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ABSTRACT
There are various recent efforts to broaden applications of
ontologies with vague knowledge, motivated in particular by
applications of bio(medical)-ontologies, as well as to enhance
rough set information systems with a knowledge represen-
tation layer by giving more attention to the intension of a
rough set. This requires not only representation of vague
knowledge but, moreover, reasoning over it to make it in-
teresting for both ontology engineering and rough set infor-
mation systems. We propose a minor extension to OWL
2 DL, called rOWL, and define the novel notions of rough
subsumption reasoning and classification for rough concepts
and their approximations.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and
Methods]: Representation languages; F.4 [Mathematical
Logic and Formal Languages]: Miscellaneous
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1. INTRODUCTION
Rough set theory and its applications have been shown

to be very useful for scenarios where one has to analyse and
cope with vague or incomplete data. Compared to fuzzy log-
ics where one already knows the properties and fine-tunes
their values, rough set applications enable one to experiment
with finding the optimal set of properties of a set of objects
in the software system. This approach has the potential to
be very useful also in knowledge management, as demon-
strated by promising implemented use cases for in silico hy-
pothesis testing with bio-ontologies as part of a scientist’s
research methodology [10] and disease characterisation and
patient classification using electronic health record data [19].
To realise rough knowledge management, rough sets have to
be integrated with the knowledge representation layer and
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suitable reasoning services need to be devised with the aim
to prove that the rough knowledge is not only consistent but
that one also can avail of the taxonomic reasoning to cat-
egorise the concepts corresponding to the rough sets. The
latter, in turn, can serve as an additional method to find the
optimal rough concepts in the rough information system.

To be able to arrive at reasoning services, one first has
to devise a sufficiently comprehensive rough ontology lan-
guage. There are several formalisms of rough sets, such as
in Datalog¬ [4], extended logic programs [21], and Descrip-
tion Logics (DL) with extensions to the Web Ontology Lan-
guage OWL in particular [2, 5, 7, 8, 12, 13, 19], where each
language proposed includes core notions of rough sets only
in part [9] and it is not optimised for the most expressive
and recently standardised OWL 2 ontology languages that
already enjoy substantial implementation infrastructure and
user uptake. Reasoning with rough ontologies falls into two
categories: reasoning over the instances by querying the data
to ascertain if the class is indeed a rough class [10] and type-
level reasoning, with the principal reasoning services being
possible and definite satisfiability, and rough subsumption
reasoning and classification of the rough classes. Thus far,
only [8] considers possibly and definitely satisfiable and crisp
subsumption of rough concepts for an arbitrary DL lan-
guage, RDLAC , but neither what can be deduced about the
rough concepts from their respective approximations nor en-
forced on the approximations given an asserted subsumption
of rough concepts. To fill this gap and thereby move closer
to the realisation of ontology-driven rough knowledge bases,
we propose the novel reasoning services of rough subsump-
tion reasoning where C v D cannot be guaranteed in every
model, but generally can be expected to hold. To demon-
strate this, we extend OWL 2 DL to deal with basic aspects
of roughness, called rOWL (in such a way that it maintains
its well-known properties), and prove the eight permutations
for subsumption.

In the remainder of the paper, we provide a recap of the
core aspects of rough sets and introduce rOWL in Section 2,
then we move on to the subsumption reasoning in Section 3,
discuss it in Section 4, and conclude in Section 5.

2. ROUGH SETS AND ONTOLOGIES
We briefly summarise the core notions of rough sets and

introduce rOWL, which approximates theses basic notions.

2.1 Rough sets
The standard Pawlak rough set model consists of an in-

formation system I = (U,A), where U is a non-empty finite



set of objects and A a non-empty finite set of attributes such
that for every a ∈ A, we have the function a : U 7→ Va where
Va is the set of values that attribute a can have. For any
subset of attributes P ⊆ A, the equivalence relation ind(P )
is defined as

ind(P ) = {(x, y) ∈ U × U | ∀a ∈ P, a(x) = a(y)} (1)

ind(P ) generates a partition of U , which is denoted with
U/ind(P ), or U/P for short. If (x, y) ∈ ind(P ), then x and
y are indistinguishable with respect to the attributes in P ,
i.e, they are p-indistinguishable.

From the objects in universe U , we want to represent set
X such that X ⊆ U using the attribute set P where P ⊆ A.
It may not be possible to represent X in a crisp way—the
set may include and/or exclude objects which are indistin-
guishable on the basis of the attributes in P—but it can be
approximated by using lower and upper approximation:

PX = {x | [x]P ⊆ X} (2)

PX = {x | [x]P ∩X 6= ∅} (3)

where [x]P denotes the equivalence classes of the p-indistin-
guishability relation. The lower approximation (Eq. 2) is the
set of objects that are positively classified as being members
of set X, i.e., it is the union of all equivalence classes in [x]P .
The upper approximation (Eq. 3) is the set of objects that
are possibly in X; its complement, U − PX, is the negative
region with sets of objects that are definitely not in X (i.e.,
¬X). Then, “with every rough set we associate two crisp
sets, called lower and upper approximation” [18], which is
denoted as a tuple X = 〈X,X〉. The difference between
the lower and upper approximation, BPX = PX − PX,
is the boundary region of which its objects neither can be
classified as to be members of X nor that they are not in
X; if BPX = ∅ then X is a crisp set with respect to P and
when BPX 6= ∅ then X is rough with respect to P . Further,
observe that PX ⊆ X ⊆ PX.

