Knowledge-to-text Natural Language Generation for Agglutinating African Languages

C. Maria Keet

Department of Computer Science University of Cape Town, South Africa mkeet@cs.uct.ac.za

Tech Talk at Google, Zurich, Switzerland Wikimedia Foundation Google.org Fellows offsite workshop, 23-26 August 2022

CS@UCT

CS@UCT

KEEN team

- Knowledge engineering team: http://www.meteck.org/keen/
- Aim: to contribute computing theory, methods, and techniques to the knowledge society
- Scope is knowledge engineering in its broad sense, including ontology engineering, the Semantic Web, intelligent (logic-based, ontology-driven) conceptual modelling, and natural language generation

Outline

Motivation

Context

- Notes on NCB languages
- Rule-based NLG
 - CNL and NLG in a nutshell
 - Generating basic sentences in isiZulu
 - Extending basic sentences

3 Discussion

Outline

Motivation

- Context
- Notes on NCB languages

Rule-based NLG

- CNL and NLG in a nutshell
- Generating basic sentences in isiZulu
- Extending basic sentences

3 Discussion

Summary

Context

Outline

Motivation

Context

- Notes on NCB languages
- Rule-based NLG
 - CNL and NLG in a nutshell
 - Generating basic sentences in isiZulu
 - Extending basic sentences
- 3 Discussion

Summary

Motivation

- >1.4 billion people in Africa, most do or can speak a language other than English or French
 - South Africa: isiZulu and isiXhosa most widely spoken languages, by first language speakers
 - 23% or about 11 million people isiZulu, 8 million (isiXhosa)

Context

Motivation

- \bullet >1.4 billion people in Africa, most do or can speak a language other than English or French
 - South Africa: isiZulu and isiXhosa most widely spoken languages, by first language speakers
 - 23% or about 11 million people isiZulu, 8 million (isiXhosa)
- People use computers for work, social media...
 - Doing business, government services provision, etc in one's own language, beyond English and French
 - (The "untapped billion")
- ... but there is very limited ICT in/for African languages of the Niger-Congo family, and only for a few languages

Context

Motivation

- NLP tools also for African languages proper
- Requires tools with African languages in at least the interface, not just some 'pretty pictures and icons'
- A.o.t., need to transform structured data and structured knowledge into text
- Structured input is represented in, a.o.: XML, RDF, OWL, SQL, JSON, spreadsheets, csv files

Structured input - examples

Structured sentences – examples for knowledge-to-text

• Electronic health records and patient discharge notes generation

Requirements engineering and CQs for app development

- Querying the data with conceptual queries in OBDA
- And many other areas; e.g., question generation, intelligent textbooks, automation of language learning exercises

Structured sentences – examples for knowledge-to-text

• Electronic health records and patient discharge notes generation

- e.g., SNOMED CT, OpenMRS localisation
- "The patient has as symptom fever and dizziness"
- "The patient must drink water when taking the pills""If the patient takes the pills, then he must drink water"
- Requirements engineering and CQs for app development
 - Capture and validate relevant business logic
 - "Who works for the HR Department?"
- Querying the data with conceptual queries in OBDA
 - "Show me all employees who are not working on a project"
- And many other areas; e.g., question generation, intelligent textbooks, automation of language learning exercises

Structured sentences – examples for knowledge-to-text

• Electronic health records and patient discharge notes generation

- e.g., SNOMED CT, OpenMRS localisation
- "The patient has as symptom fever and dizziness"
- "The patient must drink water when taking the pills"
 "If the patient takes the pills, then he must drink water"
- Requirements engineering and CQs for app development
 - Capture and validate relevant business logic
 - "Who works for the HR Department?"
- Querying the data with conceptual queries in OBDA
 - "Show me all employees who are not working on a project"
- And many other areas; e.g., question generation, intelligent textbooks, automation of language learning exercises

This talk

- Rule-based Controlled Natural Languages & Natural Language Generation
- Knowledge-to-text; input: ontologies, knowledge graphs etc
- Agglutinating Niger-Congo B languages (aka 'bantu languages')

Outline

Motivation

- Context
- Notes on NCB languages

Rule-based NLG

- CNL and NLG in a nutshell
- Generating basic sentences in isiZulu
- Extending basic sentences

3 Discussion

Summary

Basics

1500-2000 African languages (6 main groups) spoken by 1.4 billion people

https://en.wikipedia.org/wiki/Bantu_languages#/media/File:African_language_families.png 🖌 🗧 🕨 🤶 🗠 🔶

Core characteristics relevant for computation (1/2)

- 1. System of noun classes
 - Each noun is classified into a noun class
 - Meinhof identified 23 noun classes; not all of them used, varies by language; some refinements
 - Singular and plural pairings (with imprecision and underspecification)
 - There's semantics to the NCs (e.g., NC1 for humans, NC9 for animals, NC15 infinitive nouns); less important for computation

NC	AU	PRE	Stem (ex- ample)	Meaning	Example	(isiZulu)
1	u-	m(u)-	-fana	humans and other	umfana	boy
2	a-	ba-	-fana	animates	abafana	boys
1a	u-	-	-baba	kinship terms and proper	ubaba	father
2a	0-	-	-baba	names	obaba	fathers
3a	u-	-	-shizi	nonhuman	ushizi	cheese
(2a)	0-	-	-shizi		oshizi	cheeses
3	u-	m(u)-	-fula	trees, plants, non-paired	umfula	river
4	i-	mi-	-fula	body parts	imifula	rivers
5	i-	(li)-	-gama	fruits, paired body parts,	igama	name
6	a-	ma-	-gama	and natural phenomena	amagama	names
7	i-	si-	-hlalo	inanimates and manner/	isihlalo	chair
8	i-	zi-	-hlalo	style	izihlalo	chairs
9a	i-	-	-rabha	nonhuman	irabha	rubber
(6)	a-	ma-	-rabha		amarabha	rubbers
9	i(n)-	-	-ja	animals	inja	dog
10	i-	zi(n)-	-ja		izinja	dogs
11	u-	(lu)-	-thi	inanimates and long thin	uthi	stick
(10)	i-	zi(n)-	-thi	objects izinthi		sticks
14	u-	bu-	-hle	abstract nouns	ubuhle	beauty
15	u-	ku-	-cula	infinitives	ukucula	to sing
17		ku-		locatives, remote/ general		locative

