
Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Toward Test-Driven Development for Ontologies

C. Maria Keet1

Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

OWLED-ORE’16, 20 November, 2016

1joint work with Agnieszka Lawrynowicz, Poznan University of Technology,
Poland, and Kieren Davies, UCT

1 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Outline

1 Introduction
Motivation
Related works

2 TDD specifications

3 Implementation and performance

4 Toward TDD methodology

5 Conclusions

2 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Outline

1 Introduction
Motivation
Related works

2 TDD specifications

3 Implementation and performance

4 Toward TDD methodology

5 Conclusions

3 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Introduction

Ontologies
For their own sake
For communication
Used for many different ontology-driven information systems
(database integration and linking, recommender systems, NLP,
textbook annotation and search, question generation, Q&A
systems, etc.)

⇒ Someone has to build them, somehow

4 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Introduction

Ontologies
For their own sake
For communication
Used for many different ontology-driven information systems
(database integration and linking, recommender systems, NLP,
textbook annotation and search, question generation, Q&A
systems, etc.)

⇒ Someone has to build them, somehow

5 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Typical stages of macro-level methodologies

(Source: Simperl et al., 2010)
6 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Ontology Summit 2013’s lifecycle model (http:

//ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique) 7 / 74

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Scenarios for building Ontology Networks (NEON methodology)

8 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

And then you open an ontology editor...

9 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Or if you have something to start with:

10 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Behind the facade

SubClassOf(awo:lion awo:animal)
SubClassOf(awo:lion ObjectSomeValuesFrom(awo:eats awo:Impala))
SubClassOf(awo:lion ObjectAllValuesFrom(awo:eats awo:herbivore))

11 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

And behind that serialisation

12 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Ontology development at the ‘micro-level’ level (cf. macro)

We need to get those axioms into the ontology

The actual modelling, or ontology authoring, using micro-level
guidelines and tools

Methods, such as reverse engineering and text mining to start,
OntoClean and OntoPartS to improve an ontology’s quality
Parameters that affect ontology development, such as purpose,
starting/legacy material, language
Tools to model, to reason, to debug, to integrate, to link to
data

13 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Ontology development at the ‘micro-level’ level (cf. macro)

We need to get those axioms into the ontology

The actual modelling, or ontology authoring, using micro-level
guidelines and tools

Methods, such as reverse engineering and text mining to start,
OntoClean and OntoPartS to improve an ontology’s quality
Parameters that affect ontology development, such as purpose,
starting/legacy material, language
Tools to model, to reason, to debug, to integrate, to link to
data

14 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Ontology authoring

Ontology authoring: on adding axioms to the Knowledge base

Q1 “Does my ontology have axiom X?”
where X is, e.g., all giraffes eat some twigs
i.e., Giraffe v ∃eat.Twig

Q2 “Will it still be consistent/class satisfiable if I add X?”
add, and try and see what the reasoner says about it

Current approaches:

For Q1: browsing, searching the asserted knowledge

For Q2: essentially a test-last approach

Cumbersome and time-consuming with larger ontologies

Missing: a systematic testbed to do this in a methodical
fashion

It would need to relate to those macro-level processes

15 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Ontology authoring

Ontology authoring: on adding axioms to the Knowledge base

Q1 “Does my ontology have axiom X?”
where X is, e.g., all giraffes eat some twigs
i.e., Giraffe v ∃eat.Twig

Q2 “Will it still be consistent/class satisfiable if I add X?”
add, and try and see what the reasoner says about it

Current approaches:

For Q1: browsing, searching the asserted knowledge
For Q2: essentially a test-last approach

Cumbersome and time-consuming with larger ontologies

Missing: a systematic testbed to do this in a methodical
fashion

It would need to relate to those macro-level processes

16 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Ontology authoring

Ontology authoring: on adding axioms to the Knowledge base

Q1 “Does my ontology have axiom X?”
where X is, e.g., all giraffes eat some twigs
i.e., Giraffe v ∃eat.Twig

Q2 “Will it still be consistent/class satisfiable if I add X?”
add, and try and see what the reasoner says about it

Current approaches:

For Q1: browsing, searching the asserted knowledge
For Q2: essentially a test-last approach

Cumbersome and time-consuming with larger ontologies

Missing: a systematic testbed to do this in a methodical
fashion

It would need to relate to those macro-level processes

17 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Addressing these issues

⇒ Reuse software engineering’s notion of Test-Driven
Development, based on test-first

18 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

(Recap) TDD in software development

Methodology where one writes new code only if an automated
test has failed [Beck(2004)].