These rough set notions are graphically depicted in Fig-
ure 1 and illustrated in the following example.

Example 1. Consider Table 1 and attribute set P = {Age,
Wheels,Engine} as subset of A = {Age,Wheels,Engine,Helmet},
then the equivalence classes are:
[xone] = {o1, o8}, [xtwo] = {o2}, [xthree] = {o3},
[xfour] = {o4, o5}, [xfive] = {o6, o7}, [xsix] = {o9}.

Assume our target set is {o3, o4, o5, o6} ∈ X, then [xthree]
and [xfour] are definitely in out target set, i.e., their union is
the lower approximation (X = {o3, o4, o5}). This still misses

Target set X (oval), 
which is rough, 
i.e., X = <X, X>

Lower approximation X
(black squares)

Upper approximation X
(grey + black squares)

Universe U 

Granule with object(s)
(white squares being 
the negative region w.r.t. X)

Boundary 
region BpX

(grey squares)

Figure 1: A rough set and associated notions.

o6, for which we need [xfive] = {o6, o7}. With P , it is not
possible to distinguish between o6 and o7, so [xfive] as such
cannot be part of our target set, i.e., with the given data
and selected attributes, there is no way to represent X such
that it includes o6 but excludes o7. Therefore, the upper
approximation of X is then the union of the three equiva-
lence classes, being X = {o3, o4, o5, o6, o7}, which results in
a boundary region of {o6, o7}. If P would have contained
Helmet, then X were a crisp set. Generally, once there are
equivalence classes with more than one object, there likely
will be at least one rough set. ♦

Table 1: Sample data table about 9 vehicles.
Age Wheels Engine Helmet

o1 < 5 2 no no
o2 > 5 2 no no
o3 > 5 2 yes yes
o4 > 5 3 yes yes
o5 > 5 3 yes yes
o6 > 5 3 no yes
o7 > 5 3 no no
o8 < 5 2 no no
o9 < 5 4 yes no

The rough set notions reduct and core can be considered
to be the set of sufficient conditions (attributes) and the set
of necessary conditions, respectively, to maintain the equiv-
alence class structure induced by P . Thus, we have Core ⊆
Red ⊆ P such that [x]Red = [x]P and Red is minimal for
any a ∈ Red (i.e., [x]Red−{a} 6= [x]P ), and for any reduct

of P , Red1, . . . , Redn, the core is its intersection, i.e., Core
= Red1 ∩ . . .∩ Redn.

2.2 A rough ontology language

2.2.1 General considerations
Defining an arbitrary rough ontology language is an in-

teresting exercise, but we shall focus here on the W3C stan-
dardised ontology language OWL 2 DL and its underlying
Description Logic language SROIQ, for which considerable
application infrastructure exists.

Considering related works, earlier formalisations of rough-
ness in DLs omitted either DL roles or OWL’s data proper-
ties [2, 5, 7, 8, 13, 19], have partial or no relational properties
of the indistinguishability relation [2, 5, 12, 13], and/or do
not include that the rough concept is a tuple of its lower and
upper approximation where all three concepts use the same
set of properties [19]. The most inclusive attempt thus far
is the arbitrary DL language RDLAC [8] that extends ALC,
but its computational complexity has not been proved and
it does not propose a solution how to reformulate or ap-
proximate the class-as-tuple notation. The identification
of a rough class as a tuple can be fully rewritten theoret-
ically, i.e., maintaining logical equivalence, in analogy to a
weak entity type in the Entity-Relationship conceptual data
modelling language [9]. This requires full identification con-
straints across relationships (DL roles/OWL object proper-
ties), which is not possible in OWL 2 DL and requires a
costly extension to a language that is already computation-
ally expensive (2NExpTime-complete). However, it can be
approximated sufficiently by introducing two new relation-



ships relating the rough class to its approximations explic-
itly, quantify them existentially, and declare them functional
[9]. To this end, we will introduce a lapr and uapr for each
rough class to relate a rough class (domain) to its lower and
upper aproximation (range) of the OWL object properties,
respectively.

The remaining features mentioned earlier—ind’s relational
properties, being reflexivity, symmetry, and transitivity—
can be represented fully in OWL 2 DL, but the indistin-
guishability relation and its usage require some clarification.
As Eq. 1 indicates, the ind relations is with respect to a
single subset P of properties and over the whole universe.
Typically, in rough sets, the ‘whole’ universe is a large table
where each column other than the first denotes an attribute,
such as Table 1 about the class Vehicle, but in the setting of
an ontology, this may not necessarily be all object- and data
properties. To clarify this matter in the setting of ontologies
and avoid abuse of notation, let:

- A be the set of attributes as in rough sets, i.e., the
data properties;

- Π be the set of object- and data properties in the OWL
ontology used for declaring the properties of classes;

- P be a subset of A, as in rough sets;
- Pc be a subset of Π for a (rough) class C in the OWL

ontology;
- ind be the indistinguishability relation, as in Eq. 1;
- indC be the indistinguishability relation as in Eq. 1

regarding class C, where P is replaced with Pc;
They will be defined in the next section.

