A basic characterization of relation migration

C. Maria Keet and Alessandro Artale

KRDB Research Centre, Free University of Bozen-Bolzano, Italy,
{keet, artale}@inf.unibz.it

Abstract. Representing and reasoning over evolving objects has been investi-
gated widely. Less attention has been devoted to the similar notion of relation
migration, i.e., how tuples of a relation (ORM facts) can evolve along time. We
identify different ways how a relation can change over time and give a logic-
based semantics to the notion of relation migration to capture its behaviour. We
also introduce the notion of lifespan of a relation and clarify the interactions be-
tween object migration and relation migration. Its use in graphical conceptual
data modelling is illustrated with a minor extension to ORM2 so as to more eas-
ily communicate such constraints with domain experts.

1 Introduction

Object migration, where, say, John migrates from being an instance of Student to one
of Alumnus, has received ample attention in the temporal database and conceptual mod-
elling communities [1-6]. But how do we migrate, say, the ORM fact (John, C32000) €
EnrolledIn to (John, C32000) € Graduatedin when John has completed the degree pro-
gramme CS2000 successfully? Clearly, one can migrate John to Alumnus and then
manually add (John, CS2000) € GraduatedIn in the GraduatedIn table, but it is much
more elegant from the conceptual point of view to declare such business knowledge by
imposing a temporal constraint on the possible evolution of Enrolledin to Graduatedin
at the ORM fact type level so that a whole tuple (fact) migrates at once.

In analogy to object migration, this paper claims the usefulness of a similar con-
straint for relations that we call relation migration. We are unable to find other accounts
—either formal or informal—for the notion of relation migration other than the notion
of status relations that were introduced for conceptual modelling in [7, 8], which was
used for modelling essential and immutable part-whole relations. Tuple migration at the
physical schema level has received some attention in database integration scenarios and
in distributed databases, but in these scenarios a tuple “migrates” just to instantiate the
same relation that happens to be stored in different servers whereas here by “relation
migration” we intend the change of membership of a tuple from one relation to another.
Observe that modelling of relation migration is thus also distinct from state transition
diagrams that concern states of single objects, activity diagrams that concern processes
but do not explicitly consider the participating entities, and interaction diagrams for
modelling use cases. We focus explicitly on, in ORM terminology, the migration of
facts (called also tuples or relation instances in this paper) and the corresponding tem-
poral behaviour of fact types (called also relations in this paper).

The main purpose of this work is to fill this conceptual and formal gap by intro-
ducing the notion of relation migration. The natural questions we are trying to answer
in this paper are about the different ways in which a relation migration can occur and
how we can represent its behaviour such that it can be used in conceptual data models.
We identify different ways how a relation can change over time and give it a logic-
based semantics. With the formalization of relation migration, we can precisely define
the notion of lifespan and its related notions for a relation, and show how interesting
temporal properties of relations can be derived as logical implications from the pro-
vided formalization. In particular, we will show how interactions between object- and
relation- migration can be captured in the proposed framework as logical implication.
To achieve this, we build upon ideas from the framework for temporal conceptual mod-
elling in ERy [1] with the ability to capture migration between relations in concep-
tual data models. Along these lines, we associate to the notion of relation migration a
formalization in terms of a model-theoretic semantics and group migrations into evo-
lution constraints, persistence constraints, and guantitative constraints. Using a formal
foundation—be it the first order logic presented here or extending ERy 1 that is based
on the Description Logic DLR,s—one will be able to check consistency of the con-
straints during conceptual data model development using an automated reasoner.

The remainder of the paper is structured as follows. Section 2 introduces examples
of relation migration and identifies requirements that should be met for an adequate
representation. The proposed formal characterisation of relation migration and lifespan
for relations are described in Section 3. The properties that can be derived as logical
implications from the proposed formalization are provided and illustrated in Section 4.
We close with our final remarks in Section 5.

2 Requirements analysis

In this section we demonstrate the relevance of the notion of relation migration in infor-
mation systems and databases. We provide an informal idea of the characteristics that
underpin the different ways of migration and describe the requirements that a temporal
conceptual modelling language should be able to capture. The described behaviour can
be extended to generic n-ary relations.

