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Abstract

Current persistent storage implementations of large bio-
ontologies fall short in meeting usability and reusability re-
quirements. Main limitations are demonstrated with two
representative ontologies-stored-in-databases: the Gene
Ontology and the Foundational Model of Anatomy. We dis-
cuss and propose several improvements for ontology devel-
opment. Advantages of a better implementation are illus-
trated with granularity based querying. This granular in-
formation retrieval enables both retrieving more informa-
tion quicker and can be used for improving and enlarging
an ontology.

1. Introduction

The added-value of ontologies has been reiterated many
times over, but at present, its effective usage falls short of
the promises. Ontologies are not intended just for storing
knowledge about the subject domain, browsing and (man-
ual) annotation of data, but can be used for data integration,
inferencing, Semantic Web agents mediation, ought/will be
more than just an online encyclopaedia and so forth. While,
of course, it is first a challenge to develop a good ontol-
ogy, and a second to use it effectively, buthow the cap-
tured knowledge is stored persistently affects what one can
do with the ontology: OWL files can be used for reason-
ing purposes to e.g. classify a taxonomy and check consis-
tency, whereas this is not possible with ontologies stored in
a (relational) database. On the other hand, relational data-
bases have about 30 years of established research and im-
plementations behind them, where one can take advantage
of e.g. sophisticated querying. Taking into account ontol-
ogy as an engineering artifact, then implementation deci-
sions for ontology development are not trivial. In addition,
over the years there always is a ‘requirements slip’: desir-
ing to use an engineering artifact for other purposes it was
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originally designed for and users moving the goal posts.
For instance, data/information retrieval from ontologies –
getting out what has been put in the ontology – with as a
sub-goal granularity, i.e. querying an ontology at one’s de-
sired different levels of detail, which goes further than the
“retrieve ancestors”-type of query. Querying an ontology
stored in a database at the desired level of detail can be
done ‘on the fly’ with database views that return e.g. all
subtypes of tissue that reside in theTissue-level, or with a
full formal domain granularity framework respecting onto-
logical differences in types of granularity [9] that contains
different perspectives on the data or ontology, has its granu-
lar levels for each perspective predefined, and may be used
for inferencing. A conceptually relatively simple method is
to position a taxonomy and partonomy orthogonally and to
use thepartOf relation (or spatialcontainedIn, involvedIn
for processes) to distinguish between levels of granularity.
With this combination, one can structure and retrieve more
information from the same resource that is otherwise avail-
able in the ontology but inaccessible.

With ontologies stored in databases, such change in con-
tent and structure of the queries, is,in theory, not a prob-
lem. However, with currentengineering practicesthis is
not possible, or only after elaborate reengineering. Two
well-known large ontologies stored in relational databases
are the Gene Ontology (GO) with more than 19,000 entities
[4] and the Foundational Model of Anatomy (FMA) with
about 72,000 entities and 1.9 million relations [11], which
we analyze and discuss in the next section. We have chosen
these two ontologies-stored-in-databases, because the GO is
a de factotrendsetter for the Open Biomedical Ontologies
(OBO) family of ontologies and the FMA is the frontrun-
ner for expressive ontologies created with the Protéǵe ontol-
ogy development environment. These ontologies are widely
used for annotation but rarely used for ontology-driven in-
formation systems [5]. The issues that will be brought afore
in the next section, however, are not unique, but represen-
tative of the challenges ahead and design considerations to
take into account to bring ontologies to the next level to
facilitate effective usage, which also has the advantage of
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being able to improve the ontologies themselves, discussed
in section 3. We conclude in section 4.