Thus, aside from the approximation of the identification
of the rough class, all features can be represented with OWL
2 DL already, which therewith greatly simplifies the whole
endeavour because we already can avail of not only the the-
oretical results but also its application infrastructures. Al-
though its current technologies are not integrated with scal-
able large ontologies (TBoxes) or large amounts of data (in
the ABox) [9], this is not expected to be problem in the
near future thanks to recent efforts in scalable Semantic Web
technologies (e.g., [1, 3, 14, 15]). To incorporate the rough-
ness aspects, such as ind and a rough class, we will add a
minor extension to fix their syntax and semantics, which will
be shown to be useful for subsumption reasoning.

2.2.2 Defining Rough OWL: rOWL

Here we summarise the OWL 2 DL syntax and semantics
only insofar as is necessary for rough ontologies; the inter-
ested reader is referred to [16] for further details. We extend
the vocabulary with notions specific to rough ontologies, be-
ing rough class (oC), lower- and upper approximation (C and
C, respectively) that are related to oC through the lapr and
uapr object properties to approximate the tuple notation of
a rough class, and the reflexive, transitive, and symmetric
indistinguishability relation (ind). By standard OWL nota-
tion, OP denotes an object property; OPE denotes an object
property expression; DP denotes a data property; and C de-
notes a class.

Definition 1. (Rough OWL 2 DL (rOWL) Ontology Syn-
tax (abbreviated)) A rough vocabulary V = (VC , VOP , VDP ,
VI , VDT , VLT , VFA, VΠ) over a datatype map D (as formalised
in [16]) is an 8-tuple consisting of the following elements:

- VC is a set of classes containing at least the classes
owl:Thing and owl:Nothing, and subsets VCL of lower
approximations, VCU of upper approximations, and

VRC of rough classes;
- VOP is a set of object properties, containing at least

- the object properties owl:topObjectProperty and
owl:bottomObjectProperty, and

- owl:ind, owl:lapr, and owl:uapr, and such that
we denote with appended subscripts the label of
the class these relations apply to (hence, they are
sub object properties; e.g., owl:indcar is a sub-
object property of owl:ind where Car ∈ VRC);

- VDP is a set of data properties, containing at least the
data properties owl:topDataProperty and owl:bot-

tomDataProperty;
- VI is a set of individuals;
- VDT is a set containing all datatypes of D;
- VLT is a set of literals for each datatype and each lex-

ical form;
- VFA is the set of pairs (F, lt) for each constraining

facet F , datatype DT ∈ NDT , and literal lt ∈ VLT

such that (F, (LV,DT1)LS) ∈ NFS(DT ), where LV is
the lexical form of lt and DT1 is the datatype of lt;

- VΠ is the union of the sets of object and data proper-
ties, V −OP ∪ V −DP , where V −OP (resp. V −DP ) are subsets
of VOP (resp. VDP ) that (i) do not contain owl:ind,
owl:lapr, and owl:uapr (and its sub-properties), and
(ii) do not have top and bottom object (data-) prop-
erties.

Definition 2. (Rough OWL 2 DL (rOWL) Ontology Se-
mantics (abbreviated)) Given a datatype map D and a vo-
cabulary V over D, an interpretation I = (∆I ,∆D, ·C , ·OP ,
·DP , ·I , ·DT , ·LT , ·FA) for D and V is a 9-tuple with the fol-
lowing structure:

- ∆I is a nonempty set called the object domain;
- ∆D is a nonempty set disjoint with ∆I called the data

domain such that (DT )DT ⊆ ∆D for each datatype
DT ∈ VDT ;

- ·C is the class interpretation function that assigns to
each class C ∈ VC a subset (C)C ⊆ ∆I , and ·C is
extended to class expressions as follows

- ObjectAllValuesFrom( OPE CE ),
{x | ∀y : (x, y) ∈ (OPE)OP implies y ∈ (CE)C};

- ObjectSomeValuesFrom( OPE CE ),
{x | ∃y : (x, y) ∈ (OPE)OP and y ∈ (CE)C};

- ObjectMinCardinality( n OPE CE ),
{x | ]{y | (x, y) ∈ (OPE)OP and y ∈ (CE)C} ≥
n};

- ObjectExactCardinality( n OPE CE ),
{x | ]{y | (x, y) ∈ (OPE)OP and y ∈ (CE)C} =
n};

and such that
- For each C ∈ VCU , (C)C = {x ∈ ∆I | ∃y ∈

∆I , (x, y) ∈ (indc)
OP ∧ y ∈ (C)C} holds,

- For each C ∈ VCL, (C)C = {x ∈ ∆I | ∀y ∈
∆I , (x, y) ∈ (indc)

OP → y ∈ (C)C} holds, and
- For each oC ∈ VRC , (oC)C = (〈C,C〉)C = 〈(C)C ,

(C)C〉 ≈ {x ∈ ∆I | ∃x′, x′′ ∈ ∆I , (x, x
′) ∈

(laprc)
OP ∧(x, x′′) ∈ (uaprc)

OP ∧x ∈ (oC)C∧x′ ∈
(C)C ∧ x′′ ∈ (C)C} holds;