Example 1. Let us assume an airline company’s passenger RDBMS and a passenger
who books a flight, hence we have a relation (John, AZ123) € Booking with John €
Passenger and AZ123 € Flight, which are normally followed by the events that John
also checks in and then boards the plane, (John, AZ123) € Checkln and (John, AZ123)
€ Boarding. While the booking relation holds even after the tuple extended to the
check-in relation, i.e., (John, AZ123) is a member of both Booking and Checklin rela-
tions, this is not the case for the step from check-in to boarding which causes the tuple
(John, AZ123) to be moved from one to the other relation in the operational database.
In addition, for any tuple that is member of the Boarding relation, we know that it must
have been a member of Checkln relation sometime earlier. On the other hand, we can-
not force a business rule where tuples of the Checkin relation migrate sometime in the
future to the Boarding relation since a flight can be cancelled after the check-in or the
passenger may become ill and does not board the plane anymore.

One can construct a similar story line and type of behaviour for, say, census data
with (John,Mary) € Marriage, where John, Mary € Person and, as a consequence of
a divorce event, we have that (John,Mary) € Divorce. Since they can marry again,
then we should allow for the same tuple (John, Mary) to become again member of the
Marriage relation. On the other hand, in the event that either John or Mary dies, then
(John, Mary) € Widowhood, which, once it holds, it holds at all times in the future (i.e.,
being in Widowhood is a persistent relation).

One can also plan for specific time durations. For instance, it is expected that once

(Professorl,DepartmentA) € WorksFor, each professor also has to perform admin-
istrative duties, such as representing the department in the faculty council during some
time of her employment (i.e., (Professor1, DepartmentA) € Represents), and teach
courses (i.e., (Professorl, DepartmentA) € TeachesAt). The temporal behaviour of
the Represents relation is different from that one of the TeachesAt. Indeed, assuming a
scenario where professors do not change their departments, then all professors instanti-
ate the TeachsAt relation which, in turn, can be modeled as a temporally persistent re-
lation. On the other hand, professors do not always have to take part in faculty councils
but there are scenarios where specific durations are enforced with business rules saying,
for example, that “each professor serving in a faculty council should have worked for
the department since the previous year”.
Example 2. Let us consider now part-whole relations [9]. A simple change in relation
between two objects can be caused by the fact that (i) a is structurally a part of b but
a gets loose so after that a becomes spatially contained in b, e.g., a component in a
medical device breaks loose due to wear and tear. For part-whole relations that are not
necessarily part-of in the mereological sense we introduce two examples. First (if), the
example of subquantity_of in [9] about a bottle of wine and pouring a subquantity of the
wine into a wineglass so that this subquantity in the glass used fo be a subquantity_of
the wine in the bottle and one wants to maintain traceability of quantities over time,
which is important especially in the food industry for food safety in the food process-
ing chain. The second example is a case where object- and relation- migration interact.
For instance, let’s consider (iii), (John, ACompanyBoard) € member_of with John €
CEO and subsequently we have a migration of both the object and the relation such that
John’s role changes to John € Consultant and (John, ACompanyBoard) € advisor_of.

We can add a further dimension regarding the behaviour of relation migration when
we also consider rigidity of the objects and the relation that holds between the ob-
jects. In particular, to capture the temporal behaviour of part-whole relations, essen-
tial and immutable part-whole relations have been introduced [7, 10]; e.g., the part-
whole relation (wolfram-thread, candescent-light-bulb) € structural_part, where
the wolfram-thread is an immutable part of the candescent-light-bulb. When
the light is broken, the tuple migrates irreversibly to (wolfram-thread, candescent-
light-bulb) € containment, unlike the medical device in example (i).

Types of behaviour for relation migration. Summarising and generalising from the
examples, we have identified the following types of behaviour, which are in analogy to
their object migration counterpart [1].

— Evolution constraints specify how elements of a relation can possibly migrate to
another relation—e.g., the instance of Booking migrates (extends) to Checkln.

— Persistence constraints specify persistent states for a relation—e.g., being in Wid-
owhood is persistent for a couple.

— Quantitative evolution constraints specify the exact amount of time for the relation
migration to happen—e.g., the case of professors who, to be members of the faculty
council, should have been members of the faculty since one year.