Core characteristics relevant for computation (2/2)

- 2. Many of the languages are *agglutinating*
 - i.e., what are separate words in, say, English are 'components' of a word
 - Ex: titukakimureeterahoganu (Runyankore, Uganda) 'We have never ever brought it to him' ti tu ka ki mu reet er a ho ga nu neg-(NC2 SC)-RM-(NC7 OC)-(NC1 OC)-VR-App-FV-Loc-Emp-Dec

Illustrative examples of some consequences (isiZulu)

- 'and', enumerative: na-, phonologically conditioned
 - Ex: milk and butter: ubisi nebhotela
 - Ex: butter and milk: *ibhotela <u>no</u>bisi*

Illustrative examples of some consequences (isiZulu)

- 'and', enumerative: na-, phonologically conditioned
 Ex: milk and butter: ubisi <u>ne</u>bhotela (-a+i-=-e-)
 Ex: butter and milk: ibhotela <u>no</u>bisi (-a+u-=-o-)
- Verbs: concordial agreement (~ conjugation) based on noun class
 Ex: The human eats *umuntu <u>u</u>dla*
 - Ex: The dog eats *inja idla*

Illustrative examples of some consequences (isiZulu)

- 'and', enumerative: na-, phonologically conditioned
 Ex: milk and butter: ubisi <u>ne</u>bhotela
 Ex: butter and milk: ibhotela <u>no</u>bisi
- Verbs: concordial agreement (~ conjugation) based on noun class
 Ex: The human eats *umuntu <u>u</u>dla* Ex: The dog eats *inja <u>i</u>dla*
- 'is not a': combine NEG SC with PRON, both depend on nc
 Ex: an animal is not a plant: *isilwane <u>asiwona</u> umuthi* Ex: a plant is not an animal: *umuthi <u>awusona</u> isilwane*

(-a+i-=-e-) (-a+u-=-o-)

Concordial agreement

3. System of concordial agreement

Abafana abancane bazozithenga izincwadi ezinkulu (isiZulu, South Africa) aba-fana aba-ncane ba-zo-zi-thenga izi-ncwadi e-zi-nkulu 2.boy 2.small 2.SUBJ-FUT-10.OBJ-buy 10.book REL-10.big 'The little boys will buy the big books'

Outline

Motivation

- Context
- Notes on NCB languages
- Rule-based NLG
 - CNL and NLG in a nutshell
 - Generating basic sentences in isiZulu
 - Extending basic sentences

3 Discussion

Summary

Outline

Motivation

- Context
- Notes on NCB languages

2 Rule-based NLG

- CNL and NLG in a nutshell
- Generating basic sentences in isiZulu
- Extending basic sentences

3 Discussion

Summary

Short answer

- Ccontrolled Natural Language: constrain the grammar or vocabulary (or both) of a natural language
- Natural Language Generation: generate natural language text from structured data, information, or knowledge

Ex: S. Moolla's mobile healthcare app with canned text

Home » History » Cardiovascular History

Chest Pain

Have you had any recent pain in your chest? - Uke waba nobuhlungu esifubeni maduzane?

Does the pain radiate to your jaw, neck or arm? - Engabe ubuhlungu bakho bujikeleza emihlathini, emqaleni noma nasezingalweni?

Does anything precipitate or relieve the pain? - Ingabe ikhona into eyenza ubuhlungu buqhubeke noma eyehlisa ubuhlungu?

Dyspnoea

▶ < ≣ > < ≣ > ≡ ∽ ९ ि 23 / 76

Ex: Avalanche bulletins with **canned segments** [Winkler et al.(2014)]

Segment 1	Segment 2	Segment 3			Segment 4	Segment 5		
die Lawinen	können				gross werden.			
nasse Lawinen		auch		oft	weit vorstossen.			
diese		{on_steep} Sonnenhängen		weiterhin	bis in die aperen Täler vorstossen.			
		in diesen Gebieten				bis in tiefe Lagen vorstossen.		
Segment 3a		Segment 1	Segment 2 Segment		it 3b	Segment 4	Segment 5	
		the avalanches	can				reach large size.	
		wet avalanches		also		in many cases	reach a long way.	
{on_steep} sunn	y slopes	they				as before	reach the bare valleys.	
in these regions							reach low altitudes.	

Fig. 2. Schema of a phrase in the source language German (above). {on_steep} mark a subsegment with several further options. In this example, [blank] is one of the options in the third and fourth segment. In English, the order of the segments is different and segment 3 is split.

Ex: Business rules and conceptual data models with *static* **templates**

Each Course is taught by at least one ProfessorEach Professor teaches at least one CourseEach [C1] [R1] at least one [C2]

With logic-based reconstruction

- BR: Each Course is taught by at least one Professor
- FOL: $\forall x \ (Course(x) \rightarrow \exists y \ (is_taught_by(x, y) \land Professor(y)))$
- DL: Course $\sqsubseteq \exists is_taught_by.Professor$
 - mandatory constraint / existential quantification (all-some pattern)
 - Each [C1] [R1] at least one [C2]

ORM model snippet, serialised in XML

```
...
<Predicate>
<Object_Role ID='ExEN:249' Object='Professor' Role='teaches'/>
<Object_Role ID='ExEN:250' Object='Course' Role='taught'/>
</Predicate>
...
<Constraint xsi:type='Mandatory'>
<Object_Role>ExEN:249</Object_Role>
</Constraint>
```

. . .