- ·OP is the object property interpretation function that
assigns to each object property OP ∈ VOP a subset
(OP )OP ⊆ ∆I × ∆I and such that ·OP is extended
to ObjectInverseOf(OP) with the meaning {(x, y) |
(y, x) ∈ (OP )OP }; in addition,

- ind ∈ VOP such that indOP ⊆ ∆I ×∆I with Re-



flexiveObjectProperty(ind), SymmetricObject-
Property(ind), and TransitiveObjectProp-

erty(ind), and for each rough class, oC ∈ VRC ,
each indc ∈ VOP such that indOP

c ⊆ (oC)C ×
(oC)C , hence indOP

c ⊆ indOP ;
- lapr ∈ VOP such that laprOP ⊆ (oC)C × (C)C ;
- uapr ∈ VOP such that uaprOP ⊆ (oC)C × (C)C ;

- ·DP is the data property interpretation function that
assigns to each data property DP ∈ VDP a subset
(DP )DP ⊆ ∆I ×∆D;

- ·I is the individual interpretation function that assigns
to each individual a ∈ VI an element (a)I ∈ ∆I ;

- ·DT is the datatype interpretation function that assigns
to each datatype DT ∈ VDT a subset (DT )DT ⊆ ∆D;

- ·LT is the literal interpretation function that is defined
as (lt)LT = (LV,DT )LS for each lt ∈ VLT , where LV
is the lexical form of lt and DT is the datatype of lt;

- ·FA is the facet interpretation function that is defined
as (F, lt)FA = (F, (lt)LT )FS for each (F, lt) ∈ VFA.

Concerning satisfaction of OWL 2 class expression axioms
in interpretation I with respect to ontology O, the class
axioms SubClassOf(CE1 CE2) holds if (CE1)C ⊆ (CE1)C ,
EquivalentClasses(CE1 . . . CEn) if (CEj)

C = (CEk)C for
each 1 ≤ j ≤ n and each 1 ≤ k ≤ n, DisjointClasses(CE1

. . . CEn) if (CEj)
C ∩ (CEk)C = ∅ for each 1 ≤ j ≤ n

and each 1 ≤ k ≤ n such that j 6= k. Regarding sat-
isfaction of property axioms, SubObjectPropertyOf(OPE1

OPE2) holds if (OPE1)OP ⊆ (OPE2)OP , and for the rele-
vant object property characteristics, we need TransitiveOb-

jectProperty(OPE) for which ∀x, y, z : (x, y) ∈ (OPE)OP

and (y, z) ∈ (OPE)OP implies (x, z) ∈ (OPE)OP hold,
ReflexiveObjectProperty(OPE) for which ∀x : x ∈ ∆I

implies (x, x) ∈ (OPE)OP holds, and SymmetricObject-

Property(OPE) for which ∀x, y : (x, y) ∈ (OPE)OP implies
(y, x) ∈ (OPE)OP holds.

OWL 2 DL is based on Description Logics (DL), and
therefore we shall use the more concise DL notation in the
remainder of the paper. For instance, the statement
SubClassOf(C D)

in OWL 2 DL functional syntax, i.e., all individuals that are
a C are also a D, can be represented equivalently in DL as
C v D.

ObjectSomeValuesFrom in Definition 2 is the serialised ren-
dering of the existential quantification (∃), an ObjectIn-

verseOf(OP) is denoted as OP−, EquivalentClasses(CE1

CE2) as CE1
.
= CE2, and ClassAssertion as C(a). Thus, we

have for, e.g., each C and C in the rough ontology, in OWL
2 DL functional syntax:

EquivalentClasses(C ObjectSomeValuesFrom(a:ind a:C)),
EquivalentClasses(C ObjectAllValuesFrom(a:ind a:C)),

i.e., C ≡ ∃ind.C and C ≡ ∀ind.C in DL notation.

2.2.3 Notes on rOWL

There are three points with respect to rOWL worth elab-
orating on as clarification on its usage.

First, recollect that oC is approximated by using uapr and
lapr that have oC as domain and cardinality exactly 1; the
assertions for each combination of rough class and its upper
and lower approximation is then:
ObjectPropertyDomain(a:upar a:oC),
ObjectPropertyDomain(a:lapr a:oC),
ObjectExactCardinality(1 a:uapr a:C), and
ObjectExactCardinality(1 a:lapr a:C),

i.e., ∃uapr− v oC, ∃lapr− v oC, oC v = 1 uapr.C, and oC v
= 1 lapr.C, which are added to the ontology for each rough
concept, its approximations, and indistinguishability rela-
tion (justification for this encoding is discussed in [9]).

Second, the semantics for VΠ follows from its definition,
given that VΠ ⊂ VOP ∪ VDP . Likewise, with Pi (where i de-
notes the label/name of the rough class) such that Pi ⊆ VΠ,
the semantics follows trivially from it. Note that the prop-
erties in Pi to compute the equivalence structure are exis-
tentially quantified for each object in oC (which does not
preclude oC from having universally quantified properties).
Those properties, if any, that are in Pi but not in any
of the reducts—thus being superfluous for the equivalence
structure—ideally should not be included as properties of
oC in the ontology, because they do not contribute to the
identifying characteristics of the set, hence, not to the class
corresponding to the rough set. Nevertheless, they may be
useful to include for examining the data as it may turn out
that they are mandatory for a C′ v C or a sister-class of C
that shares a direct common subsumer with C, depending
on the available data or represented knowledge.