2 Case studies: GO and FMA

2.1. The GO database

Common types of queries of the GO in the DAG-Edit
tool [21], AmiGO web page [20], or directly to its data-
base are “find stringx” in the tree, definition, comment,
id, etc., or the supertype or sibling ofx; querying for “de-
scendants only” is problematic. Utilising the taxonomy and
partonomy separately or orthogonally is as of yet not possi-
ble without losing crucial information. The GO (MySQL)
database itself does not support recursive queries (required
for traversing trees), but offers a workaround with the ad-
ditional graph path table. In graph path , “Paths be-
tween any two terms (traversing down only) this table states
whether there exists a path between a parent and a child, and
the distance between them. multiple paths mean multiple
entries in this table” [24]. Querying a section of the biolog-
ical process GO [23] with the sample query of [24] using
ancestor.name = ’blood coagulation’ and adding
ORDER BY graphpath.distance ASC :

 

gives the output as in Table 1 (data from v3-8-2005 of
the geneontology.obo (BP)), having fetched every descen-
dant ofBloodCoagulationby listing the descendants with
distance to the assigned root instead of maintaining the
hierarchical structure. A DAG-Edit “descendants only”
can be retrieved by selecting “has ancestorthat equals

blood coagulation”, which returns an unordered set without
the distances retrieved with the SQL query. Problematic
is that distance puts togetherany type of relation: the
in-/extrinsic pathways of blood coagulation are taxonomic
subtypes whereas the other entities arepart of blood co-
agulation. Hence, although the knowledge is stored in the
database, the query answer is ontologically meaningless. To
allocate entities correctly in the appropriate level of granu-
larity, one requires a (depth-first) algorithm that during the
search uses thetypeof relation that is traversed. The trans-
lations of the GO database to make it browsable through
Prot́eǵe or convert it into OWL-format does not automat-
ically solve these issues, as will be described in the next
sections.

Table 1. Output for fetching descendants of
Blood coagulationin GO, using the database
query.

Name acc distance

blood coagulation GO:0007596 0

platelet activation GO:0030168 1

regulation of blood coagulation GO:0030193 1

blood coagulation, intrinsic pathway GO:0007597 1

blood coagulation, extrinsic pathway GO:0007598 1

positive regulation of blood coagulation GO:0030194 2

negative regulation of blood coagulation GO:0030195 2

fibrinolysis GO:0042730 3

2.2. The FMA database

One can browse the FMA online [22] and search for
a single entity, or get the database dump and install
MySQL and Prot́eǵe to browse its contents locally through
the Prot́eǵe software, that does not allow SQL database
queries. The FMA database is tightly integrated with,
and entirely dependent on, the Protéǵe application soft-
ware, which is revealed not only upon inspecting the
database dump, but even clearer after reverse engineer-
ing the conceptual model (with VisioModeler 3.1), shown
in Fig. 1, that is devoid of semantics. For instance the
‘short value‘ varchar(255) default NULL in the
definition of theFMAtable may record values, among others,
like ‘English’ , ‘31227’ , and‘Thu Aug 12 11:30:30

PDT 1999’ . Browsing the FMA in Prot́eǵe, one has to
click each individual relation and navigate through the myr-
iad of pop-up screens to find information. Finding the an-
swer to a simple query like “how many organs does a hu-
man have?” is impossible, assuming one does not want
to browse and count manually thousands of organ types
in Prot́eǵe. This combination has been re-engineered into
a format usable for querying: the OQAFMA query agent
[11]. Pre-processing steps involve optimizations such as
the creation of a new table for each edge (relation) type,
adding views and storing it in a PostgreSQL database [11],
and can be queried through an online interface [25] us-
ing the STRUQL query language that returns the answer
in XML for further processing (e.g. visualization). Before
testing OQAFMA features to support granular queries, sev-
eral queries were formulated in natural language, bearing in
mind how domain granularity for human anatomy may be
defined (e.g. [10]) with organ-tissue-cell-organelle and so
forth based on the FMA partonomy as shown in Table 21,

1It is outside the scope of this extended abstract to go into details of
a) the ontological (un)soundness of the presented level definition, naming,
and allocation of the entities in their respective level, and b) the granularity



 

Figure 1. Reverse engineered ORM concep-
tual model of the FMA database.

but not declared and hard coded in the database. Two of the
questions are:

I. “what are the cellular components of blood?”, where
Blood resides in another level (be itBodySubstanceor
Tissue) than the cells it has as parts.

II. “In which organs are macrophages located?”, i.e. for
each macrophage and its subtypes, in which organ
(subtype) is it located?

These questions were translated into STRUQL and the data-
base queried through the OQAFMA interface to retrieve the
result in XML format.

