Overview Nguni Natural Language Generation

C. Maria Keet¹

Department of Computer Science
University of Cape Town, South Africa
mkeet@cs.uct.ac.za

MeMaT workshop, 4-5 December 2017

¹Mostly joint work with Dr. Langa Khumalo, Linguistics program and Director of the University Language Planning and Development Office, University of KwaZulu-Natal
Outline

1 Motivation
 • A few application scenarios
 • NLG and knowledge management

2 isiZulu NLG

3 Part-whole relations and related aspects

4 Discussion

5 Conclusions
1 Motivation
 - A few application scenarios
 - NLG and knowledge management

2 isiZulu NLG

3 Part-whole relations and related aspects

4 Discussion

5 Conclusions
Natural language interfaces with some NLG

- Many tools, webpages, etc. with some natural language component
- Querying of information in natural language (cf. a query language SQL, SPARQL)
- Business rules typically specified in a natural language
- etc.
Example: iCal calendar entry with canned text
Example: Saadiq Moolla’s mobile healthcare app

Chest Pain

Have you had any recent pain in your chest? - Uke waba nobuhlungu esifubeni maduzane?

Does the pain radiate to your jaw, neck or arm? - Engabe ubuhlungu bakho bujikeleza emihlathini, emqaleni noma nasezingalweni?

Does anything precipitate or relieve the pain? - Ingabe ikhona into eyenza ubuhlungu buqhubekke noma eyehlisa ubuhlungu?

Dyspnoea

Are you breathless at any time? - Uke uphelelele umoya kwezinye izikhathi?
Example: Query formulation with Quelo
[Franconi et al. (2010)]

Pictures from: Quelo © The IESD Challenge 2012
Demo at: http://krdbapp.inf.unibz.it:8080/quelo/
Example: Business rules and conceptual data models

Each Course is taught by at least one Professor
Each Professor teaches at least one Course
NLG, principal approaches

- Canned text
- Templates
 - but also other languages [Jarrar et al.(2006)]
- Controlled Natural Language
- Grammar engines, such as [Kuhn(2013)], Grammatical Framework (http://www.grammaticalframework.org/)
Business rules/conceptual data models and logic reconstruction

BR: Each Course is taught by at least one Professor

FOL: $\forall x \ (\text{Course}(x) \rightarrow \exists y \ (\text{is_taught_by}(x, y) \land \text{Professor}(y)))$

DL: Course $\sqsubseteq \exists \ \text{is_taught_by}.\text{Professor}$
Example of templates

```xml
<Constraint xsi:type="Mandatory">
  <Text> - [Mandatory] Cada </Text>
  <Object index="0"/>
  <Text> debe </Text>
  <Role index="0"/>
  <Text> al menos un(a) </Text>
  <Object index="1"/>
</Constraint>

<Constraint xsi:type="Mandatory">
  <Text> - [Mandatory] Each </Text>
  <Object index="0"/>
  <Text> must </Text>
  <Role index="0"/>
  <Text> at least one </Text>
  <Object index="1"/>
</Constraint>
```

for a large fragment of ORM, and 11 languages [Jarrar et al.(2006)]
for a large fragment of ORM, and 11 languages [Jarrar et al.(2006)]
Example of templates

for a large fragment of ORM, and 11 languages [Jarrar et al.(2006)]
Example of templates

for a large fragment of ORM, and 11 languages [Jarrar et al.(2006)]
NL Grammars, illustration

Sentence \rightarrow NounPhrase $|$ VerbPhrase

NounPhrase \rightarrow Adjective $|$ NounPhrase

NounPhrase \rightarrow Noun

\[\ldots \]

Noun \rightarrow car $|$ train

Adjective \rightarrow big $|$ broken

\[\ldots \]

(and complexity of the grammar)
Outline

1 Motivation
 - A few application scenarios
 - NLG and knowledge management

2 isiZulu NLG

3 Part-whole relations and related aspects

4 Discussion

5 Conclusions
Questions

- Can the template-based approach be used also for isiZulu NLG? (2014)
Questions

- Can the template-based approach be used also for isiZulu NLG? (2014)
 - No.
Questions