TDD permeates the whole development process

TDD is a test-first approach rather than test-last (design,
code, test) of unit tests

More focussed, improves communication, improves
understanding of required software behaviour, reduces design
complexity [Kumar and Bansal(2013)]

TDD produced code passes more externally defined tests—i.e,
better software quality—and less time spent on debugging
[Janzen(2005)]

19 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Several scenarios of TDD usage in ontology authoring

I. CQ-driven TDD Specify CQ, translate it into one or more
axioms, which are the input of the relevant TDD test(s)

II-a. Ontology authoring-driven TDD - the knowledge engineer who
knows which axiom s/he wants to add, types it, which is then
fed directly into the TDD system

II-b. Ontology authoring-driven TDD - the domain expert uses a
template or “logical macro” ODP [Presutti et al.(2008)],
which map onto generic tests; e.g.:

- the all-some template, i.e., an axiom of the form C v ∃R.D
- instantiate with relevant domain entities; e.g.,

Professor v ∃teaches.Course
- the TDD test for the C v ∃R.D type of axiom is then run

automatically

behind the usability interface, what gets sent to the TDD
system is that axiom

20 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Several scenarios of TDD usage in ontology authoring

I. CQ-driven TDD Specify CQ, translate it into one or more
axioms, which are the input of the relevant TDD test(s)

II-a. Ontology authoring-driven TDD - the knowledge engineer who
knows which axiom s/he wants to add, types it, which is then
fed directly into the TDD system

II-b. Ontology authoring-driven TDD - the domain expert uses a
template or “logical macro” ODP [Presutti et al.(2008)],
which map onto generic tests; e.g.:

- the all-some template, i.e., an axiom of the form C v ∃R.D
- instantiate with relevant domain entities; e.g.,

Professor v ∃teaches.Course
- the TDD test for the C v ∃R.D type of axiom is then run

automatically

behind the usability interface, what gets sent to the TDD
system is that axiom

21 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Several scenarios of TDD usage in ontology authoring

I. CQ-driven TDD Specify CQ, translate it into one or more
axioms, which are the input of the relevant TDD test(s)

II-a. Ontology authoring-driven TDD - the knowledge engineer who
knows which axiom s/he wants to add, types it, which is then
fed directly into the TDD system

II-b. Ontology authoring-driven TDD - the domain expert uses a
template or “logical macro” ODP [Presutti et al.(2008)],
which map onto generic tests; e.g.:

- the all-some template, i.e., an axiom of the form C v ∃R.D
- instantiate with relevant domain entities; e.g.,

Professor v ∃teaches.Course
- the TDD test for the C v ∃R.D type of axiom is then run

automatically

behind the usability interface, what gets sent to the TDD
system is that axiom

22 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

To realise TDD for ontology authoring, one can ask:

Q1: What does TDD mean for ‘ontology testing’?

Q2: Do mock objects for ‘incomplete’ parts make sense for
ontologies?

Q3: What would be an efficient way to realise the testing?

Q4: In what way and where (if at all) can this be integrated as a
methodological step in existing ontology engineering
methodologies?