A third observation regarding properties and attributes,
is that in Pawlak’s original information system I = (U,A)
only attributes are used, in the sense of OWL’s data prop-
erties. However, in an OWL ontology, the intension of such
‘attributes’ from the data tables can be represented with ei-
ther object properties or data properties, hence the VΠ =
V −OP ∪V

−
DP instead of a possible more restricted mapping of

A = V −DP . To see the usefulness of this, let us take the ‘at-
tribute’ Wheels from Example 1, which can be represented in
an OWL ontology with a DP, say, hasWheels with as domain
Bicycle and a data type integer set to 2, e.g.,
Bicycle v ∃hasWheels.integer=2

or one can represent it with an OP hasPart that has Wheel
as range and the number as a cardinality constraint, e.g.,
Bicycle v =2 hasPart.Wheel.

The debate on the merits of one representation over the
other in ontology development is long and inconclusive and
here is not the place to argue in either direction, just to note
that both approaches can, and are being, used in domain on-
tologies and that one can use either one with rOWL.

3. ROUGH SUBSUMPTION REASONING
The so-called ‘standard’ inferencing problems and reason-

ing services offered by the DL and OWL reasoners for all
scenarios of ontology usage are ontology consistency, class
expression satisfiability, class expression subsumption, and
instance checking [16]. The idea of rough knowledge base
satisfiability (without rough classes) has been introduced
earlier [13]. Jiang et al. [8] recently have proposed a defi-
nitely satisfiable concept—iff (C)I is satisfiable—and a possi-
bly satisfiable concept—iff (C)I is satisfiable. More interest-
ing, they have shown the idea of crisp subsumption of rough
concepts proving it usingO |= oC v oD iff (Cu¬D)I is unsat-
isfiable in their arbitrary RDLAC DL language. A natural
next step is to investigate rough subsumption of crisp/rough
concepts. To arrive at that point, let us first recollect class
subsumption in OWL 2:

Definition 3. (Class Expression Subsumption [16]) CE1

is subsumed by a class expression CE2 w.r.t. O and D if
(CE1)C ⊆ (CE2)C for each model I = (∆I ,∆D, ·C , ·OP , ·DP ,
·I , ·DT , ·LT , ·FA) of O w.r.t. D and V.



This means that for CE1 v CE2 to hold in the ontology,
the properties of class C1 in the class expression CE1 must be
either more in number than those of C2 in the class expres-
sion CE2 or at least one range of those properties must be
more restrictive, or is universally quantified and that prop-
erty for C2 is existentially quantified. The latter option is
demonstrated already with the rough class and the definition
of its approximations: with respect to reasoning over OWL
or DL ontologies, C v oC v C will be deduced already
with a standard non-rough automated reasoner thanks to
the existential and universal restriction on ind for C and
C, respectively. So, the interesting aspect is going to be
the treatment of the properties, in particular because that
is also the main strength of application scenarios for rough
ontologies.

More precisely, we introduce the novel reasoning services
of definite and rough subsumption by, given the properties,
taking into account the interactions between the lower and
upper approximations of two rough concepts. That is, we
are interested in answering the question is the extension of
C contained in the extension of D in every model of ontol-
ogy O? In order to answer this, we have to address two
principally different cases:

A. If oC v oD is asserted in O, what can be said about
the subsumption relations among their respective ap-
proximations?

B. Given a subsumption between any of the lower and up-
per approximations of C and D, then can one deduce
oC v oD?

Because being rough or not depends entirely on the chosen
properties Pc for class C together with the available data,
should these two cases be solved only at the TBox level or
necessarily include the ABox for it to make sense? And,
in the same line of thinking, should that be under the as-
sumption of standard instantiation and instance checking, or
in the presence of a novel DL notion of rough instantiation
and rough instance checking? The latter is not particularly
interesting, because the extension is straight-forward to de-
fine and has no interesting consequences: with respect to
satisfaction in OWL [16], the axiom ClassAssertion(CE a)
means (a)I ∈ (CE)C so that, by the definition of rough
class and its approximations, a rough instantiation or rough
class assertion (cf. crisp) is one where (a)I ∈ (C)C and
(C)C − (C)C 6= ∅ holds (cf. the crisp (a)I ∈ (C)C). (It
makes sense to add the “(C)C − (C)C 6= ∅” constraint, be-
cause it ensures C is a rough class; if (C)C − (C)C = ∅,
then the boundary region is empty, hence, C is a crisp set
with normal instantiation.) Consequently, one can amend
OWL’s standard instance checking to:

Definition 4. (Rough Instance Checking) a is an instance
of CE w.r.t. O and D if (a)I ∈ (C)C and (C)C − (C)C 6= ∅
for each model I = (∆I ,∆D, ·C , ·OP , ·DP , ·I , ·DT , ·LT , ·FA)
of O w.r.t. D and V.