Simple existential quantification ('mandatory constraint') template Each [C1] [R1] at least one [C2]

```
<Constraint xsi:type="Mandatory"> <Constraint xsi:type="Mandatory">
<Text> -[Mandatory] Cada</Text>
<Description (Constraint)</pre>

<Constraint xsi:type="Mandatory"> <Constraint xsi:type="Mandatory">
<Text> -[Mandatory] Each</Text>
<Description (Constraint)</pre>

Constraint xsi:type="Mandatory">
<Text> -[Mandatory] Each
Constraint

Constraint xsi:type="Mandatory">
<Text> -[Mandatory] Each
Constraint

Constraint xsi:type="Mandatory">

</pr
```

Simple existential quantification ('mandatory constraint') template Each [C1] [R1] at least one [C2]

Simple existential quantification ('mandatory constraint') template Each [C1] [R1] at least one [C2]

```
<Constraint xsi:type="Mandatory"> <Constraint xsi:type="Mandatory">
<Text> -[Mandatory] Cada</Text>
<Description of the constraint xsi:type="Mandatory">
<Description of the constraint xsi:type="Mandatory">
<Text> -[Mandatory] Cada</Text>
<Description of the constraint xsi:type="Mandatory">
<Description of the constraint xsi:type="Mandatory">
<Description of the constraint xsi:type="Mandatory">
<Text> -[Mandatory] Cada</Text>
<Description of the constraint xsi:type="Mandatory">
<Description of the constraint
```

Simple existential quantification ('mandatory constraint') template Each [C1] [R1] at least one [C2]

Mixing grammar with templates

- Idea: store the words in their base form with POS tag, specify in the 'template' what needs to be done with it, use a realisation engine to finalise the sentence
- Same stems or words and core structure of the grammar-infused template, generate different sentences based on grammatical features declared
 - yes/no pronomial, present/past tense, gender

Somewhat fancier templates

```
((template clause)
  (act 'eat')
  (agent ((template noun-phrase)
     (np-type PROPER)
     (head 'John')
     (gender MASCULINE)
     (pronominal NO)))
  (object ((template noun-phrase)
     (head 'apple')
     (pronominal YES))))
```

John eats it

```
((template clause)
  (act 'eat')
  (agent ((template noun-phrase)
     (np-type PROPER)
     (head 'John')
     (gender FEMININE)
     (pronominal YES)))
  (object ((template noun-phrase)
     (head 'apple')
     (pronominal NO))))
```

She eats an apple

NL Grammars, illustration (1/2)

 $\begin{array}{rccc} Sentence & \longrightarrow & NounPhrase \mid VerbPhrase \\ NounPhrase & \longrightarrow & Adjective \mid NounPhrase \\ NounPhrase & \longrightarrow & Noun \end{array}$

$$egin{array}{c} {\sf Noun} & \longrightarrow & {\sf car} \mid {\sf train} \ {\sf Adjective} & \longrightarrow & {\sf big} \mid {\sf broken} \end{array}$$

. . .

. . .

+ rules for verb tenses, pluralisation etc.

SimpleNLG tool [Gatt and Reiter(2009)] (2/2)

with grammars for EN, FR, ES, PT, NL, DE, and Galician

```
<Document>
 <child xsi:type="SPhraseSpec">
    <subj xsi:type="VPPhraseSpec" FORM="PRESENT PARTICIPLE">
      <head cat="VERB">
        <base>refactor</base>
      </head>
    </subi>
    <vp xsi:type="VPPhraseSpec" TENSE="PRESENT" >
      <head cat="VERB">
        <base>be</base>
      </head>
      <compl xsi:type="VPPhraseSpec" FORM="PAST PARTICIPLE">
        <head cat="VERB">
          <base>need</base>
        </head>
      </compl>
    </vp>
 </child>
</Document>
```

Generates: "Refactoring is needed"

https://github.com/simplenlg/simplenlg

NLG, principal approaches to generate the text

- Canned text, with complete sentences (CNLs only)
- Canned segments to make a sentence (CNL mostly, not NLG)
- Templates (different types)
 - Mainly for English but also other languages
 - Hand-crafted ('old' approach) or ML/neural-based ('new')
- Grammar engines
 - e.g., such as [Kuhn(2013)], Grammatical Framework (http://www.grammaticalframework.org/), SimpleNLG [Gatt and Reiter(2009)]
- Different ways to mix 'simple' static templates with grammar rules [Mahlaza and Keet(2020)]

The 'NLG pipeline'

 What structured data/info/ knowledge do you want to put into NL sentences?
 In what order should it be presented? 3. Which messages to put together into a sentence?

4. Which words and phrases will it use for each domain concept and relation?5. Which words or phrases to select to identify domain entities? 6. Use grammar rules to produce syntac-tically, morphological-ly, and orthographical-ly correct (and is also meaningful)

(based on [Reiter and Dale(1997)])

Outline

Motivation

- Context
- Notes on NCB languages

Rule-based NLG

- CNL and NLG in a nutshell
- Generating basic sentences in isiZulu
- Extending basic sentences

3 Discussion

Summary

• Can we use any of the simple template-based approaches for agglutinating Niger-Congo B languages?

- Can we use any of the simple template-based approaches for agglutinating Niger-Congo B languages?
 - It depends... but mostly: no

- Can we use any of the simple template-based approaches for agglutinating Niger-Congo B languages?
 - It depends... but mostly: no
- Tasks:
 - For structured input: use a practically useful language with tool support already (Semantic Web technologies)
 - Start with basics for a grammar engine (develop the new algorithms)
 - Pick an appealing sample domain (e.g., health)
 - Do it in a way so as to benefit both ICT and linguists

- Can we use any of the simple template-based approaches for agglutinating Niger-Congo B languages?
 - It depends... but mostly: no

Tasks:

- For structured input: use a practically useful language with tool support already (Semantic Web technologies)
- Start with basics for a grammar engine (develop the new algorithms)
- Pick an appealing sample domain (e.g., health)
- Do it in a way so as to benefit both ICT and linguists
- First language to experiment with: isiZulu [Keet and Khumalo(2014b), Keet and Khumalo(2014a), Keet and Khumalo(2017a)]

Ontology verbalisation

1. What structured data/info/ knowledge do you want to put into NL sentences? 2. In what order should it be presented?

The NLG 'pipeline' Ontology verbalisation

I. The (OWL) ontology 2. Your choice (e.g., first all classes and class expressions in the TBox, then the object properties, etc.) 3. Which messages to put together into a sentence?