23 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDD in conceptual modelling [Tort et al.(2011)]

Applied to UML class diagrams

Test specification in OCL

Each language feature has its own test specification involves
creating the objects that should, or ought not to, instantiate
the UML classes and associations

Evaluation: (a.o.) more time was spent on modelling to fix
errors than on writing the test cases

24 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Tests in ontology engineering

Early explorative work borrowing notion of testing
[Vrandečić and Gangemi(2006)]—no framework, testbed

CQs: patterns [Ren et al.(2014)], formalise into SPARQL
queries—what, not how

Instance-oriented approaches
[Garca-Ramos et al.(2009), Kontokostas et al.(2014)],
eXtreme Design NeON plugin, ODP rapid design
[Blomqvist et al.(2012), Presutti et al.(2009)], RapidOWL
[Auer(2006)]

Tests for particular types of axioms:

disjointness [Ferré and Rudolph(2012)]
adding part-whole relation based domain and range constraints
[Keet et al.(2013)]

25 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Tests in ontology engineering

Tawny-Owl’s subsumption tests [Warrender and Lord(2015)].
Tests tailored to the actual ontology rather than reusable
‘templates’ for the tests covering all OWL language features

Scone, BDD, focussing on natural language and examples,
Cucumber at the back (F. Neuhaus, 2015)

Methodologies:

none of the 9 methodologies reviewed by [Garcia et al.(2010)]
are TDD-based
The Agile-inspired OntoMaven
[Paschke and Schaefermeier(2015)] has OntoMvnTest with
‘test cases’ only for the usual syntax checking, consistency, and
entailment

26 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Tests in ontology engineering

Full TDD ontology engineering
[Keet and Lawrynowicz(2016), Lawrynowicz and Keet(2016)]

Idea of unit tests has been proposed, there is a dearth of
actual specifications as to what exactly is, or should be, going
on in such as test

No regression testing to check that perhaps an earlier
modelled CQ—and thus a passed test—conflicts with a later
one

27 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Outline

1 Introduction
Motivation
Related works

2 TDD specifications

3 Implementation and performance

4 Toward TDD methodology

5 Conclusions

28 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

General idea of Test-Driven Development for an ontology

1. Require: domain axiom x of type X is to be added to the
ontology; e.g., x may be Professor v ∃teaches.Course, which
has pattern C v ∃R.D.

2. Check the vocabulary elements of x are in ontology O (itself a
TDD test);

3. Run the TDD test:

3.1 The first execution should fail (check O 2 x or not present)
3.2 Update the ontology (add x), and
3.3 Run the test again which then should pass (check that O |= x)

and such that there is no new inconsistency or undesirable
deduction

4. Run all previous successful tests, which still have to pass (i.e.,
regression testing); if not, resolve conflicting knowledge.

29 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDD test specification, preliminaries

42 test types for SROIQ [Keet and Lawrynowicz(2016)]

First iteration:
Covering basic axioms one can add to the TBox or RBox
T-tests: test with terminological knowledge only

Use SPARQL-OWL [Kollia et al.(2011)] queries to evaluate
the test
Use the reasoner directly via OWL API

A-tests: test with mock objects that must be able to exist

Notation of test in algorithm-style notation

Second iteration (theory completed):

TDD tests for general TBox axioms
More feedback (not just ‘undefined’, ‘failed’, ‘OK’)
Proofs
TDD tests for ABox assertions

Third iteration: dealing with RBox inconsistencies
[Keet(2012)], still to implement the algorithm

30 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDD test specification, preliminaries

42 test types for SROIQ [Keet and Lawrynowicz(2016)]

First iteration:
Covering basic axioms one can add to the TBox or RBox
T-tests: test with terminological knowledge only

Use SPARQL-OWL [Kollia et al.(2011)] queries to evaluate
the test
Use the reasoner directly via OWL API

A-tests: test with mock objects that must be able to exist
Notation of test in algorithm-style notation

Second iteration (theory completed):

TDD tests for general TBox axioms
More feedback (not just ‘undefined’, ‘failed’, ‘OK’)
Proofs
TDD tests for ABox assertions

Third iteration: dealing with RBox inconsistencies
[Keet(2012)], still to implement the algorithm

31 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDD test specification, preliminaries

42 test types for SROIQ [Keet and Lawrynowicz(2016)]

First iteration:
Covering basic axioms one can add to the TBox or RBox
T-tests: test with terminological knowledge only

