
Enhancing Identification Mechanisms in UML Class
Diagrams with Meaningful Keys

C. Maria Keet
School of Computer Science
University of KwaZulu-Natal

Durban, South Africa
keet@ukzn.ac.za

ABSTRACT
Unlike identification with keys and reference schemes in ER
and ORM, UML uses internal, system-generated, identifiers,
with a little-known underspecified option for user-defined
identifiers. To increase the ontological foundations of UML,
we propose two language enhancements for UML, being for-
mally defined simple and compound identifiers and the no-
tion of defined class, which also have a corresponding exten-
sion of UML’s metamodel.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and
Methods]: Representation languages; H.1.m [Information
Systems]: Models and Principles—Miscellaneous
; H.2 [Database Management]: Data Models

Keywords
Identity, Identification, Key, Defined Class, Quality of mod-
els and their languages

1. INTRODUCTION
In conceptual data modelling literature, identification and

identity are often used interchangeably and despite the long
history on the topic, there is a remarkable lack of agreement
about what they are, how identification mechanisms—keys,
reference schemes, identifiers—are dealt with in graphical
languages such as UML and EER, how to formalise it, and
how modelling tools implement them. Ascertaining when
a particular key is a good one has been investigated before,
and the reader is referred to [7, 12] for lucid examples of good
and bad keys. However, these and other works on identity
and identification in conceptual data modelling do not ad-
dress the logical and ontological underpinnings of identity
and identification with keys, i.e., whether the identification
mechanism itself is a good one or not. In addition, one needs
to decide whether the procedure to find and represent iden-
tity, or at least good keys, should be (i) be a step in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAICSIT ’11, October 3-5, Cape Town, South Africa
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

modelling methodology; (ii) also be enforced in the CASE
tool; or (iii) be part of the metamodel and/or in the con-
ceptual modelling language itself, and whether that should
be the same for all conceptual data modelling languages. A
uniform, or at least a structured and unambiguous approach,
can reduce or even avoid inconsistencies in a conceptual data
model and achieve interoperability through less resource-
consuming information integration. The present lack of har-
monisation in handling identity and identification hampers
this.

More specifically, the UML v2.3 specification [11] contains
many occurrences of the terms “identity”, “identification”,
and “identifier”, but does not provide detail on how exactly
the identification system is implemented, other than using
the internal identifier mechanism where the identifiers are
generated and assigned by the system. This poses challenges
both for devising subclass hierarchies—a subclass with a se-
mantically incompatible identity is incorrect with respect
to the information, but remains erroneously in the model
without further machinery to detect it—and for application
integration, because it requires a manual re-assessment of
the information and each data point to elucidate which ob-
jects are the same. Concerning the latter, the recent data
integration problems for the Johannesburg area integrated
services delivery information management system may serve
as an example of the pressing need to resolve this; at present,
there are no tools that do this automatically. Concerning
the former, take, e.g., Social entity (e.g., the SABC) as a sub-
class of Group of people: instances of the former can change
its members whilst being the same object, but the latter
cannot, hence, they have different identity criteria, which
thus will cause problems in the OO system if implemented
as such nevertheless. This and similiar problems have been
addressed for ontologies with the OntoClean method [5], but
there is no usable counterpart in conceptual data modelling
regarding the detection of such incompatible identity crite-
ria, because there is no unambiguous way to deal with them.

Ontology-driven information systems and conceptual data
modelling are gaining momentum [3, 4, 6, 9], which demon-
strate that reusing notions from Ontology leads to better
quality conceptual data models. Here we take a similar ap-
proach aiming at addressing the issue of identification in
UML Class Diagrams so that the subject domain seman-
tics can be represented more comprehensively and thereby
foster the development of better quality UML Class Dia-
grams that can generate both better software systems and
that can be more easily aligned or integrated with other in-
formation systems. Due to space limitations, we only sum-
marise the outcome of the ontological and logical analysis

of identity and identification mechanisms; the motivations
are explained and discussed in the extended version of this
paper [8]. Those more detailed insights are used here to pro-
pose two language enhancements for UML Class Diagrams,
being formally defined simple and compound identifiers and
the notion of defined class, which also have a corresponding
extension of UML’s metamodel.

