
TDDonto2: A Test-Driven Development Plugin
for arbitrary TBox and ABox axioms

Kieren Davies1, C. Maria Keet1, and Agnieszka Lawrynowicz2

1 Department of Computer Science, University of Cape Town, South Africa
kdavies@cs.uct.ac.za, mkeet@cs.uct.ac.za

2 Institute of Computing Science, Poznan University of Technology, Poland
agnieszka.lawrynowicz@cs.put.poznan.pl

Abstract. Ontology authoring is a complex task where modellers rely
heavily on the automated reasoner for verification of changes, using effec-
tively a time-consuming test-last approach. Test-first with Test-Driven
Development aims to speed up such processes, but tools to date covered
only a subset of possible OWL 2 DL axioms and provide limited feedback.
We have addressed these issues with a model for TDD testing to give
more feedback to the modeller and seven new, generic, TDD algorithms
that also cover OWL 2 DL class expressions on the left-hand side of in-
clusions and ABox assertions by availing of several reasoner methods.
The model and algorithms have been implemented as a Protégé plugin,
TDDonto2.

1 Introduction

With most automated reasoners for OWL having become stable and reliable over
the years, ontology engineers are exploring their creative uses to assist the ontol-
ogy authoring process of ontology development. For instance, the possible world
explorer examining negations [4], the entailment differences of an ontology edit
[3, 8], and proposing the feasible object properties [7]. This is in a considerable
part motivated by the time-consuming trial-and-error approach in the authoring
process where many modellers invoke the reasoner even after each single edit
[11], noting also that aforementioned methods still require classification for each
assessment step. Such practices are unsustainable when the ontology becomes
large or complex and classifying the ontology prohibitively long. Analysing such
modeller behaviour, this actually amounts to a test-last mode, alike unit test-
ing in software development. In that regard, ontology engineering methodologies
lag behind software engineering methodologies in terms of both maturity and
adoption [5]. In particular, there is only one tentative methodology that explic-
itly incorporates automated testing as a test-first approach (that reduces the
number of times a reasoner has to be invoked) [6], which is a staple of software
engineering as test-driven development (TDD) [1]. There are a few tools for TDD
unit testing ontologies in this manner [6, 12, 10], i.e., (in short) checking whether
an axiom is entailed before adding it. They all share two notable shortcomings,
however: certain axioms are not supported as TDD unit tests even though they

are permitted in OWL 2, such as ∀R.C v D, and test results are mostly just
“pass” or “fail” with no further information about the nature of failure. More-
over, no rigorous theoretical analysis of the techniques used for such test-first
ontology testing has been carried out. However, for modellers to be able to fully
rely on reasoner-driven TDD in the ontology authoring process—as they do with
test-last ontology authoring—such rigour is an imperative.

In this demo-paper, we present TDDOnto2, which fills this gap in rigour
and coverage. It relies on a succinct logic-based model of TDD unit testing as
a prerequisite and generalised versions of the algorithms of [6] to cover also any
OWL 2 class expression in the axiom under test for not only the TBox, as in
[6], but also ABox assertions. The model details and proofs of correctness of the
algorithms are described in [2]. These algorithms do not require reclassification
of an ontology in any test after a first single classification before executing one or
more TDD unit test, and are such that the algorithms are compliant with any
OWL 2 compliant reasoner. This is feasible through ‘bypassing’ the ontology
editor functionality and availing directly of a set of methods available from the
OWL reasoners in a carefully orchestrated way.

We have implemented both the model for testing and the novel algorithms by
extending TDDonto [6] as a proof-of-concept to ascertain their correct function-
ing practically. It uses the OWL API [9] and a subset of its functions, including
isSatisfiable(C), getSubClasses(C), getInstances(C), and getTypes(a),
for the ‘convenience method’ isEntailed is not mandatory for reasoners to im-
plement, and most do not. This open source Protégé 5 plugin, TDDonto2, is
accessible at https://github.com/kierendavies/tddonto2, which also has a
screencast of the working code. A screenshot is included in Fig. 1.

The remainder of this demo paper describes several scenarios where TDD
aspects are useful (Section 2), and then introduces TDDonto2 and illustrates
several of its algorithms through brief examples (Section 3). We close with con-
clusions and what an attendee may expect from the demo (Section 4).