Use SPARQL-OWL [Kollia et al.(2011)] queries to evaluate
the test
Use the reasoner directly via OWL API

A-tests: test with mock objects that must be able to exist
Notation of test in algorithm-style notation

Second iteration (theory completed):
TDD tests for general TBox axioms
More feedback (not just ‘undefined’, ‘failed’, ‘OK’)
Proofs
TDD tests for ABox assertions

Third iteration: dealing with RBox inconsistencies
[Keet(2012)], still to implement the algorithm

32 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDD test specification, preliminaries

42 test types for SROIQ [Keet and Lawrynowicz(2016)]

First iteration:
Covering basic axioms one can add to the TBox or RBox
T-tests: test with terminological knowledge only

Use SPARQL-OWL [Kollia et al.(2011)] queries to evaluate
the test
Use the reasoner directly via OWL API

A-tests: test with mock objects that must be able to exist
Notation of test in algorithm-style notation

Second iteration (theory completed):
TDD tests for general TBox axioms
More feedback (not just ‘undefined’, ‘failed’, ‘OK’)
Proofs
TDD tests for ABox assertions

Third iteration: dealing with RBox inconsistencies
[Keet(2012)], still to implement the algorithm

33 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Example: a T-test test with SPARQL-OWL

Require: Test T (C v ∃R.D)
1: α← SubClassOf(?x ObjectSomeValuesFrom(R D))
2: if C /∈ α then . thus, O 2 C v ∃R.D
3: return T (C v ∃R.D) is false
4: else
5: return T (C v ∃R.D) is true
6: end if

34 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Example: A-test with mock objects, using SPARQL-OWL

Require: Test T (C v ∃R.D) . i.e., test T ′
eq

1: Create a mock object, a
2: Assert (C u ¬∃R.D)(a)
3: ostate ← Run reasoner
4: if ostate == consistent then . thus, then O 2 C v ∃R.D
5: return T(C v ∃R.D) is false
6: else
7: return T(C v ∃R.D) is true
8: end if
9: Delete (C u ¬∃R.D)(a) and a

Note: using De Morgan in that if the existential quantification were present

and had an instance, then C u¬∃R.D should result in an inconsistent ontology,

or: in its absence, the ontology is consistent

35 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Example A-test with mock objects, RBox axiom

Require: Test T (R v S)
1: Check R,S ∈ VOP

2: Add individuals a, b to the ABox, add R(a, b)
3: Run the reasoner
4: if O 2 S(a, b) then . thus O 2 R v S

5: return T (R v S) is false
6: else
7: return T (R v S) is true
8: end if
9: Delete R(a, b), and individuals a and b

36 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Revisiting the general idea of TDD for an ontology

1. Require: domain axiom x of type X is to be added to the
ontology; e.g., x may be Professor v ∃teaches.Course, which
has pattern C v ∃R.D.

2. Check the vocabulary elements of x are in ontology O (itself a
TDD test);

3. Run the TDD test:

3.1 The first execution should fail (check O 2 x or not present)
3.2 Update the ontology (add x), and
3.3 Run the test again which then should pass (check that O |= x)

and such that there is no new inconsistency or undesirable
deduction

4. Run all previous successful tests, which still have to pass (i.e.,
regression testing); if not, resolve conflicting knowledge.

37 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

A model for testing–possible test results

Ontology already inconsistent

Ontology already incoherent: that is, one or more of its
named classes are unsatisfiable.

Missing entity in axiom: The axiom contains one or more
named classes or properties which are not declared in the
ontology.

Axiom causes inconsistency

Axiom causes incoherence

Axiom absent: The axiom is not entailed by the ontology, but
it could be added without negative consequences.