Query I can be reformulated into STRUQL syntax as
shown in Fg. 2: theWHEREclause contains mappings and

in a granularity hierarchy to ‘skip’ levels where one may identify in real-
ity more levels than used in the software system, like gphsagl2 collapses
three levels into one. Both [16] and [19] achieved better performance with
software implementation using wider and shallower levels of granularity
than with fewer perspectives that had more detailed levels; this is a topic
of future research.

Table 2. Granular perspective gp hsa human
structural anatomy and nine defined levels
with some examples.

Level Name Examples

gphsagl1 Body MaleBody

gphsagl2 Principal body part Head, Limb
Subdiv. of pr. body part LimbGirdle, Face
Organ system RespiratorySystem

gphsagl3 Organ SalivaryGland, Pancreas

gphsagl4 OrganPart Cortex, LymphNode

gphsagl5 Tissue Epithelium, SmoothMuscle

gphsagl6 Tissue part HairFollicle, Nail

gphsagl7 Cell Melanocyte

gphsagl8 Cell part Chromosome, Cytoskeleton

gphsagl9 Molecule Protein, Melanin

which relations have to be traversed, “+” is the closure
operator following the specified type of relation an arbi-
trary number of times, and a “*” combines the “+” with
the optional operator “?” for path alternation, theCREATE

clause says what to return as the query answer [11], hence
OQAFMA supports recursive queries. The query answer
is graphically depicted in Fig. 3 as the 40 not greyed-out
names in the tree. The 12 checked entities are listed in
the FMA/Prot́eǵe interface’s “Part” scroll-down box. Ob-
viously, the FMA/Prot́eǵe parts list is incomplete and po-
sitioning the taxonomy orthogonallyautomaticallydoes re-
veal the lacunas in the list. This also indicates the difficulty
of constructing a parts listde novoin contradistinction to
querying the extant modelled knowledge. Thus, through
combining existing encoded information differently by us-
ing granularity of the subject domain in formulation of the
query, one can retrieve or discover ‘new’ information that
otherwise would have remained inaccessible and hidden in
the database. Put differently: there is more information cap-
tured in the FMA than meets the eye when only browsed
with Prot́eǵe. Considering the query answer has 40 enti-
ties as opposed to the incomplete 12 listed in FMA/Protéǵe,
one can use database querying for verification of, and find-
ing gaps in, the FMA contents as a first step, and subse-
quently investigate the possibilities to use this approach to
aid (semi-)automatic creation of new relations in the FMA.

The above brings afore some design considerations:
should one include in the parts list all ‘intermediate’ enti-
ties, only the leaves, or maybe only the shared common an-
cestor? For instance, onlyReticulocyte, EchinocyteandMa-
tureErythrocyte, or also their common subsumerErythro-
cyte, or only Erythrocytebut not its subtypes? The answer
depends on the goal(s) one wants to achieve: leaves only,
minimal amount of coarse-grained (top-level) parts, or re-



construct the relevant section of the taxonomic tree. Decid-
ing either way will improve reliable and consistent query-
ing of the FMA. A second design consideration is querying
versus browsing only: while current browsing options are
visually more appealing, querying the FMA allows much
more flexibility for different groups of domain experts to
retrieve desired information in a wider range of scenarios,
hence increasing usefulness of the FMA (as will be illus-
trated with the next query). Furthermore, the XML output
obtained from OQAFMA easily can be ported to a GUI tool
to make an appealing graphical visualisation such that one
can have the best of both: powerful querying and an appeal-
ing interface for the domain expert.

 

Figure 2. S TRUQL code for Query I to retrieve
the parts of Blood that are cells.

Query II, retrieving the types of organ residing in theOr-
gan-level that has as part a type of macrophage in theCell-
level, faces several problems. Fig. 4 depicts the STRUQL
query and Fig. 5 the query answer. Note that it is not
required to include the label with the type of macrophage
in the result (the correct CREATE argument isCREATE

OrganWithMacrophages(OrganSubclassesName) ),
which returnsLiver only, but the additional information
is included for illustrative purpose. Except forHepatic-
Macrophagein theLiver, discovered during querying with
OQAFMA andnotwhen browsing the FMA in Protéǵe, the
FMA lacks any relation from other types of macrophages
to other entities, even though in reality macrophages are
located in/part of organs; we set aside a discussion on
monocyte/macrophage [18, 14, 7] as a phased sortal. Re-
gardless the avoidance of phased sortals in the FMA,Query
II realises more advanced information retrieval compared to
Query I: for each iteration, the query’s evaluation strategy
is to traverse the taxonomic structure for macrophages as
well as theisA for organs, then it checks if there is an
orthogonally positionedpartOf path between any of the
entities in the two sub-trees.