We summarise identification mechanisms in conceptual
data modelling in Section 2. Extensions are proposed in
Section 3, and we close in Section 4.

2. IDENTIFICATION IN EER, ORM, AND
UML

Keys are incorporated in conceptual models in different
ways, which is summarised for simple and complex keys.
This enables one to refine the identification mechanism in
UML and harmonise them with ER/EER, Object-Role Mod-
elling (ORM), and the Web Ontology Language (OWL).

ORM is most explicit in its use of an identification mech-
anism, which is also enforced through diagram validation in
the two well-known ORM CASE tools VisioModeler 3.1 and
NORMA. Each entity type has a so-called reference scheme,
which in its simplest form—then dubbed reference mode—is
a binary relationship from that population to the values of
some value type [7], with a mandatory participation by the
entity type and a 1:1 uniqueness constraint. Let us formalise
this as follows:

Definition 1. (ORM reference mode (refm)) An ORM
reference mode for an object type is a identification mech-
anism that provides a sufficient condition for identity such
that: let C be the object type, V a value type, I relating C
and V , i.e., ∀x, y(I(x, y) → C(x) ∧ V (y)), and constrained
to ∀x(C(x)→ ∃yI(x, y)), ∀x, y, z(I(x, y)∧ I(x, z)→ y = z),
and ∀x, y, z(I(x, y) ∧ I(z, y)→ x = z).

The single-attribute primary key, simple key (skey), in ER
and EER has essentially the same definition as refm but
without the mandatory constraint [2].

ORM and EER allow more advanced identification than
just refm and skey. These include n-ary keys with n > 1,
weak entity types, and external uniqueness. EER’s n-ary
key that spans more than one attribute (i.e., for an entity
type with n attributes, n ≥ 2, then the key spans at most n
attributes) can be formalised as follows:

Definition 2. (Multi-attribute key (mkey)) An ER/EER
multi-attribute key for an entity type is a identification mech-
anism that provides at least a sufficient condition for identity
such that: let C be the entity type, V1, . . . Vn data types, I re-
lating C and V1, . . . , Vn, i.e., ∀x, y1 . . . yn(I(x, y1, . . . , yn)→
C(x)∧V1(y1)∧ . . .∧Vn(yn)), and constrained to ∀x(C(x)→
∃y1, . . . , ynI(x, y1, . . . , yn)) and for each Vi, with 2 ≤ i ≤
n, denoted together with ȳ that participate in the key (and
with y those attributes that do not), ∀x1, x2, ȳ, y(I(x1, ȳ, y)∧
I(x2, ȳ, y) → x1 = x2) and ∀x, ȳ, y, z̄, z(I(x, ȳ, y) ∧
I(x, z̄, z)→ ȳ = z̄).

With a minor variation in the definition (1 ≤ i ≤ n instead
of 2 ≤ i ≤ n), one can generalise to an ‘EER key’ that
subsumes both mkey and skey. ORM’s analogue of mkey
is referred to as an internal uniqueness constraint that spans
> 1 ORM roles where the other types are not constrained
to “V1, . . . Vn” but may also be object types. These type of
keys are also referred to as natural keys for they seek to use

real attributes of the objects to identify them, compared to
artificial keys like student matriculation numbers.

The ontological status and formalisation of ER/EER’s
weak entity type and ORM’s external uniqueness with a
compound reference scheme is less clear. Let us take ORM’s
approach [7] and place this in a more comprehensive and pre-
cise definition that also respects ORM and EER CASE tool
implementations:

Definition 3. (Compound reference scheme (crefs)) A
compound reference scheme is an identification mechanism
that provides a sufficient condition for identity, where an ob-
ject type C participates in m roles (m ≥ 2) in m separate
binary relationships I1, . . . , Im, the range of each Ii is either
Ci or Vi, and for each i (with 1 ≤ i ≤ m), ∀x(C(x) →
∃yIi(x, y)) and ∀x, y, z(Ii(x, y) ∧ Ii(x, z) → y = z), and
∀x1, x2, y1 . . . ym(I1(x1, y1) ∧ ... ∧ Im(x1, ym) ∧ I1(x2, y1) ∧
... ∧ Im(x2, ym)→ x1 = x2).