Axiom entailed: The axiom is already entailed by the ontology

38 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Formally

Definition

Given an ontology O which is consistent and coherent, and an
axiom A such that Σ(A) ⊆ Σ(O), the result of testing A against O
is

testO(A) =


entailed if O ` A
inconsistent if O ∪ A ` ⊥
incoherent if O ∪ A 0 ⊥

∧(∃C ∈ ΣC (O)) s.t. O ∪ A ` C v ⊥
absent otherwise

39 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Generalisation

Note: now C and D can be any class expression, not just only a
named class

40 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Graphically

D

C

We want to test whether this already holds in O.

 not D

There is an object, a, that is a C and not a D…

C
a

… so O with C is-a D would turn out to be inconsistent.

 not D

There is some class E subsumed by C and not a D…

C

… so C is-a D would cause O to be incoherent.

E

 not D

There cannot be a class E subsumed by C and not a D…

C

… so C is-a D is entailed already in O.
What remains: C is-a D is absent.

41 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Outline

1 Introduction
Motivation
Related works

2 TDD specifications

3 Implementation and performance

4 Toward TDD methodology

5 Conclusions

42 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Design considerations and issues

Which technology to use?

DL Query tab possible

to cumbersome, not all tests possible

SPARQL-OWL’s implementation OWL-BGP and its SPARQL
SELECT, SPARQL answering engine, and Hermit v1.3.8
[Kollia et al.(2011)]

Limited RBox tests (note: does not implement ASK queries)

SPARQL-DL’s implementation with its ASK queries

Limited RBox tests

Use just the OWL API + a DL reasoner

43 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDDOnto

TDDOnto tool as Protégé plugin

Manages test specification and execution, ontology update

‘wraps’ around the actual execution of the test (SPARQL
query, reasoner) for creation/deletion mock entities, the
true/false returned

To make a long story short: the current version of TDDonto
uses the reasoner, for it is the fastest of the three options...

44 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

TDDOnto

TDDOnto tool as Protégé plugin

Manages test specification and execution, ontology update

‘wraps’ around the actual execution of the test (SPARQL
query, reasoner) for creation/deletion mock entities, the
true/false returned

To make a long story short: the current version of TDDonto
uses the reasoner, for it is the fastest of the three options...

45 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Screenshots

46 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

47 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Screenshots

48 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Evaluation

Which TDD approach has better performance: T-test with
SPARQL queries using OWL-BGP, mock objects with the
A-tests, or T-tests with the reasoner using the OWL API?

Hypotheses:

H1: Query-based T-test TDD is faster than A-test mock
object-based TDD tests.

H2: Classification time of the ontology contributes the most to
overall performance (time) of a TDD test.

H3: The TDD tests with OWL (1) ontologies are faster than on
OWL 2 DL ontologies.

49 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Evaluation

Data: OWL ontologies from TONES (via Ontohub), manually
collected 20 OWL 2 ontologies. total 82 ontologies

Group ontologies by size: up to 100 (n=20), 100-1000 axioms
(n=35), 1000-10,000 axioms (n=10), over 10,000 (n=2)

OWL-BGP with built-in Hermit v1.3.8, OWL API + reasoner
(also Hermit v1.3.8)

Mac Book Air: 1.3 GHz Intel Core i5 CPU, 4 GB RAM

Tests: use URIs of the ontology, randomly for the type.
Repeated 3 times

50 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Mock objects (light blue) vs. SPARQL-OWL (dark blue)

51 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Mock objects vs. SPARQL-OWL, OWL 1 only

52 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Hypothesis H1

H1: Query-based T-test TDD is faster than A-tests with mock
objects.

Avg A-test: 5.191s, sd of 71.491s, and median of 0.014s

Avg T-test (OWL-BGP): 6.244s, sd 113.605s, and median
0.005s

t-test with H10 of identical average scores and the threshold
of 5%, with all ontologies:

t=-0.322 and p=0.748
therefore we cannot reject the null hypothesis

t-test with H10, but with OWL 1 ontologies only:

t=2.959 and p=0.003,
therefore we can reject the null hypothesis ⇒ the query-based
T-tests are significantly faster than the A-tests with mock
objects

53 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Hypothesis H1

H1: Query-based T-test TDD is faster than A-tests with mock
objects.