2 Scenarios for testing during ontology development

Ontologies, like computer programs, can become complex so that it is difficult
for a human author to predict the consequences of changes. Automated tests
are therefore useful to detect unintended consequences. For instance, suppose an
author creates the following classes and subsumptions: Giraffe v Herbivore v
Mammal v Animal, but then realises that not all herbivores are mammals, so
shortens the hierarchy to Herbivore v Animal, thereby losing the Giraffe v
Mammal derivation. An application that uses this ontology to retrieve mammals
would then erroneously exclude giraffes. This issue can be caught by a simple
automated test to check whether Giraffe v Mammal is still entailed. It may
seem like this problem can be solved just adding those axioms directly to the
ontology. However, adding such axioms introduces a lot of redundancy, making
modification of the ontology more difficult. Adding only a test instead ensures
correctness without bloating the ontology.

Tests may also be used to explore and understand an ontology. For example,
an author might be assessing an ontology of animals for reuse and wants to
verify that Giraffe v Mammal. The author can simply create a corresponding
temporary test and observe the result, saving the time it would take to browse
the inferred class hierarchy. A similar approach can be employed when developing
a new ontology: create a temporary test to determine whether the axiom i) is
already entailed, ii) would result in a contradiction or unsatisfiable class if it were
to be added to the ontology, or iii) can be added safely. The standard approach of
adding an axiom and then observing the consequences involves reclassification,
which is typically very slow, and which a TDD unit test can avoid.

Overall, there are thus two broad use cases: 1) Declare many tests alongside
an ontology and evaluate them in order to demonstrate quality or detect regres-
sions; 2) Evaluate temporary tests in order to explore an ontology or predict
the consequences of adding a new axiom. Such scenarios are made possible with
test-driven development with the TDDonto2 tool.

3 Illustration of TDDonto2’s algorithms

The simple workflow for an actual test in TDDonto2 is to type an axiom in
the test text box; e.g., eats some Animal SubClassOf: (Carnivore or Omnivore),
and either “Evaluate” it immediately (as with giraffe SubClassOf: mammal in
Fig. 1) or “Add” it to the test suite (middle of the screen), then either select a
subset of the tests (Shift-/Ctrl-click), or all tests, and test them by pressing the
“Evaluate selected” or “Evaluate all” button, respectively. The “Result” can be
one of the following: the knowledge is already in the ontology (entailed), adding
the axiom will make the ontology inconsistent, adding the axiom will make at
least one class unsatisfiable (incoherent), the axiom is absent and will not lead
to a contradiction if added, and failed precondition for if the ontology is already
inconsistent or incoherent. Based on the results, one either can “Remove” the
axiom under test or “Add selected to ontology”.

In the remainder of this section we demonstrate examples of axioms being
tested so as to illustrate how the algorithms are used and how they work (see
also Fig. 1). Take a simple ontology O that consists of the following axioms:

Giraffe v Mammal

Mammal v Animal

Animal u Plant v ⊥
Herbivore ≡ Animal u ∀eats. Plant

Carnivore v Animal

Carnivore u Herbivore v ⊥
Susan : Giraffe
Max : owl:Thing

Example 1 is straightforward and falls into the use case of testing something a
modeller expects to be entailed to ensure the quality of the ontology.

Example 1. Test that Giraffe is a subclass of Animal, hence, finding the result
of testO(Giraffe v Animal). It first checks if there are any instances of the class
expression Giraffe u ¬Animal. There are none in this ontology, so it proceeds
to check if the same class expression has any named subclasses or equivalent
classes. Again there are none, so it checks if the class expression is satisfiable. It
is not, so the algorithm returns entailed. ♦

Fig. 1. Screenshot of TDDonto2 after having run several TDD unit tests on a sample
ontology. Top: entering a test; middle: tests and their results; bottom: managing tests.

Examples 2, 3, and 4 described below demonstrate testing of more interesting
axioms that are not possible to test with any of the extant TDD tools, for i)
the left-hand side of the inclusion is not a named class (Ex. 2), ii) have a test
with individuals (Ex. 3 and 4), and iii) the axioms are not entailed for different
reasons.