ER’s weak entity type [2] is the same as crefs, including
the mandatory participation. Thus, the only thing that has
changed compared to refm is the amount of relationships in-
volved, but the principle remains the same. Put differently,
refm is a special case of crefs.

UML uses the internal identifier mechanism where the
identifiers are assigned by the system, of which its problems
are discussed from an implementation perspective in [12].
One neither can specify manually if that should occur un-
der the constraints of refm or skey. Halpin and Morgan
[7] propose to insert a user-defined identification by append-
ing the preferred attribute with “{P}”, which amounts to an
alternative identifier that bears some subject domain seman-
tics compared to the internal identifier, i.e., in the direction
of a natural key, and slightly closer to the notion of iden-
tity in ontology. The UML Ontology Definition Metamodel
(ODM) v1.0’s proposal to handle ER keys [10] is depicted in
Fig. 1-A, and has an optional UML package where Property
is extended with Identifier and where alt:string is the “name of
instance of alternative identifier if there are more than one
identifiers for a given class” (Fig. 1-B). Problems with this
proposal are that it does not specify multiplicity constraints
on the identifier and it does not distinguish between refm,
mkey, and crefs.

« metaclass »
Propertyalt : String

« stereotype »
Identifier

<<extension>>

B.

A. NamedElement

Identifier

Class Property
1..n {ordered}

0..n0..n

1

+identifier+identifier

+identifiedClass
+identifyingPropertyIdentifierClass IdentifierProperty

Figure 1: A: OMG’s extension for keys/identifiers
(p291); B: its UML profile (p292) [10].

3. EXTENSIONS TO UML
To put the preceding analysis to use, we first address inclu-

sion of a more precise and comprehensive way of identifica-
tion in UML Class Diagrams, using ER keys and ORM’s ref-
erence schemes—i.e., refm, mkey, and crefs—as a basis,
and subsequently examine the feasibility of adding OWL’s
notion of ‘defined class’ from ontologies into UML to assert
that, with respect to the subject domain, a particular com-
bination of properties fully define the class, hence, that the
combination of properties determine the class and vv.

3.1 UML’s identifiers
Due to the lack of a formal specification of UML’s iden-

tifier, anyone can interpret the text on UML keys the the
ODM [10] (pp. 290-293) to one’s liking, which we aim to do
here in the light of the identification schemes in (E)ER and
ORM and the ontological guidance described in [8]. ODM’s
intention is to capture all three types of (E)ER keys (sim-
ple and multi-attribute key, and weak entity type) in the
one alternate key extension as depicted in Fig. 1-A. Al-
though ER does not have mandatory participation in the
keys as introduced by Chen [2], because there unidentified
objects were allowed, this does not hold for UML, because
it is subsumed by NamedEntity and uses the internal identi-
fiers; hence, ORM’s refm and crefs are applicable. This
entails that, first, the order of the properties of the identi-
fier do not matter, hence {ordered} can be omitted. Second,
we have to add that the property has a multiplicity of ex-
actly one, which can be done by setting the Multiplicity option
of Property to 1; this enforces the default value, yet it also
prevents modifications, so that a common meaning of the
identifier is ensured. Because of this change, which clearly
does not hold for all properties, a new subclass is intro-
duced, IdentifyingProperty, which must participate in at least
one Identifier. It still has to incorporate UML’s distinction be-
tween attribute of a class and association between classes.
The ODM restricts Property to association end or attribute
of the class or its superclass for identifiers [10] (p292), so
that one can distinguish between an external identifier that
involves at least one identifying association end and possi-
bly one or more attributes, yet keep the option to also have
only identification within the class (i.e., an identifier com-
posed of only attributes). These refinements are depicted
in Fig. 2 (note: ExternalIdentifier’s associations have only the
multiplicity drawn to avoid cluttering the diagram, but the
same adornments apply as with IdentifierProperty).

Thus, we have captured more precisely UML’s description
and intention of inclusion of keys with crefs as a basic
formal foundation and matching extension to the ODM as
depicted in Fig. 2. Note that this can be represented easily
also in the DLRifd DL language that Berardi et al. used
to formalise a large fragment of UML Class Diagrams [1],
principally thanks to the id construct that was introduced
specifically to handle complex keys and weak entity types.