Avg A-test: 5.191s, sd of 71.491s, and median of 0.014s

Avg T-test (OWL-BGP): 6.244s, sd 113.605s, and median
0.005s

t-test with H10 of identical average scores and the threshold
of 5%, with all ontologies:

t=-0.322 and p=0.748
therefore we cannot reject the null hypothesis

t-test with H10, but with OWL 1 ontologies only:

t=2.959 and p=0.003,
therefore we can reject the null hypothesis ⇒ the query-based
T-tests are significantly faster than the A-tests with mock
objects

54 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Classification vs TDD T-test, OWL 2 DL, by size

55 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Hypothesis H2

H2: Classification time of the ontology contributes the most to
overall performance (time) of a TDD test.

A-test: Average classification time 15.990s (sd 128.264s),
median 0.040s vs. avg test time 5.191s (sd 71.491s) and
median 0.013s

T-test (OWL-BGP): respectively, avg 15.954s (sd 28.267s)
and median 0.040s, vs 6.244s (sd 113.606s) and median
0.005s

We didn’t quite expect that TDD would be faster on average

Reasons: some outliers, and for repeated querying one does
not need to classify each time

56 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

OWL API+Reasoner, OWL vs OWL 2

57 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Hypothesis H3

H3: The TDD tests on OWL (1) ontologies are faster than on
OWL 2 DL ontologies.

T-test values are t=-7.425 and p=1.309e-13;

Thus, tests on OWL ontologies were significantly faster

As expected, based on the theory

58 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Outline

1 Introduction
Motivation
Related works

2 TDD specifications

3 Implementation and performance

4 Toward TDD methodology

5 Conclusions

59 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Methodology sketch

Ontology lifecycle

TDD
cycle

CQ added, template filled,
or axiom written

TDD
cycle

TDD
cycle

etc…TDD
cycle

etc…

TDD cycle

1. select
scenario

2. domain axiom
for TDD test

3. TDD test
expected to fail

4. update
ontology

5. classify ontology;
no contradictions

6. TDD test
expected to pass

7. refactor

8. regression
testing

TDD
cycle

TDD
cycle

TDD
cycle

TDD
cycle

TDD
cycle

Prior feasibility study, architecture,
language decisions, ontology reuse
decisions, etc etc, CQ specification

Deployment,
documentation, etc.

60 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

CQ-driven KR
engineer

Domain
expert

Formalised
QC

Template
selectedWrite axiom

Fill template

Select test

Run test Stop

Update ontology

Classify
ontology

Manually
updated?

Run test Refactor ontology
(optional)

Regression
testing

All tests
passed?

Stop

Resolve
conflicts

Stop

passed

failed

inconsistent

consistent

yes

no

passed

failed

yes

no

(the knowledge was not
added correctly)

(tests with
conflicting
knowledge)

(the knowledge was not
added correctly)

(the knowledge was
already present)

61 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

CQ-driven KR
engineer

Domain
expert

Formalised
QC

Template
selectedWrite axiom

Fill template

Select test

Run test Stop

Inconsistent?

incoherent?

Update ontology Refactor ontology
(optional)

Regression
testing

All tests
passed?

Stop

Resolve
conflicts

Stop

passed
(entailed)

failed (else)

yes

no (absent)

yes

passed

failed

yes

no (tests with
conflicting
knowledge)

(the knowledge was not
added correctly, or you did
something else as well)

(the knowledge was
already present)

no

Run test

62 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Notes

The picture shows the basic loop only

What if Step 5 goes wrong (inconsistent/incoherent
ontology):

What is the source of the inconsistency?
Was it a previous test, hence, contradicting CQs?

What if after refactoring (step 7), regression (step 8) fails:

Is a previous test obsolete?
Error introduced in the refactoring?

What does ‘refactoring’ an ontology mean anyway?

(we have some ideas, but too preliminary at this stage)

63 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Notes

The picture shows the basic loop only

What if Step 5 goes wrong (inconsistent/incoherent
ontology):

What is the source of the inconsistency?
Was it a previous test, hence, contradicting CQs?