4. Which words and phrases will it use for each domain concept and relation?5. Which words or phrases to select to identify domain entities? 6. Use grammar rules to produce syntac-tically, morphological-ly, and orthographical-ly correct (and is also meaningful)

3. Aim: sentence for each axiom

 Use vocabulary of the ontology; Select term for each constructor in the language (Each/All, and, some/at least one)
 Combine related small axiom, or to relate the

sentences generated for a large axiom

6. Language-specific issues (e.g., singular/plural of the class in agreement with conjugation of the verb, 'a' and 'an' vs 'a(n)', etc.)

1

ALC syntax (a popular description logic)

- Concepts denoting entity types/classes/unary predicates/universals, including top ⊤ and bottom ⊥;
- Roles denoting relationships/associations/n-ary predicates/properties;
- Constructors: and $\sqcap,$ or $\sqcup,$ and not $\neg;$ quantifiers 'for all' \forall and 'there exists' \exists
- Complex concepts using constructors: Let C and D be concept names, R a role name, then
 - $\neg C$, $C \sqcap D$, and $C \sqcup D$ are concepts, and
 - $\forall R.C$ and $\exists R.C$ are concepts
- Individuals
- e.g., Lion ⊑ ∃eats.Herbivore □ ∀eats.Herbivore

${\cal ALC}$ semantics

• domain of interpretation, and an interpretation, where:

- Domain Δ is a non-empty set of objects
- Interpretation: $\cdot^{\mathcal{I}}$ is the interpretation function, domain $\Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - ${}^{\mathcal{I}}$ maps every role name R to a subset $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every individual name *a* to elements of $\Delta^{\mathcal{I}}$: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

• Note:
$$\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$$
 and $\perp^{\mathcal{I}} = \emptyset$

•
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.R^{\mathcal{I}}(x,y) \to C^{\mathcal{I}}(y)\}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y.R^{\mathcal{I}}(x,y) \land C^{\mathcal{I}}(y)\}$

Universal Quantification

- Consider here only the universal quantification at the start of the concept inclusion axiom ('nominal head')
- 'all'/'each' uses -onke, prefixed with the oral prefix of the noun class of that first noun (OWL class/DL concept) on lhs of ⊑

```
(U1) Boy ⊑ ...
wonke umfana ...
bonke abafana ...
('each boy...'; u- + -onke)
('all boys...'; ba- + -onke)
(U2) Phone ⊑ ...
lonke ifoni ...
onke amafoni ...
('all phones...'; a- + -onke)
```

NC	QC (all)	NEG SC	PRON	RC	QCdwa	EC	
	$QC_{oral+onke}$	QC_{nke}					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	so-	asi-	sona	esi-	SO-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i-onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	o-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	$\text{ku-onke} \rightarrow \text{konke}$	zo-	aku-	khona	oku-	zo-	ku-

NC		QC (all)		NEG SC	PRON	RC	QCdwa	EC
	QC _{oral}	-onke	QC_{nke}					
1	u-onke –	wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
1a	u-onke –	· wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
3a	u-onke –	wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
3	u-onke –	• wonke	wo-	awu-	wona	0-	wo-	mu-
4	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li-onke –	· lonke	lo-	ali-	lona	eli-	lo-	li-
6	a-onke —	onke	0-	awa-	wona	a-	wo-	ma-
7	si-onke –	> sonke	SO-	asi-	sona	esi-	SO-	si-
8	zi-onke –	> zonke	zo-	azi-	zona	ezi	zo-	zi-
9a	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke —	onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi-onke –	> zonke	zo-	azi-	zona	ezi-	zo-	zi-
11	lu-onke -	→ lonke	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi-onke –	> zonke	zo-	azi-	zona	ezi-	zo-	zi-
14	ba-onke	\rightarrow bonke	bo-	abu-	bona	obu-	bo-	bu-
15	ku-onke	\rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

Subsumption (axiom pattern $A \sqsubseteq B$)

- Two different ways of carving up the nouns to determine which rules apply: semantic and syntactic
- Need to choose between
 - singular and plural
 - with or without the universal quantification voiced
 - generic or determinate
 - (S1) MedicinalHerb ☐ Plant ikhambi ngumuthi amakhambi yimithi wonke amakhambi ngumuthi
 - (S2) (generic)
 - (S3) (determinate)

('medicinal herb is a plant')

('medicinal herbs are plants')

('all medicinal herbs are a plant')

Possible subsumption patterns

- a. N_1 <copulative ng/y depending on first letter of $N_2 > N_2$.
- b. <plural of N_1 > <copulative ng/y depending on first letter of plural of N_2 ><plural of N_2 >.
- c. <All-concord for NC_x>onke <plural of N_1 , being of NC_x> <copulative ng/y depending on first letter of $N_2 > N_2$.

Existential Quantification (axiom pattern $A \sqsubseteq \exists R.B$)

(E1) Giraffe ⊑ ∃eats.Twig

yonke indlulamithi idla ihlamvana <u>elilodwa</u> zonke izindlulamithi zidla ihlamvana elilodwa ('each giraffe eats <u>at least one</u> twig') ('all giraffes eat <u>at least one</u> twig')

a. <All-concord for NC_x>onke <pl. N_1 , is in NC_x> <conjugated verb> < N_2 of NC_y> <RC for NC_y><QC for NC_y>dwa.

Walk-though of the algorithm

- $\forall x \; (\operatorname{Professor}(x) \to \exists y \; (\operatorname{teaches}(x, y) \land \operatorname{Course}(y)))$
- Professor $\sqsubseteq \exists$ teaches.Course
- Each Professor teaches at least one Course

Walk-though of the algorithm

- $\forall x (uSolwazi(x) \rightarrow \exists y (-fundisa(x, y) \land lsifundo(y)))$
- uSolwazi ⊑ ∃ -fundisa.lsifundo
- ?