Concerning items A and B, similar questions have been
asked before for rough sets, but they were limited to what
X ⊆ Y implies—and even then the answers differ [18, 11, 8,
22]. [11, 8, 22] assert that

X ⊆ Y ⇒ X ⊆ Y and X ⊆ Y (4)

for any subsets X,Y ⊆ U , whereas [18] assert this only if
the set of attributes P ⊆ A for X and Y are the same:

X ⊆ Y ⇒ PX ⊆ PY and PX ⊆ PY (5)

As we shall see, the latter is correct. Given that subsump-
tion reasoning is considered a crucial reasoning service in
both OWL and DL in general, we shall go through all per-
mutations and prove them. Observe hereby that, because we
have introduced C and C already explicitly in the ontology
and defined them to be an equivalent class to ∀ind.C and
∃ind.C, respectively, we do not need Jiang et al’s explicit
translation function [8]. In addition, because we have flat-
tened out the rough-class-as-binary-tuple to a class with two
properties relating to its respective approximations, we do
not need to consider tuple subsumption here, but can avail
of the more straight-forward notion of class subsumption.

3.1 Subsumption and properties
Let us first demonstrate the case that Eq. 4 does not hold.

Proposition 1. Let O be a rOWL ontology, oC and oD
two rough concepts such that oC v oD is asserted in the
ontology, and C,D,C,D are their respective approximations
based on arbitrary sets of declared properties Pc and Pd (with
Pc, Pd ⊆ VΠ), then

i. C v D holds;
ii. C v D does not necessarily hold;

iii. C v D does not necessarily hold;
iv. C v D does not necessarily hold;

Proof. The proof for (i) follows the same line as Jiang
et al’s subsumption of rough concepts (Theorem 5 in [8]).

To prove (ii-iv), it suffices to prove the weakest case can-
not be deduced, i.e., (iv), which we do by providing a counter
example where x ∈ (C)I and x /∈ (D)I . Consider the fol-
lowing ABox:

C(o1), C(o2), C(o3), C(o4), C(o5) (6)

C(o1), C(o2), C(o3), C(o4) (7)

C(o1), C(o2), C(o3) (8)

D(o1), D(o2) (9)

D(o1), D(o2), D(o3), D(o4), D(o5) (10)

D(o1), D(o2), D(o3), D(o4), D(o5), D(o6) (11)

The extension of D is a subset of the extension of C, hence
contradicting that C v D holds in every model. For (iii), it
is equally trivial to describe a counter example: add, C(o6)
and C(o7), which violates C v D due to C(o7).

The situation above can arise due to the fact that C and
D may have different, and, moreover, incompatible, prop-
erties or incompatible ranges of those properties; that is,
Pc ∩ Pd = ∅ and Pd ⊂ Pc are legal states in a rough set set-
ting. Indeed, at the knowledge representation layer, adding
oC v oD with their attributes such that Pc ∩ Pd = ∅, does
not hold and is not even possible in ontology development
tools such as Protégé, because the ontology development
environments force oC to inherit the properties declared for
oD, i.e., by asserting oC v oD in the ontology, one must have
Pc∩Pd 6= ∅, provided Pc 6= ∅ and Pd 6= ∅, and that Pd ⊆ Pc.
The ‘tricky’ aspect is that even when Pd ⊆ Pc holds, they
may have incompatible ranges so that they generate different
equivalent structures, hence, that the basic tenet of Proposi-
tion 1 holds. If the explicitly declared properties of oC or oD



are such that Pc ∩ Pd = ∅, then oC or oD will be reclassified
to somewhere else in the taxonomy, using a common sub-
sumption reasoning algorithm as implemented in reasoners
such as Hermit, Racer, Pellet or Fact++ [6, 17].

One can add C v D to O as a constraint on the admissible
models. If one were to do so with (6)-(11) together with
C(o6) and C(o7) as instantiation of an ABox, then an OWL
reasoner will infer D(o7) in order to keep the knowledge base
consistent. If it were to be explicitly added that o7 is not an
instance of D by adding D(¬o7) (for case (iv), the assertion
D(¬o3)), then the ontology is, indeed, inconsistent.

Under the same set of attributes and their values/ranges,
i.e., Pc = Pd, then C v D and C v D do hold, because in
that case a model like (6)-(11) cannot be constructed.

Proposition 2. Let O be a rOWL ontology, oC and oD
two rough concepts such that O |= oC v oD, oC and oD
have been computed using the same set of object- and data
properties (Pc = Pd, with Pc, Pd ⊆ VΠ) with the same range
restrictions, and C,D,C,D are their respective approxima-
tions, then

i. C v D holds;
ii. C v D does not necessarily hold;

iii. C v D holds;
iv. C v D holds;

Proof. The proof for (i) can be constructed in similar
fashion to Theorem 5 in [8].

For case (iv), consider again the instances (6-11), the se-
mantics for C and C, and some attributes for both oC and
oD, such as oD v ∃R.E where E ∈ VC—hence, also oC v ∃R.E
holds thanks to oC v oD—and corresponding assertions for
the individuals (R(o1, e1) etc.). With the same attribute set
for oC and oD, i.e., Pc = Pd, where Pc, Pd ⊆ VΠ, it is guaran-
teed that the same equivalence structure is generated. With
oC v oD, then the union of equivalence classes that make up
C can only consist of a union that is equal or less than that
of D, hence a situation like (8) cf. (9) cannot occur. The
reverse holds for C v D (case (iii)).