It is worth noting that the FMA is at present one of the
most comprehensive bio-ontologies, but it is incomplete
both regarding the relations between entities and partic-

 

Figure 3. Difference Prot égé/FMA brows-
ing (check-boxes) and OQAFMA answer (in
black) of Query I.

ularly concerning theCell-level and below, although it is
arguable if molecules belong in the subject domain (the
present FMA cut-off ‘level’ isBiologicalMacromolecule).
Positioning orthogonally the structural and functional
anatomy granular perspectives is an outstanding task in its
entirety. With this in place, one can query for e.g. the types
of hormones residing in the kidney.



 

Figure 4. Query II to retrieve organs that have
as part a (subtype of) Macrophage.

Figure 5. OQAFMA result for Query II.

3. Discussion

Two main issues are ontology development and diversi-
fication of usage of ontologies. In the past few years, much
emphasis in (bio-)ontologies has been, and is being, put on
ontological correctness of the modeled subject domain (e.g.
[6, 15]), which is certainly still an important issue. How-
ever,howan ontology is to be made persistent for both off-
line and online use has received much less attention, possi-
bly because it ought not matter, although in practice it does.

3.1. Engineering

Looking at alternatives for storing ontologies in data-
bases, adoption of OWL and RDF as standard ontology lan-
guages has its advantages concerning data and ontology in-
teroperability, and ontology integration is facilitated when
they are written in the same language. Also, its reason-
ing support is a welcome addition to improve ontology de-
velopment. On the other hand, expressivity of query lan-
guages for both OWL and RDF lags behind relational data-
base query languages. For instance, OWL-QL ‘merges’ net-
work protocol approaches with querying distributed OWL-
based knowledge bases [3], which is useful for the Semantic
Web, but this is not necessarily a main query aim of a bio-
ontology. RDF query languages include SPARQL [28] (a
W3C draft), RQL [26, 8] and SeRQL [27]. SPARQL fo-

cuses on sub-graph isomorphisms for query answering of
RDF graphs in databases, but for recursive queries it relies
on SQL (and e.g. STRUQL) and the DBMSs that support
it. RQL supports “recursive traversal of class and prop-
erty hierarchies (for advanced pattern-matching)” of trees
with arbitrary depth [26]. SeRQL is a variation on RQL,
and both return a bag as query answer [8], although with
an additionalconstruct one can rebuild the tree [27].
However, paths have to be specified with query formula-
tion and RQL thus cannot ‘discover’ the path(s) between
e.g. some macrophage and an organ. This considered, stor-
ing large ontologies in (relational) databases is a sensible
option. It has an additional advantage when one desires
to develop interoperable software and integrate databases,
because querying over ontologies-stored-in-databases with
data-databases is easier. But for this to realise, it is essen-
tial to have the ontology stored in agooddatabase. A good
database, as one can learn already in undergraduate courses
in database development [13], has a meaningful concep-
tual model and ensures there is a separation of the database
layer from the application layer in order to achieve relative
implementation independence, thereby increasing reusabil-
ity and simplifying maintenance of both. Unfortunately,
FMA/Prot́eǵe meets neither. A workaround may be to gen-
eralise Mork et al’s pre-processing operations [11], but this
has to be carried out for each Protéǵe-database, therefore it
will be more efficient and user-friendly if the Protéǵe soft-
ware already takes care of this by modifying the develop-
ment environment to map frames and slots to meaningful
conceptual models. For instance, to create separate enti-
ties/relations in an ER or ORM model for each type of rela-
tion in the ontology and giving meaningful names to widely
used attributes that end up in separate table columns, such
as ‘comment’, ‘language’, ‘user’ and so forth. Aside from
desirable optimization, an advantage is that then one can
define database views for each granular level to simplify
granular querying. For instance, theOrgan-level will con-
tain all taxonomic subtypes ofOrgan, and the tuples and
values for the leaves in the taxonomic tree can be counted
automatically and we would finally know how many organs
we have.

