description does not come naturally even to Computer Science postgraduates, as
no student gave all and only the expected interpretation; they were frequently
imprecise and generally failed to convey all the semantics.

The authors were like-minded in their evaluation of students’ understanding.
The values were calibrated on marks given for each constraint in the model and
number of constraints in the model so as to compare the three fairly. The DL
notation received a mark of 2.3, coding-style notation 2.7, and diagram notation
3.8. Thus, they understood the diagram best of the three notations.

The main source of fundamental errors were with the transition constraints—
transition in the wrong direction and not distinguishing Dev from Dex—and
with describing the distinction of mandatory versus optional constraints. In
particular, C v ♦+DevC,B and ♦−DevC,B and similar were problematic1. Per-

1 “C must evolve into a B some time in the future” and “C evolved into a B in the
past”, with both ceasing to be a C, respectively.



haps surprisingly, this question was answered somewhat better for option c (the
coding-style notation) than either the DL notation or the TREND diagram.
Some examples of imprecise English encountered were:
– “can evolve to” and “evolved from” without stating ceasing to be the original;
– “used to be and continues to be” instead of “must previously have been”;
– “were not” instead of “may not have been”;
– “is”, “gets”, “will” or “can” instead of “may” or “must”
– “immutable”, which has a specific meaning that at least the ontology engi-

neering students had been exposed to, instead of “snapshot”
– “can have” (attribute), without adding “at some time and not at other times”

That said, also three temporal logic experts did mostly not agree unanimously
on a preferred natural language rendering of the semantics [13], so perhaps the
general discourse about temporal constraints is not well developed.

The participants expect they prefer creating models in TREND most (n =
7), then in natural language (n = 5), and then in DL or coding-style notation
(n = 1 each). The preference for the former may be explained by the fact that
they seem to understand it best. That it may not be the natural language sen-
tences as most preferred for modelling is also substantiated by the comments to
the first part of the questionnaire (see previous section).

4 Discussion

To the best of our knowledge, this is the first attempt to evaluate different modes
of representing temporal information to figure out what may be the ‘best’ way.
Extant proposals for temporal conceptual modelling languages focus on inclusion
of features rather than fitness for purpose, such as by [2, 7, 9, 10, 14–16, 19] and on
formal foundations [2, 7, 15, 16]. However, they will receive broader uptake only
if they are understandable and usable for modelling. Gianni et al. [9] do propose
a multi-modal interface for ORM diagrams adorned with temporal information
and verbalisations, but the verbalisations are for individuals only, rather than the
information represented in the model, and also this proposal was not evaluated
with modellers. This paper sought to fill this gap, with the hypothesis that
the verbalisations would be preferred. The results show that verbalisations are
preferred mainly for ‘complex’ constraints, but it is not a ‘clear winner’ in all
cases. This may suggest that there is a need for a multimodal interface, alike
in NORMA [8], that allows one to switch back and forth between, at least, the
diagrams and natural language sentences.

Also, the (pseudo-)natural language renderings may be better for commu-
nication, especially with domain experts, but data suggests the diagrammatic
representation is likely to be favoured most during the authoring stage of the
model. The models were still small, however, so caution has to be exercised ex-
trapolating from these results and it deserves further attention. We did not test
the participants’ understanding of the natural language sentences because we
could not devise a satisfactory way: writing the sentences in different English
seemed superfluous and, e.g., drawing the semantics may not test their under-



standing of the English but instead their abilities in the other representation
model (be this TREND or the semantics with timelines).

One could perhaps argue that a particular verbalisation pattern was not
optimal, or some graphical notation was not, and that others would have to
be tested with. However, both the graphical notation and sentences have been
evaluated with modellers and experts and found preferable [13, 21], mitigating
this argument. The (previously untested) graphical extension for quantitative
transition constraints were deemed sufficiently clear by the participants. That
said, these are currently limited when compared to natural language, in that
they do not indicate if the given time units are a minimum, maximum or exact
requirement, nor whether the previous state had to be retained continuously
for that length of time or simply had to be true at some point that many time
units ago. It would be useful to look into, especially since they are also easy to
implement in temporal and atemporal databases with straight-forward triggers
to provide easy integrity constraints.

Finally, the 33 constraints evaluated were a subset of the possible temporal
constraints for conceptual models, and perhaps these are still too many. It may
be of interest to constrain it further to those useful for temporal Ontology-Based
Data Access only [3, 4], for those temporal logics are fragments of DLRUS and
thus would constitute fragments of TREND as well.

5 Conclusion

In evaluating the mode of representing temporal constraints, the experimen-
tal evaluation made clear that there was a preference for diagrams and natural
language, and a dislike for the formal semantics and coding-style notations. Dia-
grams were preferred for simple constraints, but transition constraints were best
verbalised in natural language. The results demonstrated that a multi-modal
modelling tool will be needed for the data analysis stage to be effective, due to
the differing preferences and abilities of understanding and modelling temporal
constraints. It also showed that transition constraints in the past were hardest
to understand, but there was at least an increase observed in grasping the new
temporal notions as the participants went along in the questionnaire.

Both the graphical TREND language proposed in this paper, and the natural
language sentence are, with the current state of the art, optimal. This may
facilitate broader uptake of temporal conceptual modelling and, with that, larger
experiments may be conducted.
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