3 Formalization of relation migration

In this section, we formalise the constraints for relation migration that were described
informally in Section 2, and investigate the impact of relation migration on lifespan
for relations. To keep the formal apparatus to a minimum, we avail of the notion of
status relations—formalised in [7, 8] and graphically depicted in Fig.2—that constrain
the evolution of a tuple’s membership in a relation along its lifespan and which ap-
ply only to temporal relations: R is the normal (active) relation, a relation is scheduled
(Scheduled-R) if its instantiation is known but its membership will only become active
some time later, a suspended relation (Suspended-R) is temporarily inactive, and dis-
abled relations (Disabled-R) are expired relations that never can be used again. Based
on the characterisation of relation migration (Section 3.1) and lifespan (Section 3.2),
we can model the identified ways of relation migration precisely and explore the inter-
actions between relation and object migration afterwards.

3.1 Basic constraints for relation migration

We start by formalising the behavioural constraints without considering object migra-
tion. We distinguish between evolution constraints—specifying how elements of a rela-
tion can possibly migrate to another relation—persistence constraints—specifying per-
sistent states for a relation—and quantitative evolution constraints—specifying the ex-
act amount of time for the relation migration to happen. We present the textual syntax
and the model-theoretic semantics considering, without loss of generality, binary rela-
tions. We use a temporal interpretation of the signature of a conceptual data model L,
which is a structure of the form: 7 = ((Z, <), AT, {Z®) | t € Z}), where (Z, <) is
the set of integers denoting the intended flow of time, AT # () is the interpretation do-
main, and) for t € Z, is the interpretation function which assigns a set C7(1) C A7
to each entity type C' € C, and a set RZ() of tuples over AZ to each relation R € R.
Evolution constraints. We distinguish between five different kinds of evolution con-
straints.
R RDEX R’. Dynamic EXtension of a Relation.

<01, 02> S RZ(®) _, gy > t.<01,02> S RII(tl)
R RDEV R’. Dynamic EVolution of a Relation.

<01, 02> S R.I(t) — 3t > t.<01, 02> S R/I(tl) AN <O1, 02> gR.I(t,)
R SRDEX R'. Strong Dynamic EXtension of a Relation.

(01,02) € RZ®) — (01, 0,) € Scheduled-RZ VATt > 1.0y, 05) € RET)
R RDEX™ R’. Dynamic EXtension of a Relation in the past.

(01,02) € RTW) — 3t < t.(01,00) € r/)

R RDEV™ R’. Dynamic EVolution of a Relation in the past.
<01, 02> S RI(t) —3Jt' < t.<01, 02> € RlI(t/) AN <01, 02> gRI(tl)
Persistence constraints. We distinguish between five different kinds of persistence
constraints.
R RPEX R'. Persistent EXtension of a Relation.
(01,02) € RTY) V' > t.(01,00) € rZ®)
R RPEV R'. Persistent EVolution of a Relation.
(01,00) ERT) Wt > t.(01, 00) er T A (01, 02) ¢RT()
R SRPEX R’. Strong Persistent EXtension of a Relation.

(01,02) € RTM) — (01, 00) € Scheduled-R"*) A vt > t.(01,02) €R
R RPEX™ R’. Persistent EXtension of a Relation in the past.

<01, 02> S RZ() . vy < t.<01,02> S RII(t/)

R RPEV™ R'. Persistent EVolution of a Relation in the past.

(01,00) €RTW) Wt <t. (01, 00) er T A (01,09) ¢RI
Quantitative constraints. We distinguish between five different kinds of quantitative
constraints.

R RQEX R’. Quantitative EXtension of a Relation.
(01,09) € RZ®) _, (o1,09) € R/I(t+1)
R RQEV R’. Quantitative EVolution of a Relation.

(01, 02) crI®) _, (o1, 02) ER’I(t-H) Aoy, 02) g{RI(t‘H)
R SRQEX R'. Strong Quantitative EXtension of a Relation.

(01,00) €RTY) — (01, 00) € Scheduled-R'Z®) A (01,02) ER
R RQEX™ R’. Quantitative EXtension of a Relation in the past.

(01,00) € RIZW) _, (01,00) € g/Z(t=1)

R RQEV™ R’. Quantitative EVolution of a Relation in the past.

<01, 02> S RI(t) — <01, 02> S R’I(til) AN <017 02> gRI(til)
Concerning the specific examples metioned in Section 2, they can be modelled with the
following migration constraints:

1Z()

/I(ﬁ—‘rl)

Booking RDEX Checkln, Widowhood RpPEx Widowhood,

Boarding RpEV™ Checkln, Represents RQEx~ WorksFor,
Divorce RDEV™~ Marriage, EssentialStructuralPart RPEvV contained._in,

Marriage SRpEX Widowhood, Disabled-SubQuantity RbEV™ SubQuantity.