 $\forall x \text{ (uSolwazi}(x) \rightarrow \exists y \text{ (-fundisa}(x, y) \land \text{ lsifundo}(y))) \\ \text{uSolwazi} \sqsubseteq \exists \text{ -fundisa.lsifundo}$

$\forall x (uSolwazi(x) - $	NC	AU	PRE	ľx.	NC		<u>.</u>	
	1	u-	m(u)-	Ē.	NC	QC (all)		
uSolwazi ⊑ ∃ -fund	2	a-	ba-			$QC_{oral+onke}$	<u>'</u>	
S	1a	u-	-	İ. –	1	u -onke \rightarrow wonke	.	
look-up NC	$_{2a}$	0-	-		2	$ba-onke \rightarrow bonke$		
pluralise ———	3a	u-	-	ţ.	1a	u -onke \rightarrow wonke	ŀ	
	(2a)	0-	-		2a	ba-onke → bonke		
for-all ———	3	u-	m(u)-	ţ.	3a	u -onke \rightarrow wonke	ŀ	
	4	i-	mi-		(2a)	$\text{ba-onke} \rightarrow \text{bonke}$		
	5	i-	(li)-		3	u -onke \rightarrow wonke	ŀ	
	6	a-	ma-		4	i -onke \rightarrow yonke	:	
	7	i-	si-	Ī.	5	$li-onke \rightarrow lonke$		
	8	i-	zi-		6	a -onke \rightarrow onke	(
	9a	i-	-	F.	7	$si-onke \rightarrow sonke$	1	
	(6)	a-	ma-		8	zi -onke $\rightarrow zonke$:	
	9	i(n)-	-	F.	9a	i -onke \rightarrow yonke	:	
	10	i-	zi(n)-	ŀ	(6)	a -onke \rightarrow onke	(
	11	u-	(lu)-	ŀ	9	i -onke \rightarrow yonke	:	
	(10)	i-	zi(n)-	ŀ	10	zi -onke $\rightarrow zonke$:	
	14	u-	bu-	ŀ	11	$lu-onke \rightarrow lonke$		
	15	u-	ku-	ŀ	(10)	zi -onke $\rightarrow zonke$:	
\checkmark	17		ku-		14	$ba-onke \rightarrow bonke$		
Bonke oSolwa	azi				15	$\text{ku-onke} \rightarrow \text{konke}$:	
							≅⊁ ≅	500

 $\forall x \text{ (uSolwazi}(x) \rightarrow \exists y \text{ (-fundisa}(x, y) \land \text{ lsifundo}(y)))$ $uSolwazi \sqsubseteq \exists \text{ -fundisa}(\texttt{lsifundo})$

3

Bonke oSolwazi bafundisa Isifundo esisodwa

э

English cf. isiZulu for the "all-some" pattern

Axiom type 'all-some' ontology pattern (mandatory constraint) $\forall x (X(x) \rightarrow \exists y (R(x, y) \land Y(y)))$ $X \sqsubseteq \exists R. Y$

English All [noun x pl.] [verb 3rd pers. pl.] at least one [noun y] All professors teach at least one course All professors write at least one book All carnivores eat at least one animal All elephants eat at least one apple

IsiZulu [QCall_{nc_{x,pl}] [noun x_{nc_x} pl.] [SC_{nc_{x,pl}-verb] [noun y_{nc_y}] RC_{nc_y}-QC_{nc_y}-dwa Bonke oSolwazi bafundisa isifundo esisodwa Bonke oSolwazi babhala incwadi eyodwa Onke amakhanivo adla isilwane esisodwa Zonke izindlovu zidla i-apula elilodwa}}

Evaluation

- Typical way of evaluating: ask linguists and/or intended target group
- Survey, asked linguists and non-linguists for their preferences
- 10 questions pitting the patterns against each other
- Online, with isiZulu-localised version of Limesurvey

Evaluation – interesting results

- Linguist agreed more among each other than the 'non-linguists'
- More agreement for the shorter sentences
- Open questions on 'deep Zulu' vs 'township Zulu', level of education in isiZulu, dialects
 - Sociolinguistics is not our task to investigate, but it may affect human evaluation results w.r.t. quality, grammaticality, naturalness

Proof-of-concept implementation (1/3)

 \rightarrow imported into \rightarrow loaded into (opened in)

—⊳ generates

[Keet et al.(2017)]

—> calls

Proof-of-concept implementation (2/3)

Algorithm 3 (AllSome) Verbalisation of "all-some" axiom type ($C \sqsubseteq \exists R.D$)

```
Require: \mathcal{C} set of classes, language \mathcal{L} with \Box for subsumption and \exists for existential quantifi-
     cation: variables: A axiom. NC_i noun class, c_1, c_2 \in C, o \in \mathcal{R}, a_1 a term; r_2, q_2 concords;
     functions: qetFirstClass(A), qetSecondClass(A), qetNC(C), qetRC(NC_i), qetQC(NC_i),
     aetVSofOP(o).
Require: axiom A with a \Box has been retrieved and an \exists on the rhs of the inclusion
  1: c_1 \leftarrow getFirstClass(A)
                                                                                                       {get subclass}
 2: c_2 \leftarrow qetSecondClass(A)
                                                                                                     {get superclass}
 3: o \leftarrow aetObiProp(A)
                                                                                                 { get object property
 4: v \leftarrow aetVSofOP(o)
                                                                                     {aet verb stem of object property
 5: NC_1 \leftarrow qetNC(c_1)
                                                              {determine noun class by augment and prefix or dictionary}
 6: NC_2 \leftarrow qetNC(c_2)
                                                              {determine noun class by augment and prefix or dictionary}
 7: NC'_1 \leftarrow lookup plural nounclass of NC_1
                                                                                                     from known list
 8: c'_1 \leftarrow \text{pluralise}(c_1, NC'_1)
                                                                     {call algorithm pluralise to generate a plural from o}
 9: a_1 \leftarrow lookup quantitative concord for NC'_1
                                                                                {from quantitative concord (QC(all)) list}
10: r_2 \leftarrow getRC(NC_2)
                                                                        {get relative concord for c2 from the QCdwa-list}
11: a_2 \leftarrow aetOC(NC_2)
                                                                    {get quantitative concord for c2 from the QCdwa-list}
12: if checkNegation(A) == true then
```

```
13: {use negation (Algorithm 4)}
```