3.2 Defined classes in UML
From the representation of natural keys with crefs and

Fig. 2, it is a small step to also include the notion of defined
class, in analogy to defined class in OWL, which, loosely,
amounts to identifying—more precisely, providing the manda-
tory and sufficient conditions—by a set of one or more prop-
erties. In addition to more detailed conceptual modelling
by representing the subject domain semantics more pre-
cisely, one also may gain benefits with automated reasoning

NamedElement

Identifier

Class
Multiplicity : Integer = 1
IdentifyingProperty

1..n

1..n0..n

1

+identifier+identifier

+identifiedClass
+identifyingPropertyIdentifierClass IdentifierProperty

Property

IdentifyingAttributeIdentifyingAssociationEnd
1..n

1..n

{disjoint complete}

ExternalIdentifier

0..n

0..n

Figure 2: Extension to the UML ODM’s identifier
(only multiplicity is drawn for ExternalIdentifier), cov-
ering refm, mkey, and crefs.

over formal conceptual data models. To declare that certain
properties amount to the combination of at least mandatory
(and possibly necessary) and sufficient conditions in the on-
tological sense, one can use a formal definition, add it in
some way to UML’s metamodel, or exploit OCL. The for-
mer is trivial: defining Defined Class is straightforward with
“≡” or EquivalentClass (in OWL) with their semantics, so
that with the to-be-defined class on the left-hand side, the
right-hand side of the definition can have any property. Re-
garding UML’s OCL, this might work, but it does not pose
any restrictions on how to use it consistently and there is
no conveniently usable graphical element for it. A possi-
ble extension to the UML metamodel by subtyping Class
and Property is shown in Fig. 3-A, which is the configuration
with the least amount of objections and restrictions. It lim-
its any class stereotyped as «Defined class» to be composed
of attributes and/or association (ends). IdentifyingProperty’s
attribute isReadOnly (inherited from Property) is set to true,
which guarantees it is not changeable, hence, its subclasses
cannot override this property with some conflicting attribute
declaration. Also, isDerived is set to false, because one’s iden-
tity should not be dependent on implicit knowledge in the
conceptual data model (if it would be derived, then one has
to use the original classes/attributes for identification in-
stead). Last, the isAbstract attribute of Class is by default set
to false already because abstract classes are not assumed to
be instantiated directly anyway—hence do not face the issue
of identity or identification in the information system—but
its subclasses denoting some piece of reality or other subject
domain directly, are.

Fig. 3-B demonstrates an example with MedalWinner’s prop-
erties that make up the identifier, and the identifier inside of
Competition consisting of three attributes, i.e., a crefs and
a mkey, respectively. The “«identifier alt=a»” follows through
the initial proposal by [10], where the“a”is a chosen string to
denote which properties belong together to make up a key,

<<identifier alt=a>> Attribute1: domain1
...
<<identifier alt=a>> Attributen: domainn
Attributeo: domaino

« Defined class »
Class Name

isAbstract : Boolean
Class *

0..1 isReadOnly : Boolean
default : String [0..1]
isComposite : Boolean
isDerived : Boolean

Property

isAbstract : Boolean = false
Defined Class 1..*0..1

isReadOnly : Boolean = true
isDerived : Boolean = false

IdentifyingProperty

A.

B1.

<<identifier alt=a>> cName: String
Age: Integer

« Defined class »
MedalWinner <<identifier alt=b>> Sport: String

<<identifier alt=b>> League: String
<<identifier alt=b>> Year: Integer

Competition

<<identifier alt=a>>
wins

1

B2.

Figure 3: A: Extension (shaded classes) to UML’s
metamodel with Defined class and IdentifyingProperty.
B: Examples of defined classes with n mandatory
and sufficient conditions and one other attribute,
and a refinement of OMG’s Olympics example [10].

as shown in Fig. 1-B. Thus, this mechanism also trivially
caters for ER’s and ORM’s alternate keys.