Thus, e.g., the penultimate constraint assumes that in the domain of interest and normal
course of operation, it holds that for each working candescent light bulb, the wolfram
thread always will break at some point in the future, and remain broken indefinitely, and
the latter constraint can be used for, e.g., the amount of wine poured into the wineglass
which used to be a subquantity of the wine in the bottle.

We leave it to Human-Computer Interaction experts to devise the optimal way to
add relation migration to the ORM graphical and textual languages: the constraints can
be added alike rules are added in pseudo-natural language analogous to [2] or, e.g., with
named dashed lines that serve as syntactic sugar for the axioms. We use the latter option
in the remainder of the paper thanks to its compactness; an example is shown in Fig. 1.

AV
L -- Reex
7] N8
4 N
I divorce widow of &)
\ /

RDEV'\\\ C 1
~

marriage = =

NS --

Fig. 1. Example of relation migration between various civil statuses (in ORM2 notation), where
the dashed arrow denotes the direction of migration and its label the type of migration.

Fig. 2. Graphical depiction (in EER) of status relations (from [7]) extended with relation migra-
tion constraints between them, which are denoted with dashed lines and an arrow in the direction
in which the relation migrates; e.g., a relation in Disabled-R was evolved dynamically (RDEV ™)
from Exists-R (i.e., used to be an instance of Exists-R). In ORM notation, the diamonds are
replaced by rectangles, encircled d with double shafted arrow with disjoint exclusive notation.

3.2 Lifespan and related notions

The lifespan of an object with respect to a class describes the temporal instants where
the object can be considered a member of that class [1]. In an analogous way, we intro-
duce the lifespan and related notions for temporal relations. The lifespan of a particular
relation instance (tuple, fact) » = (0;, 0,) (for simplicity we consider binary relations)
with respect to a relation R describes the temporal instants where the particular relation
instance can be considered a member of the relation. With the notion of status relations,
one can distinguish between the following aspects of lifespan: EXISTENCESPANp,
LIFESPANR, ACTIVESPANR, BEGINR, BIRTHr and DEATHER, which are functions
that depend on the relation’s membership to the status relation associated to a temporal
relation R.

The existencespan of a relation instance r describes the temporal instants where
the relation is either a scheduled, active or suspended member of a relation (i.e., of
Scheduled-R, R, or of Suspended-R). Recollecting the relational hierarchy in Fig. 2,
where Exists-R subsumes the former three, then we have EXISTENCESPANR : AB x
AB — 9T guch that:

EXISTENCESPANR(r) = {t € T | (0, 0;) € Exists-R*"}
The lifespan of a relation instance describes the temporal instants where the relation is
an active or suspended member of a given relation (thus, LIFESPANg(r) C
EXISTENCESPANR (7). More formally, LIFESPANR : AB x AB — 27 such that:

LIFESPANR(r) = {t € T | (0i,0;) € R*") U Suspended-R* "}
The activespan of a relation instance describes the temporal instants where the relation
is an active member of a given relation (thus, ACTIVESPANR () C LIFESPANR(7)).
More formally, ACTIVESPANR, : AB x AB — 97 guch that:

ACTIVESPANR(r) = {t € T | (04, 0;) € R*™}

The functions BEGIN g and DEATH g associate to a relation instance the first and the last
appearance, respectively, of the relation as a member of a given relation, while BIRTHp
denotes the first appearance of the relation as an active member of that relation. More
formally, BEGIN i, BIRTHR, DEATHR : AB x AP — T such that:

BEGINR(7) = min(EXISTENCESPANR (7))

BIRTHR(r) = min(ACTIVESPANR(r)) = min(LIFESPANR(T))

DEATHR(7) = max(LIFESPANR(r)) = EXISTENCESPANR(T)
We could still speak of existencespan, lifespan or activespan for snapshot relations, but
in this case EXISTENCESPAN i (1) = LIFESPAN(r) = ACTIVESPANR(r) = 7.

4 Logical consequences

In this section we show how further constraints can be derived as logical implications
from the axiomatization proposed so far on relation migration (denoted with X's;) and
the lifespan definitions. We will also study the interactions between object and relation
migration.

The first result shows that mixing subtyping of entity types (ISA) with migration
may result into inconsistent relations (see ‘Case A’ in Section 4.1 for an example).