14: else

```
15: if o annotated with present tense then
```

```
16: conj_{nc1} \leftarrow \text{lookup SC of } NC'_1

17: o' \leftarrow conj_{nc1}v
```

```
18: RESULT \leftarrow a_1 c'_1 o' a c_2 r_2 q_2 dwa.'
```

19: else

```
20: RESULT ← 'passive voice and inverses are not supported yet.'
```

```
21: end if
```

```
22: end if
```

```
23: return RESULT
```

{from known SC list} {generate conjugated verb} {verbalise the axiom}

Proof-of-concept implementation (2/3)

484	#simple existential quantification
485	<pre># modified cf zulurules to handle also vowel-commencing vroots</pre>
486	<pre>def exists_zu(sub,op,super):</pre>
487	<pre>nc1m = find_nc(sub)</pre>
488	<pre>nc2m = find_nc(super)</pre>
489	<pre>pl = plural_zu(sub,nc1m)</pre>
490	<pre>nc2 = strip_m(nc2m)</pre>
491	<pre>ncp = look_ncp(nc1m)</pre>
492	<pre>qca = look_qca(ncp)</pre>
493	<pre>rc = look_relc(nc2)</pre>
494	<pre>qc = look_qce(nc2)</pre>
495	<pre>rt = find_rt(op)</pre>
496	if rt[0] in 'aeiou':
497	<pre>conjugrt = sc_vowel_vroot(rt,ncp)</pre>
498	else:
499	<pre>sc = look_sc(ncp)</pre>
500	conjugrt = sc + rt
501	return qca + ' ' + pl + ' ' + conjugrt + 'a' + ' ' + super + ' ' + rc + qc + 'dwa'

https://github.com/mkeet/GENIprojeE4//6

Proof-of-concept implementation (2/3)

450	<subclassof></subclassof>
451	<class iri="#indlovu"></class>
452	<class iri="#isilwane"></class>
453	
454	<subclassof></subclassof>
455	<class iri="#indlovu"></class>
456	<objectsomevaluesfrom></objectsomevaluesfrom>
457	<objectproperty iri="#dla"></objectproperty>
458	<class iri="#ihlamvana"></class>
459	
460	

https://github.com/mkeet/GENIproject/

Sentences outputted as pretty printing or plaintext (3/3)

52 / 76

Toward a proper and modular surface realiser

- MoReNL project: http://www.meteck.org/moreNL/
- Architecture design [Mahlaza and Keet(2022)] and development
- Proof-of-concept realiser for isiZulu and isiXosa: https://github.com/AdeebNqo/NguniTextGeneration (Zola Mahlaza)
- Model for template languages [Mahlaza and Keet(2021)]
- GUI for template creation

An ontology for template languages?

An ontology for template language: ToCT

[Mahlaza and Keet(2021)]

Outline

Motivation

- Context
- Notes on NCB languages

Rule-based NLG

- CNL and NLG in a nutshell
- Generating basic sentences in isiZulu
- Extending basic sentences

B) Discussion

Summary

Figuring out the present tense [Keet and Khumalo(2017b)]

57 / 76

Figuring out the present tense [Keet and Khumalo(2017b)]

- Verb, and start of the grammar: v → pre vr post a wh | npre vr post i wh | ppre vr e | vr st a | excl s cont o vr post a
- Prefix (subject and object concord, tense, mode, and aspect):

- Negative prefix (negation; e.g. 'does not' eat): npre → ns | ns m | ns t m | ns asp m | ns o | ns m o | ns t m o | ns asp m o
- List of subject concords and negative subject concords (terminals for conjugation):

```
s \rightarrow ngi | u | si | ni | ba | i | li | a | zi |

lu | bu | ku | \varepsilon

ns \rightarrow angi | awu | aka | ali | asi | avi |
```

```
alu abu aku ani aba awa azi \varepsilon
```

6. List of mod:

```
m \to \texttt{a} \mid \texttt{e} \mid \texttt{ka} \mid \texttt{ma} \mid \texttt{nga} \mid \varepsilon
```

7. List of tense (present (ε) and continuous (ya)tense; incomplete):

```
t \rightarrow ya \mid \varepsilon
```

List of aspect (additional rules omitted in this first iteration):

```
asp \rightarrow sa \mid se \mid be \mid ile \mid \varepsilon
```

9. List of object concords:

```
o \rightarrow ngi | si | ku | ni | m | ba | wu | yi |
li | wa | zi | lu | bu | \varepsilon
```

10. Causative:

 $c \rightarrow \text{is}$

- 11. Applicative: $a \rightarrow el$
- 12. Reciprocative:

```
r \rightarrow {
m an}
```

 Passive (with phonological conditioning options):

```
p \to \texttt{iw} \mid \texttt{w}
```

- Politeness (own prefix system and a FV=e): ppre → pl s pl → aw | awu | ε | ma
- Stative (insertion of the -*ek* between the VR and the FV): st→ ek
- 16. Wh-questions (in the post-final slot and are added at the end of the verb, being -ni 'what'/'who'/ 'why'/'how', -nini 'when', and -phi 'where');

 $wh \rightarrow ni \mid nini \mid phi \mid \epsilon$

- 17. 'Double aspect'/exclusive (with $excl \subset asp$) $excl \rightarrow se$
- 18. Continuous tense (with $cont \subset t$): $cont \rightarrow ya$
- 19. Lexicon of verb roots: $vr \rightarrow ab \mid \ldots \mid zwib$

Extensions: part-whole relations

- Part-whole relations are used widely in medical and healthcare ontologies
- Many different types (23 in OpenGalen)
- Would that be convenient 1:1 translations?