What if after refactoring (step 7), regression (step 8) fails:

Is a previous test obsolete?
Error introduced in the refactoring?

What does ‘refactoring’ an ontology mean anyway?

(we have some ideas, but too preliminary at this stage)

64 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Notes

The picture shows the basic loop only

What if Step 5 goes wrong (inconsistent/incoherent
ontology):

What is the source of the inconsistency?
Was it a previous test, hence, contradicting CQs?

What if after refactoring (step 7), regression (step 8) fails:

Is a previous test obsolete?
Error introduced in the refactoring?

What does ‘refactoring’ an ontology mean anyway?

(we have some ideas, but too preliminary at this stage)

65 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Notes

The picture shows the basic loop only

What if Step 5 goes wrong (inconsistent/incoherent
ontology):

What is the source of the inconsistency?
Was it a previous test, hence, contradicting CQs?

What if after refactoring (step 7), regression (step 8) fails:

Is a previous test obsolete?
Error introduced in the refactoring?

What does ‘refactoring’ an ontology mean anyway?

(we have some ideas, but too preliminary at this stage)

66 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Notes

The picture shows the basic loop only

What if Step 5 goes wrong (inconsistent/incoherent
ontology):

What is the source of the inconsistency?
Was it a previous test, hence, contradicting CQs?

What if after refactoring (step 7), regression (step 8) fails:

Is a previous test obsolete?
Error introduced in the refactoring?

What does ‘refactoring’ an ontology mean anyway?

(we have some ideas, but too preliminary at this stage)

67 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Outline

1 Introduction
Motivation
Related works

2 TDD specifications

3 Implementation and performance

4 Toward TDD methodology

5 Conclusions

68 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Conclusions

First comprehensive specification of TDD for ontology
authoring

Rigorous, formal foundation, with proofs

Sketch of a revised ontology development methodology

TDDonto, a Protégé plugin for Test-Driven Development tests

Performance evaluation:

TDD tests outperformed classification reasoning
TBox-based test strategy was faster in general than
ABox-based (significantly so for OWL 1 ontologies)
OWL API+reasoner options for TBox TDD tests had better
median performance than SPARQL-OWL (OWL-BGP) TBox
TDD tests
TDD tests on OWL ontologies are significantly faster overall
than on OWL 2 DL ontologies

69 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

References I

S. Auer.

The RapidOWL methodology–towards Agile knowledge engineering.
In Proc. of WETICE’06, pages 352–357. IEEE Computer Society, June 2006.
doi: 10.1109/WETICE.2006.67.

Kent Beck.

Test-Driven Development: by example.
Addison-Wesley, Boston, MA, 2004.

E Blomqvist, A. S. Sepour, and V. Presutti.

Ontology testing – methodology and tool.
In Proc. of EKAW’12, volume 7603 of LNAI, pages 216–226. Springer, 2012.

Sebastien Ferré and Sebastian Rudolph.

Advocatus diaboli exploratory enrichment of ontologies with negative constraints.
In Proc. of EKAW’12, volume 7603 of LNAI, pages 42–56. Springer, 2012.
Oct 8-12, Galway, Ireland.

S. Garca-Ramos, A. Otero, and M Fernández-López.

OntologyTest: A tool to evaluate ontologies through tests defined by the user.
In Proc. of IWANN 2009 Workshops, Part II, volume 5518 of LNCS, pages 91–98. Springer, 2009.

Alexander Garcia, Kieran O’Neill, Leyla Jael Garcia, Phillip Lord, Robert Stevens, Óscar Corcho, and Frank

Gibson.
Developing ontologies within decentralized settings.
In H. Chen et al., editors, Semantic e-Science. Annals of Information Systems 11, pages 99–139. Springer,
2010.

70 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

References II

David S. Janzen.

Software architecture improvement through test-driven development.
In Companion to ACM SIGPLAN’05, pages 240–241. ACM Proceedings, 2005.