For case (ii), one can construct a counter example even
under the condition of using the same set of attributes, i.e.,
where x ∈ (C)I and x /∈ (D)I and considering the equiva-
lence classes. Let oC v oD, and therefore C v D and C v D
also hold. Consider the following model/ABox:

C(o1), C(o2), C(o3), C(o4), C(o5) (12)

C(o1), C(o2), C(o3), C(o4) (13)

C(o1), C(o2) (14)

D(o1), D(o2), D(o3) (15)

D(o1), D(o2), D(o3), D(o4), D(o5), D(o6) (16)

D(o1), D(o2), D(o3), D(o4), D(o5), D(o6), D(o7)(17)

Take some properties Pc,d ∈ VΠ, which generate the follow-
ing equivalence structure induced by P : [xone] = {o1, o2},
[xtwo] = {o3}, [xthree] = {o4, o5}, [xfour] = {o6, o7} (a data
table can be constructed trivially to match the equivalence
structure, and therefore omitted here), which holds for both
C and D and their respective roughness. Thus, C consists of
the union of [xone], [xtwo], and [xthree], whereas D consists
of the union of just [xone] and [xtwo]. Hence, C’s extension
has more members than D.

Having clarified the matter for implication given oC v oD,
we now proceed to rough subsumption.

3.2 Rough Subsumption
Regarding the second case—whether one can derive oC v
oD given a subsumption relation between any of the approxi-
mations—then only if C v D then one can deduce oC v oD,
but this cannot be guaranteed for the other three combina-
tions, but we can say that oD roughly subsumes oC, denoted
with oC . oD.

Proposition 3. Let O be a rOWL ontology, C,D,C,D
be the lower and upper approximations of oC and oD, then:

i. if C v D then one cannot deduce oC v oD, but oD may
roughly subsume oC, i.e., oC . oD;

ii. if C v D then one can deduce oC v oD;
iii. if C v D then one cannot deduce oC v oD, but oD may

roughly subsume oC, i.e., oC . oD;
iv. if C v D then one cannot deduce oC v oD, but oD may

roughly subsume oC, i.e., oC . oD;

Proof. (ii) is trivial: all objects possibly in C are defi-
nitely in D, hence the extension of oC—by definition equal
or less than C—is always a subset of D, hence oC v oD.

Consider (i) with two concepts such that C v D holds
with respect to their instances:

C(o1), C(o2), C(o3), C(o4), C(o5) (18)

C(o1), C(o2), C(o3), C(o4) (19)

C(o1), C(o2) (20)

D(o1), D(o2) (21)

D(o1), D(o2), D(o3) (22)

D(o1), D(o2), D(o3) (23)

oC v oD clearly does not hold, due to C(o4). Based on (18)-
(23) and including D(¬o4), then any DL reasoner should
deduce oD v oC, hence reorder the hierarchy in the TBox. If
the two rough concepts would have been computed with the
same set of attributes, one still cannot guarantee oC v oD
holds in every model: take some Pc,d, then an equivalence
structure generated on the objects in (18)-(23) can result
in [xone] = {o1, o2}, [xtwo] = {o3}, and [xthree] = {o4, o5}
for both concepts, yet C is not subsumed by D. However,
because this situation occurs only if D and D have the same
set of instances, we can say that oC . oD.

Consider (iv) with two arbitrary concepts such that C v
D holds with respect to their instances, and the following
admissible model or actual instances declared in the ABox:

C(o1), C(o2), C(o3), C(o4), C(o5), C(o6) (24)

C(o1), C(o2), C(o3), C(o4), C(o5) (25)

C(o1), C(o2) (26)

D(o1), D(o2), D(o3) (27)

D(o1), D(o2), D(o3), D(o4) (28)

D(o1), D(o2), D(o3), D(o4) (29)

Again, oC v oD does not hold with respect to the model.
If Pc = Pd, i.e., the equivalence structure generated on the
objects is the same for both concepts, then oC v oD still does
not hold; e.g., [xone] = {o1, o2}, [xtwo] = {o3}, [xthree] =
{o4}, and [xfive] = {o5, o6}. However, because this situation
occurs only if D and D have the same set of instances, we
can say that oC . oD.

For case (iii) with two arbitrary concepts, the argument



 

Figure 2: Left: the sloppy taxonomy with all re-
quired axioms (see text for details); Right: the in-
ferred hierarchy, which shows that (i), (iii), and (iv)
of Proposition 2 hold, but not (ii).

is similar to (iv), e.g., with:

C(o1), C(o2), C(o3), C(o4), C(o5) (30)

C(o1), C(o2), C(o3), C(o4), C(o5) (31)

C(o1), C(o2) (32)

D(o1), D(o2), D(o3) (33)

D(o1), D(o2), D(o3), D(o4) (34)

D(o1), D(o2), D(o3), D(o4), D(o5), D(o6) (35)

If Pc = Pd then still oC v oD does not hold: consider
again (30-35) and an equivalence structure [xone] = {o1, o2},
[xtwo] = {o3}, and [xthree] = {o4, o5, o6}, then, because C
has o4, o5 as members, C therefore is forced to have o6 as
member as well due to [xthree]1, but while adding o6 to C
still satisfies C v D, it still does not hold that oC v oD
in this model, hence not in every model. However, because
this situation occurs only if D has fewr instances declared
explicitly than C (and D more than C), we can say that
oC . oD.