Extensions: part-whole relations

- Part-whole relations are used widely in medical and healthcare ontologies
- Many different types (23 in OpenGalen)
- Would that be convenient 1:1 translations?
 - No. both less and more specific ones: ontological differences
 - Other complications with verbs and prepositions
 - Details in: [Keet and Khumalo(2016)] [Keet(2017)] [Keet and Khumalo(2018)] [Keet and Khumalo(2020)]

Part-whole relations: main differences [Keet and Khumalo(2020)]

Part-whole relations: main differences [Keet and Khumalo(2020)]

Part-whole relations: main differences [Keet and Khumalo(2020)]

Extensions: part-whole relations

- 'part' *ingxenye* + 'of' <PC for NC of *ingxenye* that's then phonologically conditioned with noun of the whole>
 - e.g.: 'part of a human' ingxenye ya- + umuntu ingxenye yomuntu

Extensions: part-whole relations

- 'part' *ingxenye* + 'of' <PC for NC of *ingxenye* that's then phonologically conditioned with noun of the whole>
 - e.g.: 'part of a human' *ingxenye ya-* + umuntu *ingxenye yomuntu*
- 'contained in': locative affixes on the object that plays the container role
 - Each bolus of food is contained in some stomach
 - 'bolus of food' indilinga yokudla (nc9)
 - 'stomach' isisu (nc7)
 - 'is contained in' : SC-EP-LOC-Whole-LOCSUF
 - zi-s-e-sis-wini (phonological conditioning: e+i=e and u+ini=wini)
 - Zonke izindilinga zokudla zisesiswini esisodwa

Outline

Motivation

- Context
- Notes on NCB languages
- 2 Rule-based NLG
 - CNL and NLG in a nutshell
 - Generating basic sentences in isiZulu
 - Extending basic sentences

3 Discussion

Further extensions and updates

- Adding (more) data-to-text to the knowledge-to-text
- Numbers, attributes (\sim adjectives), etc. etc.; e.g.:
 - engama-25 ([RC][COP][N prefix]-number)
 - Uqede imisebenzi eziyishumi 'You completed ten exercises', but amaphilisi ayishumi 'ten pills' [Keet(2021)]
 - izinkulungwane eziyisishiyagalombili namakhulu ayisishiyagalombili namashumi amane nane (numbers in speech cf. written)
- Option: application-driven prioritization for what to look into
- Rules-based approach is a slow process
- Limited documentation of language's grammar, often outdated, incomplete, or incorrect

Initial results for other languages

- Multilingual pluraliser [Byamugisha et al.(2018)]
- Bootstrapping NLG for Runyankore [Byamugisha et al.(2016)]: it's faster; (also shown by [Bosch et al.(2008)] for morphological analysers)

Initial results for other languages

- Multilingual pluraliser [Byamugisha et al.(2018)]
- Bootstrapping NLG for Runyankore [Byamugisha et al.(2016)]: it's faster; (also shown by [Bosch et al.(2008)] for morphological analysers)
- Bootstrappability strategies?
 - Trying to understand morphological and verb similarities as proxies [Keet(2016), Mahlaza and Keet(2019)]
 - Guthrie zones (not a good predictor) [Byamugisha(2019)]

What about ML and such for NLG?

• Feasibility of using machine learning or deep learning for templates:

- Lack of good and relevant data (e.g., bible and Ubuntu software manual are out-of-domain for healthcare messages, old texts, OCR errors and typos)
- Need comparatively more data (recall agglutination and type-to-token ratio)
- Needs good NLU algorithms
- Computing the language models is computationally expensive
- The systems "hallucinate" and have spurious repetitions, in English at least
- Jan Buys at UCT commenced with that approach
- Other efforts: mashakane (corpus & MT) and Qfrency (TTS)

Outline

Motivation

- Context
- Notes on NCB languages
- 2 Rule-based NLG
 - CNL and NLG in a nutshell
 - Generating basic sentences in isiZulu
 - Extending basic sentences
- 3 Discussion

Summary

- Computational view on NCB languages wrt CNLs and NLG
- Resulted in novelties both in computing and in linguistics
- Toward a tailor-made grammar engine for surface realisation, with customisable templates
- NLG algorithms generic and modularised in the sense that they can be reused in other tools
- Low resource languages a challenge for both rule-based and data-driven approaches, but in different ways; take your pick

Collaborators and Funding

- Main linguist: Langa Khumalo (SADiLaR)
- Current/former students wrt NLG and ontologies: Mary-Jane Antia, Joan Byamugisha, Catherine Chavula, Takunda Chirema, Leighton Dawson, Francis Gillis-Webber, Zola Mahlaza, Sindiso Mkhatshwa, Junior Moraba, Gerald Ngumbulu, Toky Raboanary, Musa Xakaza, Steve Wang
- Main NRF grants: GeNI & MoRENL projects http://www.meteck.org/files/geni/ http://www.meteck.org/MoReNL/

References I

Sonja Bosch, Laurette Pretorius, and Axel Fleisch.

Experimental bootstrapping of morphological analysers for nguni languages. Nordic Journal of African Studies, 17(2):66–88, 2008.

J. Byamugisha, C.M. Keet, and B. DeRenzi.

Bootstrapping a runyankore cnl from an isizulu cnl.

In B. Davis et al., editors, 5th Workshop on Controlled Natural Language (CNL'16), volume 9767 of LNAI, pages 25–36. Springer, 2016. 25-27 July 2016, Aberdeen, UK.

J. Byamugisha, C. M. Keet, and B. DeRenzi.

Pluralizing nouns across agglutinating Bantu languages.

In 27th International Conference on Computational Linguistics (COLING'18), pages 2633–2643. ACL, 2018. 20-26 August, 2018, Santa Fe, New Mexico, USA.

Joan Byamugisha.

Ontology Verbalization in Agglutinating Bantu Languages: A Study of Runyankore and Its Generalizability. Phd thesis, Department of Computer Science, November 2019 2019.

A. Gatt and E. Reiter.

Simplenlg: A realisation engine for practical applications.

In E. Krahmer and M. Theune, editors, Proceedings of the 12th European Workshop on Natural Language Generation (ENLG'09), pages 90–93. ACL, 2009. March 30-31, 2009, Athens, Greece.

Summary

References II

F. Gillis-Webber, S. Tittel, and C. M. Keet.

A model for language annotations on the web.

In 1st Iberoamerican conference on Knowledge Graphs and Semantic Web (KGSWC'19), volume 1029 of CCIS, pages 1-16. Springer, 2019. 24-28 June 2019, Villa Clara, Cuba.

Mustafa Jarrar. C. Maria Keet. and Paolo Dongilli.

Mustata Jarrar, C. Maria Keet, and Paolo Dongiiii.

