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Motivation

IsiZulu and isiXhosa, among others, have limited ICTs support

Most widely spoken languages in South Africa by first
language speakers.

23% or about 11 million people (isiZulu), 8 million (isiXhosa)

Very limited available spellcheckers for use:

Outdated/software not working anymore (Open office plugin)
Online one with too many clicks, popups, and ads1

1https://www.spellchecker.net/africa_zulu_spell_checker.html
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General aims

Investigate development of spellchecker for isiZulu

Find an approach that can be used across (agglutinating)
Bantu languages
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What will work best?

Dictionary approach won’t work due to (theoretically)
agglutination and (practically) limited dictionaries

Data-driven statistical model or grammar-based
(morphological analyser-based) approach?

Try that for both isiZulu and isiXhosa

Rules for the POS categories coded perform better overall
(isiXhosa), but data-driven approach faster and more reusable
across languages (isiZulu, isiXhosa), despite being
underresourced
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First iteration [Ndaba et al.(2016)]

Use corpus for data

Driven by extracted n-gram statistics

Trigrams and quadrigrams; e.g.

ngimbona
ngi, gim, imb, ...
ngim, gimb, ...

Compute frequencies, determine threshold

Trigram/quadrigram below threshold: flag words as
incorrectly spelled
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Basic approach for testing

10-fold cross-validation for training and testing data set

3 corpora to test effect of corpus on accuracy

Ukwabelana [Spiegler et al.(2010)]; 288 106 words, 87033
unique
Section of the isiZulu National Corpus [Khumalo(2015)]; 538
732 words, 33020 unique
IsiZulu news items (collected by MK); 21250 words, 9587
unique

Different thresholds

46 know-to-be-incorrect words added

Use accuracy as measure, with confusion matrix (TP, TN, FP,
FN)
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Example

Corpus trained with:

ngimbona kusasa: ngi, gim, imb, ...
uvelaphi: uve, vel, ela, ...

Spellchecker given following words:

ngivela → accepted, as ngi, vel, and ela are trigrams obtained
from the training dataset
Ngivla → rejected, as there is no ivl and no vla

14 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Major outcomes

Accurate in detecting words that do not occur in the training
corpus
The most updated corpora are preferable

The spellchecker performed slightly better with trigrams than
with quadrigrams
89% accuracy (on par with older data
[Bosch and Eisele(2005), Prinsloo and de Schryver(2004)])

Tests with more data: 83% accuracy with noisy data, 85%
with cleaned data
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Try this with isiXhosa

Use code for isiZulu, but feed it isiXhosa texts to create a
language model for isiXhosa

Determine threshold

Determine accuracy
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Try this with isiXhosa: results

20K tokens corpus, mainly medical documents

Threshold: 0.002 (marginally better than 0.003)

Accuracy: about 79%

(current implemented version trained with much more text)
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Error correction for isiZulu

Statistical language model based approach as well

Insertions, deletions, transpositions, substitutions

Levenshtein distance + probability of alternate trigram

nii
ngi
distance: 1 (a substitution of i where there should be g)

Probabilities of successive trigrams

Measures:

Can it propose something (Cs)?
Is the intended word among the proposed words (Cv )?
(relevance)
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Results

It can propose something quite well for each type of typo
(< 90% accuracy)

The relevance varies a lot:

Substitutions 59%
Insertions 30%
Deletions 73%
Transpositions 89%

Why? We don’t know for sure yet
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Spelling correction for isiXhosa

Used the same code as for isiZulu

But with the isiXhosa language model

Implemented, but no idea on effectiveness yet
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isiZulu text, isiZulu model
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isiXhosa text, isiZulu model
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Error correction–transposition typo
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Discussion

Setting the threshold is difficult

Cleaned data or noisy data?
Trigrams on text proper or on non-punctuation-marks?
Cleaned trigrams or not?

Corpus size? Genre?

Timeliness of the text

Lowercase vs upper case (e.g., eGoli)

Sociolinguistics, if dialects have words written differently

Room for improvement on the corrector

How much do the isiZulu and isiXhosa language models differ?

34 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Discussion

Setting the threshold is difficult

Cleaned data or noisy data?
Trigrams on text proper or on non-punctuation-marks?
Cleaned trigrams or not?

Corpus size? Genre?

Timeliness of the text

Lowercase vs upper case (e.g., eGoli)

Sociolinguistics, if dialects have words written differently

Room for improvement on the corrector

How much do the isiZulu and isiXhosa language models differ?

35 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Discussion

Setting the threshold is difficult

Cleaned data or noisy data?
Trigrams on text proper or on non-punctuation-marks?
Cleaned trigrams or not?

Corpus size? Genre?

Timeliness of the text

Lowercase vs upper case (e.g., eGoli)

Sociolinguistics, if dialects have words written differently

Room for improvement on the corrector

How much do the isiZulu and isiXhosa language models differ?

36 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Discussion

Setting the threshold is difficult

Cleaned data or noisy data?
Trigrams on text proper or on non-punctuation-marks?
Cleaned trigrams or not?

Corpus size? Genre?

Timeliness of the text

Lowercase vs upper case (e.g., eGoli)

Sociolinguistics, if dialects have words written differently

Room for improvement on the corrector

How much do the isiZulu and isiXhosa language models differ?

37 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Discussion

Setting the threshold is difficult

Cleaned data or noisy data?
Trigrams on text proper or on non-punctuation-marks?
Cleaned trigrams or not?

Corpus size? Genre?

Timeliness of the text

Lowercase vs upper case (e.g., eGoli)

Sociolinguistics, if dialects have words written differently

Room for improvement on the corrector

How much do the isiZulu and isiXhosa language models differ?

38 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Discussion

Setting the threshold is difficult

Cleaned data or noisy data?
Trigrams on text proper or on non-punctuation-marks?
Cleaned trigrams or not?

Corpus size? Genre?

Timeliness of the text

Lowercase vs upper case (e.g., eGoli)

Sociolinguistics, if dialects have words written differently

Room for improvement on the corrector

How much do the isiZulu and isiXhosa language models differ?

39 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Outline

1 Motivation

2 Data-driven spellcheckers
Error detection for isiZulu
Error detection for isiXhosa
Error correction for isiZulu and isiXhosa
Demo

3 Discussion

4 Conclusions

40 / 43



Motivation Data-driven spellcheckers Discussion Conclusions

Conclusions

We now have the spellcheckers

Reasonable accuracy

Outstanding questions on generalisability and improvement of
accuracy

Would it enhance MT or introduce more noise?
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Thank you!

Questions?
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