C. M. Keet and A. Lawrynowicz.

Test-driven development of ontologies.
In 13th Extended Semantic Web Conference (ESWC’16), LNCS. Springer, 2016.
29 May - 2 June, 2016, Crete, Greece.

C. Maria Keet.

Detecting and revising flaws in OWL object property expressions.
In A. ten Teije et al., editors, 18th International Conference on Knowledge Engineering and Knowledge
Management (EKAW’12), volume 7603 of LNAI, pages 252–266. Springer, 2012.
URL http://www.meteck.org/files/EKAW12subProsChains.pdf.
Oct 8-12, Galway, Ireland.

C. Maria Keet, M. Tahir Khan, and Chiara Ghidini.

Ontology authoring with FORZA.
In Proc. of CIKM’13, pages 569–578. ACM proceedings, 2013.

Ilianna Kollia, Birte Glimm, and Ian Horrocks.

SPARQL Query Answering over OWL Ontologies.
In Proc, of ESWC’11, volume 6643 of LNCS, pages 382–396. Springer, 2011.
29 May-2 June, 2011, Heraklion, Crete, Greece.

71 / 74

http://www.meteck.org/files/EKAW12subProsChains.pdf

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

References III

D. Kontokostas, P. Westphal, Sören Auer, Sebastian Hellmann, Jens Lehmann, Roland Cornelissen, and

Amrapali Zaveri.
Test-driven evaluation of linked data quality.
In Proc. of WWW’14, pages 747–758. ACM proceedings, 2014.

Shaweta Kumar and Sanjeev Bansal.

Comparative study of test driven development with traditional techniques.
Int. J. Soft Comp. & Eng., 3(1):352–360, 2013.

A. Lawrynowicz and C. M. Keet.

The tddonto tool for test-driven development of dl knowledge bases.
In R. Peñaloza and M. Lenzerini, editors, 29th International Workshop on Description Logics (DL’16),
volume 1577 of CEUR-WS, 2016.
22-25 April 2016, Cape Town, South Africa.

Adrian Paschke and Ralph Schaefermeier.

Aspect OntoMaven - aspect-oriented ontology development and configuration with OntoMaven.
Technical Report 1507.00212v1, Free University of Berlin, July 2015.
URL http://arxiv.org/abs/1507.00212.

V. Presutti, E Daga, et al.

extreme design with content ontology design patterns.
In Proc. of WS on OP’09, volume 516 of CEUR-WS, pages 83–97, 2009.

V. Presutti et al.

A library of ontology design patterns: reusable solutions for collaborative design of networked ontologies.
NeOn deliverable D2.5.1, NeOn Project, ISTC-CNR, 2008.

72 / 74

http://arxiv.org/abs/1507.00212

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

References IV

Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter, and Robert Stevens.

Towards competency question-driven ontology authoring.
In Proc. of ESWC’14, volume 8465 of LNCS, page 752767. Springer, 2014.

Albert Tort, Antoni Olivé, and Maria-Ribera Sancho.

An approach to test-driven development of conceptual schemas.
Data & Knowledge Engineering, 70:1088–1111, 2011.

Danny Vrandečić and Aldo Gangemi.

Unit tests for ontologies.
In OTM workshops 2006, volume 4278 of LNCS, pages 1012–1020. Springer, 2006.

J. D. Warrender and P. Lord.

How, What and Why to test an ontology.
Technical Report 1505.04112, Newcastle University, 2015.
http://arxiv.org/abs/1505.04112.

73 / 74

Introduction TDD specifications Implementation and performance Toward TDD methodology Conclusions

Thank you!

More details in DL16 and ESWC16 papers.
TDDonto can be downloaded from

https://semantic.cs.put.poznan.pl/wiki/
aristoteles/doku.php

Questions?

74 / 74

https://semantic.cs.put.poznan.pl/wiki/aristoteles/doku.php
https://semantic.cs.put.poznan.pl/wiki/aristoteles/doku.php

	Introduction
	Motivation
	Related works

	TDD specifications
	Implementation and performance
	Toward TDD methodology
	Conclusions