Proposition 1 (1SAVs. Relation Migration). Let R, R’ be two relations such that R’
ISA R and R RMC R/, with RMC € {SRDEX, SRPEX, SRQEX, RDEV, RPEV, RQEV,
RDEV™, RPEV™, RQEV ™} then both R and R’ are unsatisfiable, i.e., Xy U {R' 1SA
R, RRMCR'} = {R1SA L, R I1SA L}, with L the empty set.

Specifying constraints on relation migration can force new constraints on the lifes-
pan of the related relations:

Proposition 2 (Migration Vs. Relation Lifespan). Let R, R’ be two relations, then:
1. If RRPEV R/, then DEATHR(r) < DEATHR/ (7).
2. If RRMCR/, with RMC € { SRDEX, SRPEX, SRQEX }, then DEATHR (1) < BIRTHR/ (7).

To see why (2) holds, note that from the semantics of the relation migration involved in
R RMC R’ it immediately follows that (¢) R and R’ are two disjoint relations, and (i7)
that R implies Scheduled-R’.

We now proceed to examine how the notion of lifespan for both classes and relations
can interact with each other. Such interactions will be useful to understand how relation
migration and object migration influence each other, which we address in the next sub-
section.

Proposition 3 (Objects Vs. Relations Lifespan). Given the set of axioms X sy and the
lifespan notions for both status classes and status relations, let R be an n-ary relation
(where n > 2) to which object types C1, . .. C,, participate (where m < n) and r =
(01,...,0n) € R, then:
1. ACTIVESPAN of relations is shorter or equal to the ACTIVESPAN of objects par-
ticipating in the relation.
ACTIVESPANR(r) C ACTIVESPANG, (0;), fori=1,...,n
2. BEGIN of objects occurs at the same time or before the BEGIN of the relation they
participate in.
BEGINg, (0;) < BEGINR(r), fori=1,...,n
3. DEATH of relations occurs before or at the same time when one or more partici-
pating objects die.
DEATHR(r) < DEATH(, (0;), fori=1,...,n

The first property is a consequence of the “ACT” axiom ((01,02) € RT®) — o; €
CZ.I (t), 1 = 1,2) of the formalization of status relations [7] saying that active re-
lations involve only active classes. From this property follows that BIRTH(, (0;) <
BIRTHR(r), for i = 1,...,n. The second property is a consequence of the “RSuUspP2”
axiom ({01, 03) € Suspended-R*() — o; € CiI(t)\/oZ- € Suspended-C; ¥ j =1,2)
[7] saying that objects participating in a suspended relation have to be scheduled or ac-
tive objects. The last property is a consequence of the “RDISAB4” axiom [7] saying
that disabled classes can participate only in disabled relations. As an obvious conse-
quence we have that LIFESPAN g (1) € LIFESPAN(, (0;) fori = 1,. .., n, similarly for

EXISTENCESPAN.

4.1 Relation migration Vs. object migration

We consider now how the migration of a relation and the migration of a participating
object can influence the temporal behaviour of each other. We show that, in addition to
explicitly asserting an object- or relation- migration constraint, the constraints already
expressed in a temporal conceptual model can force such kind of migrations. We have
found two cases, depicted in Fig. 3, where (case A) object migration implies a relation
migration, and (case B) relation migration implies an object migration. Note that the
object migration constraints have a semantics similar to the one for relation migration.
We assume that the relations R, R’ are generic n-ary relations with the same arity and
that the entity types F, E5 play the same role/position in R and R/, respectively.
Case A: Object migration — relation migration. Given an object migration be-
tween two entity types, F1, s, participating in two relations, R, R', respectively, then
to derive an analogous migration between the relations, the constraint expressed in
Fig. 3-A must hold, where the timestamp (not drawn in Fig. 3) forces R to be time-
invariant, called also snapshot in the literature (i.e., (01,02) € RZ®), then (01, 00) €
RZ() for all ' € T). Note that if the specified object migration constraints are one of
DEV/PEV/QEV then the diagram in Fig. 3-A would be inconsistent (see Proposition 1).
Case B: Relation migration — object migration. Given a migration between two
relations, R, R’, bounded to entity types, E1, Eo, respectively, then to derive an anal-
ogous migration between the corresponding participating entity types, the constraints