4. DISCUSSION
Although it cannot be guaranteed that oC v oD holds

for cases (i), (iii), and (iv) in Proposition 3 based on the
declared knowledge in the ontology, it will be an interesting
avenue to devise an algorithm that checks solely if it holds
against the actual ABox and orders the respective classes
in the taxonomy accordingly. However, this is beyond the
current scope and scalability of Semantic Web technologies.

Observe, though, that while the notion of rough subsump-
tion is not included in any of the OWL reasoners, the others
in Propositions 2 and 3 can be obtained already with the
standard reasoners (Proposition 1 is not relevant in an OWL
setting and therefore not discussed here). To illustrate this,
let us take Proposition 2 with oC v oD, subsumption be-
tween their respective approximations using ind to relate the
approximations to the rough class, lapr and uapr to relate
the rough class to its respective approximations, two arbi-
trary properties with E and F as range, respectively, and an
ABox as in (12-17), encode it in an OWL ontology and run

1Observe that because C is computed from Pc, one cannot
add the assertion C(¬o6) like one can do for C.

the (crisp) classification reasoning service. This was carried
out with Protégé 4.1beta and its built-in reasoner HermiT
v1.2.4. The result is shown in Figure 2, demonstrating that
(ii) of Propositions 2 indeed does not hold, whereas (i), (iii),
and (iv) do. This sample OWL ontology and a sample ontol-
ogy for Proposition 3 to demonstrate the behaviour of stan-
dard OWL infrastructure with the crisp reasoning services
are available in the online supplementary material at http://
www.meteck.org/files/roughontosuppl/roughontotests.html.

Caution has to be taken if one wants to use rough OWL
ontologies with standard reasoners in the presence of in-
stances, because OWL does not adhere to the unique name
assumption. The consequence is that individuals have to be
declared disjoint explicitly in order to prevent the reasoner
deducing that individuals with different names but having
the same values for the declared properties are the same
individual. Without the assertion that the individuals are
disjoint and where more than one object is a member of an
equivalence class, then, depending on the other knowledge
represented in the ontology, it may suggest incorrectly that
there are only crisp classes (for then it may deduce that
each equivalence class has only one member, and thus the
boundary region would always be empty).

What may be an interesting avenue to explore is to enforce
in the ontology development software that either Pd ⊂ Pc or
that the ranges of at least one of the properties in Pc must
be a subset of those in Pd. This is illustrated in Example 2.

Example 2. Recollect the vehicles from Example 1 and
Table 1, there may be a TBox statement
oVehicle v ∃HASNRWHEEL.Integer

but one may want to define other classes in the ontology,
such as
Tricycle v ∃HASNRWHEEL.Integer=3,

hence,
Tricycle v oVehicle

an examine its roughness. This reduces the equivalence
structure to [xfour] = {o4, o5}, [xfive] = {o6, o7}, which
would have been a crisp class if Tricycle were a defined
class. Observe that this only works if Pd ⊂ Pc. If Pc = Pd

and the properties are necessary and sufficient, i.e., the prop-
erties are in the reduct and core (e.g., D ≡ ∃R.E u ∃S.F in-
stead of D v ∃R.E u ∃S.F), the hierarchy collapses to equiva-
lences such that C ≡ D, C ≡ D, and C ≡ D.
Adding MotorisedTricycle to the TBox as
MotorisedTricycle v Tricycle u
∃HASNRWHEEL.Integer=3 u ∃HASENGINE.Booleanyes

reduces it to a single equivalence class of [xfour] = {o4, o5},
that cannot be disambiguated any further, even if we were
to include helmet in Pc. But, again, making it a defined
class forces it to be a crisp class—or: rough with an empty
boundary—with respect to the data. ♦

In this way, the vagueness can be reduced or even ‘pushed’
out of the ontology thanks to an iterative analysis of the rep-
resented knowledge in conjunction with hypothesis testing
to find the most suitable properties of the target classes. We
are looking into a methodological approach to achieve this
in conjunction with the reduct and core.

5. CONCLUSIONS
A rough extension to OWL 2 DL, called rOWL, was in-

troduced in such a way that OWL 2 DL’s computational



complexity was maintained. The novel notions of rough sub-
sumption reasoning and classification for rough concepts and
their approximations were defined using rOWL. The rough-
ness aspect lies in the fact that the subsumption cannot be
guaranteed in every model, but generally can be expected
to hold as the violating exception is a peculiar state where
one of the target classes and its upper approximation have
the same set of instances.

From an engineering and usability perspective, we are cur-
rently looking into the usage of properties with rough sets
and rough ontologies, and in particular how the reduct and
core can be integrated in (rough) ontology engineering and
the hypothesis testing scenario of bio-ontologists. From log-
ics point of view, there are multiple avenues one can pursue,
as little research has been carried out on rough logics. There
are preliminary results with paraconsistent rough DLs [20]
and we are looking into its relation with non-monotonic log-
ics and reasoning.
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