3.3 Discussion
With UML’s metamodel, IdentifyingProperty inherits the at-

tributes isReadOnly and isDerived from Property and Defined
class inherits isAbstract, so they have to be set to some value
to ensure consistency in meaning. Also, IdentifyingProperty
stands for ‘property used in identification’ and its constraints
concern how to use it uniformly in UML Class Diagrams; it
definitely does not make an ontological commitment as to the
possibly different nature of properties of identity. That is,
the proposed extensions are focussed on practical usability
in conceptual data modelling, informed by ontology. The
proposals for conceptual data modelling with UML Class
Diagrams are usable approximations to the qualitative, rel-
ative, and synchronic identity, and to the notion of OWL’s
and DL’s defined concept discussed in [8].

Although UML’s ease of system-generated identifiers re-
lieves the burden of detailed conceptual analysis by the mod-
eller, it is exactly making implicit subject domain semantics
explicit that is crucial in the analysis stage; or: less anal-
ysis during the modelling stage stores up more problems
down the road in terms of software bugs and interoperabil-
ity. Therefore, even if one would to want to keep internal
identifiers, then at least the option to describe a user-defined
alternate key should be encouraged in the tools and recom-
mended to be used. This can be done with the proposed
refinements, which correspond to skey, refm, and mkey of
ER/EER and ORM and Fig. 2, i.e., the user-defined natu-
ral keys or semantic identifiers. One can then expand on it
with the notion of defined classes, which is already possible
with the logical counterpart of the languages, and now also

more precisely as proposed in Section 3.2 and illustrated in
Fig. 3. The adornments of the graphical language is in line
with existing practices in UML, i.e. the stereotyping with
«Defined class», «identifier», and «identifier alt=a».

Having a more precise way of identification in UML is
the first step. To put it to good use, modelling method-
ologies have yet to be developed to extract good attributes
and associations from the subject domain, and additional
rules have to be devised for cleaning up and checking onto-
logical classification of a taxonomy in UML Class Diagrams,
alike OntoClean for ontologies. Also, mapping assertions
between ER/EER, ORM and UML diagrams are yet to be
implemented to facilitate information integration.

4. CONCLUSIONS
UML uses internal identifiers that do not bear any mean-

ing, whereas ER, EER, and ORM aim at natural keys that
do emphasize the properties of the entity type, which was
formalised unambiguously. To increase the amount of onto-
logical foundations of UML, we have proposed two language
enhancements for UML, being formally defined simple and
compound identifiers and defined classes, which also have a
corresponding extension of UML’s metamodel.

5. REFERENCES
[1] D. Berardi, D. Calvanese, and G. De Giacomo.

Reasoning on UML class diagrams. Artificial
Intelligence, 168(1-2):70–118, 2005.

[2] P. P. Chen. The entity-relationship model—toward a
unified view of data. ACM TODS, 1(1):9–36, 1976.

[3] N. Guarino. Formal ontology and information systems.
In Proc. of FOIS’98. Amsterdam: IOS Press, 1998.

[4] N. Guarino and G. Guizzardi. In the defense of
ontological foundations for conceptual modeling.
Scandinavian J. of Info. Sys., 18(1):9p, 2006.

[5] N. Guarino and C. Welty. An overview of OntoClean.
Handbook on ontologies, pages 151–159. Springer,
2004.

[6] G. Guizzardi. Ontological Foundations for Structural
Conceptual Models. Phd thesis, University of Twente,
The Netherlands. Telematica Instituut Fundamental
Research Series No. 15, 2005.

[7] T. Halpin and T. Morgan. Information modeling and
relational databases. Morgan Kaufmann, 2nd ed., 2008.

[8] C. M. Keet. Enhancing identification mechanisms in
UML class diagrams with meaningful keys (extended
version). Technical Report SoCS11-1, School of
Computer Science, University of KwaZulu-Natal,
August 2011.

[9] C. M. Keet and A. Artale. Representing and reasoning
over a taxonomy of part-whole relations. Applied
Ontology, 3(1-2):91–110, 2008.

[10] Object Management Group. Ontology definition
metamodel v1.0. Technical Report formal/2009-05-01,
Object Management Group, 2009.
http://www.omg.org/spec/ODM/1.0.

[11] Object Management Group. Superstructure
specification. Standard 2.3, Object Management
Group, May 2010. http://www.omg.org/spec/UML/2.3/.

[12] R. Wieringa and W. de Jonge. Object identifiers, keys,
and surrogates—object identifiers revisited. Theory
and Practice of Object Systems, 1(2):101–114, 1995.