A separate issue is the use of RDBMS. A common char-
acteristic of ontologies are their hierarchical structures, be
it taxonomies, partonomies, or e.g. a hierarchy ofdevel-
opsFrom. In this setting, recursive queries are necessary
for useful information retrieval. SQL:1999 supports recur-
sive queries, which has been gradually implemented in ex-
tant RDBMSs like Oracle, DB2, MS SQL, and in deductive
databases. While MySQL is freely available, it lacks sup-
port for recursive queries, which may not be an issue when
focusing on ontology creation and enlargement only, but is
a serious limitation if one actually wants to use the ontol-
ogy to go beyond finding an entity or retrieve an ambiguous



distance to other entities.

3.2. Diversification of use

The demand for recursive queries brings afore the sec-
ond point: diversification of uses of ontologies. Ontologies
are not just an inert repository, even if the ontology is a ref-
erence ontology: if it offers nothing more than an online
encyclopaedia, then why put in the effort to build the ontol-
ogy? An encyclopaedia cannot answer questions like which
macrophages are part of some organ, or be able to antici-
pate otherad hocpeculiar questions like hormones located
in the kidney or molecules in the mitochondrion. An on-
tology can, provided it is implemented in a usable format.
Ontologies can – and should – have a variety of uses (e.g.
[1, 2, 12, 17]), which has to be taken into account during
the development stage. Top-level ontologies may not need
computational support as they are intended to guide mod-
elling decisions off-line, but developing ontology-mediated
query formulation and information retrieval, such as utilis-
ing the encoded knowledge better through granular queries,
requires run-time access to the ontology. At present, this
is not possible with the GO and FMA/Protéǵe implementa-
tions, but is with the reengineered-FMA OQAFMA. With
the current engineering limitations, offering an ontology in
several storage formats (RDF, OWL, XML, etc.) to simplify
its use and reuse to match the desired task can be a feasible
approach, with the preconditions to have a clear version-
ing system in place and informing the user what is lost or
gained with one storage format compared to the other. Ap-
plying this to the FMA case study, the gain one obtains with
OQAFMA is that it has ‘added’ the semantics of the appli-
cation layer to the database such that one can examine the
information contained in the FMA more easily and compre-
hensively, experiment with e.g. applied domain granularity
to explore its contents in a novel way, and enables wider
use and reuse of the FMA to, for instance, link it with other
ontologies at the subcellular levels or query medical data
through this ontology. Aside from this, now having the op-
portunity to position orthogonally the taxonomy with the
partonomy is useful for discovering lacunas and inconsis-
tencies shown in the browsers and can be used for semi-
automatic addition of the newly suggested relations.

Aside from information retrieval scenarios and sophis-
ticated querying, the desire for and offers of ‘reasoning
support’ for ontologies is underspecified: what exactly is
available where and what type of reasoning does the user
want/need? Automation for classification of a taxonomy,
automated instance categorization, tree comparisons, test
a hypothesised theory or relation for satisfiability, finding
missing relationships, more? Afiner-grained goal specifi-
cationas part of the requirements analysis process will not
only help deciding how one best can store the ontology with

the presently available technology, but also provide an im-
petus for logicians and software developers to address and
solve the most pressing users’ needs first.

4. Conclusions

Current persistent storage implementations of large bio-
ontologies fall short in meeting usability and reusability
requirements. Some main limitations were demonstrated
with two representative ontologies-stored-in-databases:
the Gene Ontology and the Foundational Model of
Anatomy. Improvements are possible with regards to
ontology development environment software, taking into
account general database development good practice, using
RDBMSs that support expressive and recursive queries, and
finer-grained specification of goals of what the ontology
and system it may be part of are and may be intended
for. We demonstrated the added-value of a variation of
querying, granularity, which, by availing of extant database
technology and implementation (OQAFMA), enables
retrieval of more information quicker and can be used for
improving and enlarging an ontology compared to the more
common bio-ontology usage and implementations stored
in relational databases. Current and future work involves
improving ontology usage and developing granularity
further to provide a reliable and reusable framework for
granular information retrieval.
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