Fig. 3. Interaction between object- and relation migration; thin (pink) dashed line with open ar-
rowhead = declared migration, thick (green) dashed line = implication for the relation or object.
Observe that B1 includes cases like B1”. B2 vs. B2’ depends on the underlying formalism: E and
FE»> must be disjoint, which is either assumed to be so when the entity types are not in a hierarchy
(B2, normally the case in conceptual models) or must added explicitly (when one principally uses
an arbitrary suitable logic and uses an ORM diagram as ‘syntactic sugar’).

expressed in Fig. 3-B1/B1’ must hold; that is, F; and E5 may, but do not need to be, dis-
joint. When the migration between the relations are one of RDEV/RPEV/RQEV, then to
derive a similar object migration constraint, the entity types £, E5 need to be disjoint
in the conceptual diagram as shown in Fig. 3-B2 (if the underlying logic already takes
care of disjointness of F; and E5 by convention) or B2’ (declaring and communicating
explicitly the disjointness of F; and E5 in an ORM diagram). On the other hand, if the
entity types F1, E5 are declared to be disjoint then, in its turn, the relation migration is
forced to be one of RDEV/RPEV/RQEV.
We illustrate these two cases in the following example.

Example 3. For Case A, let us assume a company where, sooner or later, each
employee—who works for exactly one department—will be promoted within the same
department he or she works for and such that demotion does not occur. This means an
object migration of type PEX between Employee and Manager; see Fig. 4-A. To main-
tain consistency of the model, this forces a relation migration of type RPEX between
works for and manages.

For Case B, let us recollect the example of Section 2 about John as CEO and his
membership in the CompanyBoard, which has a business rule that at some point he will
cease to be a CEO and full member of the board but then must continue consulting the
company board to foster continuation and smooth transition of the management, i.e.,
we have RDEV between member of and consultant of. In the ORM model depicted in
Fig. 4-B, this forces John to dynamically evolve (DEV) from CEO to Consultant.

Department] (CEO CompanyBoard
v e
PEX ,'
\ 1 Dev
~A \

manages consultant of

Fig. 4. Examples of interaction between object- and relation migration.

5 Conclusions

We have identified different ways how a relation can change over time and given a logic-
based semantics to the notion of relation migration to capture its behaviour precisely.
Relation migration imposes constraints regarding the notions of lifespan of a relation, in
a similar way as object migration does for lifespans of objects. In addition, we explored
the interaction that exists between object- and relation migration. We presented two
different cases showing how object migration influences relation migration and, vice-
versa, how from a relation migration we can derive migration constraints for the classes
participating in the relation.

Current and future work involves integrating aspects of rigidity, its effects on mi-
grations between part-whole relations, and tractable reasoning with relation migration.

References

1. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems.
Annals of Mathematics and Atrtificial Intelligence 50(1-2) (2007) 5-38
2. Balsters, H., Carver, A., Halpin, T., Morgan, T.: Modeling dynamic rules in ORM. In
Meersman, R., Tari, Z., Herrero., P.e.a., eds.: OTM Workshops 2006. Volume 4278 of LNCS.,
Springer-Verlag (2006) 1201-1210
. Hall, G., Gupta, R.: Modeling transition. In: Proc. of ICDE’91. (1991) 540-549

4. Etzion, O., Gal, A., Segev, A.: Extended update functionality in temporal databases. LNCS.
In: Temporal Databases - Research and Practice. Springer-Verlag (1998) 5695

5. Halpin, T.: Temporal modeling and ORM. In Meersman, R., Tari, Z., Herrero., P., eds.: OTM
2008 Workshops. Volume 5333 of LNCS., Springer (2008) 688—698

6. Parent, C., Spaccapietra, S., Zimdnyi, E.: Conceptual modeling for traditional and spatio-
temporal applications—the MADS approach. Berlin Heidelberg: Springer Verlag (2006)

7. Artale, A., Guarino, N., Keet, C.M.: Formalising temporal constraints on part-whole rela-
tions. In Brewka, G., Lang, J., eds.: 11th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’08), AAAI Press (2008) 673-683

8. Artale, A., Keet, C.M.: Essential, mandatory, and shared parts in conceptual data models.
In Halpin, T., Proper, H., Krogstie, J., eds.: Innovations in Information Systems modeling:
Methods and Best Practices. IGI Global (2008) 17-52

9. Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations.
Applied Ontology 3(1-2) (2008) 91-110

10. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Phd thesis, Uni-
versity of Twente, The Netherlands. Telematica Instituut Fundamental Research Series No.
15 (2005)

IV}