Multilingual verbalization of ORM conceptual models and axiomatized ontologies. Starlab technical report, Vrije Universiteit Brussel, Belgium, February 2006. URL http://www.meteck.org/files/ORMmultiverb_JKD.pdf.

C. M. Keet.

An assessment of orthographic similarity measures for several african languages. Technical Report Arxiv.org 1608.03065, University of Cape Town, August 2016. URL http://arxiv.org/abs/1608.03065.

C. M. Keet.

Representing and aligning similar relations: parts and wholes in isizulu vs english.

In J. Gracia, F. Bond, J. McCrae, P. Buitelaar, C. Chiarcos, and S. Hellmann, editors, *Language, Data, and Knowledge 2017 (LDK'17)*, volume 10318 of *LNAI*, pages 58–73. Springer, 2017. 19-20 June, 2017, Galway, Ireland.

C. M. Keet and T. Chirema.

A model for verbalising relations with roles in multiple languages.

In E. Blomqvist, P. Ciancarini, F. Poggi, and F. Vitali, editors, Proceedings of the 20th International Conference on Knowledge Engineering and Knowledge Management (EKAW'16), volume 10024 of LNAI, pages 384–399. Springer, 2016.

19-23 November 2016, Bologna, Italy.

References III

C. M. Keet and L. Khumalo.

Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 51(1):131–157, 2017a. doi: 10.1007/s10579-016-9340-0.

C. M. Keet and L. Khumalo.

Grammar rules for the isizulu complex verb. Southern African Journal of Language and Linguistics, 35(2):183–200, 2017b.

C. M. Keet and L. Khumalo.

On the ontology of part-whole relations in Zulu language and culture.

In S. Borgo and P. Hitzler, editors, 10th International Conference on Formal Ontology in Information Systems 2018 (FOIS'18), volume 306 of FAIA, pages 225–238. IOS Press, 2018. 17-21 September, 2018, Cape Town, South Africa.

C. Maria Keet.

Natural language generation requirements for social robots in subsaharan africa.

In P. Cunningham and M. Cunningham, editors, *IST-Africa 2021*, page 8p. IIMC International Information Management Corporation, 2021. 9-11 May, online.

C. Maria Keet and Langa Khumalo.

Toward verbalizing logical theories in isiZulu.

In B. Davis, T. Kuhn, and K. Kaljurand, editors, Proceedings of the 4th Workshop on Controlled Natural Language (CNL'14), volume 8625 of LNAI, pages 78–89. Springer, 2014a. 20-22 August 2014, Galway, Ireland.

Summary

References IV

C. Maria Keet and Langa Khumalo.

Basics for a grammar engine to verbalize logical theories in isiZulu.

In A. Bikakis et al., editors, *Proceedings of the 8th International Web Rule Symposium (RuleML'14)*, volume 8620 of *LNCS*, pages 216–225. Springer, 2014b. August 18-20, 2014, Prague, Czech Republic.

C. Maria Keet and Langa Khumalo.

On the verbalization patterns of part-whole relations in isizulu. In 9th International Natural Language Generation conference (INLG'16), pages 174–183. ACL, 2016. 5-8 September, 2016. Edinburgh, UK.

C. Maria Keet and Langa Khumalo.

Parthood and part-whole relations in zulu language and culture. *Applied Ontology*, 15(3):361–384, 2020.

C. Maria Keet, Musa Xakaza, and Langa Khumalo.

Verbalising owl ontologies in isizulu with python.

In Eva Blomqvist, Katja Hose, Heiko Paulheim, Agnieszka Lawrynowicz, Fabio Ciravegna, and Olaf Hartig, editors, *The Semantic Web: ESWC 2017 Satellite Events*, volume 10577 of *LNCS*, pages 59–64. Springer, 2017. 30 May - 1 June 2017, Portoroz, Slovenia.

Tobias Kuhn.

A principled approach to grammars for controlled natural languages and predictive editors. *Journal of Logic, Language and Information*, 22(1):33–70, 2013.

Z. Mahlaza and C. M. Keet.

A method for measuring verb similarity for two closely related languages with application to zulu and xhosa. South African Computer Journal, 31(2):34–56, 2019.

References V

Z. Mahlaza and C. Maria Keet.

Formalisation and classification of grammar and template-mediated techniques to model and ontology verbalisation. *Int. J. Metadata, Semantics and Ontologies*, 14(3):249–262, 2020.

Z. Mahlaza and C. Maria Keet.

Surface realisation architecture for low-resourced african languages. *Submitted to an international Journal*, page xx, 2022.

Z. Mahlaza and C.M. Keet.

Toct: A task ontology to manage complex templates. In Emilio M. Sanfilippo et al., editors, FOIS 2021 Ontology Showcase, The Joint Ontology Workshops (JOWO'21), volume 2969 of CEUR-WS, 2021.

E. Reiter and R. Dale.

Building applied natural language generation systems. *Natural Language Engineering*, 3:57–87, 1997.

K. Winkler, T. Kuhn, and M Volk.

Evaluating the fully automatic multi-language translation of the swiss avalanche bulletin.

In B. Davis, T. Kuhn, and K. Kaljurand, editors, Proceedings of the 4th Workshop on Controlled Natural Language (CNL'14), volume 8625 of LNAI, pages 44–54. Springer, 2014. 20-22 August 2014, Galway, Ireland.

Thank you!

Questions?

My award-winning textbook https://people.cs.uct.ac.za/~mkeet/OEbook/

A memoir

イロト 不得 トイヨト イヨト

74 / 76

э

Some practical 'loose ends'

• Where to best store the NC info needed for ontology verbalisation?

- Ontolex-Lemon is good for declarative information, not for rules
- Annotation model [Keet and Chirema(2016)]
- And this for more NCB languages: WikiWorkshop 2022 abstract with a list of requirements¹
- What if your language doesn't have an ISO language tag?
 - Create your own!
 - e.g., with MoLA [Gillis-Webber et al.(2019)]
- Multilingual ontologies vs multiple monolingual ontologies, management thereof
- (There are more engineering questions to make it work)

https://wikiworkshop.org/2022/papers/WikiWorkshop2022_paper_31.pdf