Example 2. Test that ∃eats. Animal v Carnivore. First, the algorithm checks
if ∃eats. Animal u ¬Carnivore has instances (if so, then the ontology with this
axiom would be inconsistent), which it does not, and then if it has named sub-
classes, which it does not (so, the ontology with this axiom would not cause the
ontology to become incoherent). Then it checks if it is satisfiable, which it is
because the ontology does not entail that it is empty, so the algorithm returns
absent. Thus, the axiom is not entailed and it would not cause inconsistency or
incoherence if added to the ontology. ♦

Example 3. Test whether Susan : Plant. TDDonto2 first checks if Susan is a
known instance of Plant, which it is not. Then it checks if Susan is an instance
of ¬Plant, which it is because Giraffe is disjoint with Plant because Giraffe v
Animal and Animal u Plant v ⊥, so the algorithm returns inconsistent. ♦

Example 4. Test whether Susan and Max are different individuals. It first re-
trieves all the individuals that are the same as Susan; this set is empty, so adding
the different individuals axiom will not result in an inconsistent ontology. Then
it retrieves all the individuals different from Susan; Max is not in that set, so the
algorithm will return ‘absent’, hence, the axiom can be added without causing
the ontology to be come inconsistent and without introducing redundancy. ♦

More examples illustrating the tool and a screencast are available from https:

//github.com/kierendavies/tddonto2.

4 Conclusions and Demo

The algorithms implemented in TDDonto2 fully cover class axioms and par-
tially cover assertions and object property axioms. They significantly broaden
the coverage compared to the existing tools [6, 12, 10] and return more detailed
test results. TDDonto2 easily could be extended or integrated with generating
justifications of inconsistency or incoherence without the need to reclassify the
ontology, and return more user-friendly explanations alike in [3].

In the demo, we will illustrate all possible permutations of the testing model’s
possible return values, as well as its coverage of types of axioms, and that it
indeed does reduce the number of calls to the reasoner, hence, reduces ontology
authoring time. Attendees can bring their own ontology and try it out, and we
also will have several ontologies an attendee can test with.

Acknowledgments This work has been partially supported by the National Sci-

ence Centre, Poland, within grant 2014/13/D/ST6/02076. A. Lawrynowicz acknowl-

edges support from grant 09/91/DSPB/0627.

References

1. Beck, K.: Test-Driven Development: by example. Addison-Wesley, Boston, MA
(2004)

2. Davies, K.: Towards test-driven development of ontologies: An analy-
sis of testing algorithms. Project report, University of Cape Town (2016),
https://people.cs.uct.ac.za/~dvskie001/doc/TDD_Ontologies_Analysis_

of_Testing_Algorithms.pdf
3. Denaux, R., Thakker, D., Dimitrova, V., Cohn, A.G.: Interactive semantic feedback

for intuitive ontology authoring. In: Proc. of FOIS’12. pp. 160–173. IOS Press
(2012)

4. Ferré, S., Rudolph, S.: Advocatus diaboli exploratory enrichment of ontologies
with negative constraints. In: Proc. of EKAW’12. LNAI, vol. 7603, pp. 42–56.
Springer (2012), 8-12 Oct 2012, Galway, Ireland

5. Iqbal, R., Murad, M.A.A., Mustapha, A., Sharef, N.M.: An analysis of ontology
engineering methodologies: A literature review. Research Journal of Applied Sci-
ences, Engineering and Technology 6(16), 2993–3000 (2013)

6. Keet, C.M., Lawrynowicz, A.: Test-driven development of ontologies. In: Proc. of
ESWC’16. LNCS, vol. 9678, pp. 642–657. Springer (2016)

7. Keet, C.M., Khan, M.T., Ghidini, C.: Ontology authoring with FORZA. In: Proc.
of CIKM’13. pp. 569–578. ACM proceedings (2013)

8. Matentzoglu, N., Vigo, M., Jay, C., Stevens, R.: Making entailment set changes
explicit improves the understanding of consequences of ontology authoring actions.
In: Proc. EKAW’16. LNAI, vol. 10024, pp. 432–446. Springer (2016)

9. OWL API. http://owlcs.github.io/owlapi/, accessed: 1-11-2016
10. Scone project. https://bitbucket.org/malefort/scone, accessed: 9-5-2016
11. Vigo, M., Bail, S., Jay, C., Stevens, R.D.: Overcoming the pitfalls of ontology

authoring: strategies and implications for tool design. International Journal of
Human-Computer Studies 72(12), 835–845 (2014)

12. Warrender, J.D., Lord, P.: How, what and why to test an ontology. In: Bio-
Ontologies 2015 (2015)