- **Can the template-based approach be used also for isiZulu NLG? (2014)**
 - No.
 - Need ‘patterns’
 - Needed a noun pluraliser [Byamugisha et al.(2016)]
 - [Keet and Khumalo(2014b), Keet and Khumalo(2014a)]
Questions

- **Can the template-based approach be used also for isiZulu NLG? (2014)**
 - No.
 - Need ‘patterns’
 - Needed a noun pluraliser [Byamugisha et al.(2016)]
 - [Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

- **How to deal with the pervasive ‘part of’ in medical terminologies? (2015-2016)**
Questions

- **Can the template-based approach be used also for isiZulu NLG?** (2014)
 - No.
 - Need ‘patterns’
 - Needed a noun pluraliser [Byamugisha et al.(2016)]
 - [Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

- **How to deal with the pervasive ‘part of’ in medical terminologies?** (2015-2016)
 - Deep prepositions.
Questions

- Can the template-based approach be used also for isiZulu NLG? (2014)
 - No.
 - Need ‘patterns’
 - Needed a noun pluraliser [Byamugisha et al.(2016)]
 - [Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

- How to deal with the pervasive ‘part of’ in medical terminologies? (2015-2016)
 - Deep prepositions.
 - Several part-whole relations [Keet and Khumalo(2016)]
 - Non-1:1 mappings with isiZulu’s ‘part of’ [Keet(2017)]
 - Language model to represent those components [Keet and Chirema(2016)]
Questions

- Can the template-based approach be used also for isiZulu NLG? (2014)
 - No.
 - Need ‘patterns’
 - Needed a noun pluraliser [Byamugisha et al. (2016)]
 - [Keet and Khumalo (2014b), Keet and Khumalo (2014a)]

- How to deal with the pervasive ‘part of’ in medical terminologies? (2015-2016)
 - Deep prepositions.
 - Several part-whole relations [Keet and Khumalo (2016)]
 - Non-1:1 mappings with isiZulu’s ‘part of’ [Keet (2017)]
 - Language model to represent those components [Keet and Chirema (2016)]

- Figure out more aspects of the verb (2016-2017)
 - Verb grammar [Keet and Khumalo (2017)]
Questions

- **Can the template-based approach be used also for isiZulu NLG? (2014)**
 - No.
 - Need ‘patterns’
 - Needed a noun pluraliser [Byamugisha et al.(2016)]
 - [Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

- **How to deal with the pervasive ‘part of’ in medical terminologies? (2015-2016)**
 - Deep prepositions.
 - Several part-whole relations [Keet and Khumalo(2016)]
 - Non-1:1 mappings with isiZulu’s ‘part of’ [Keet(2017)]
 - Language model to represent those components [Keet and Chirema(2016)]

- **Figure out more aspects of the verb (2016-2017)**
 - Verb grammar [Keet and Khumalo(2017)]

- Grammar has been used to create and mark language learning exercises automatically
Logic foundation for isiZulu NLG

- Roughly OWL 2 EL
- OWL 2 EL is a W3C-standardised profile of OWL 2
- Tools, ontologies in OWL 2 (notably SNOMED CT)
Logic foundation for isiZulu NLG

- Roughly OWL 2 EL
- OWL 2 EL is a W3C-standardised profile of OWL 2
- Tools, ontologies in OWL 2 (notably SNOMED CT)
- On the ‘roughly’: minus transitivity, but with negation, amounting to \mathcal{ALC}
 - of that, we have patterns for universal and existential quantification, subsumption, negation (disjointness), and conjunction
 - union not yet covered explicitly, but note $C \sqcup D \equiv \neg(\neg C \cap \neg D)$
 - more detail on the languages: see the Description Logics Handbook [Baader et al.(2008)] and OWL 2 Standard
Existential Quantification

- Common axiom type $C \sqsubseteq \exists R.D$ (named classes only)
- Example:

(E1) Giraffe $\sqsubseteq \exists$eats.Twig
- yonke indlulamithi idla ihlamvana elilodwa ('each giraffe eats at least one twig')
- zonke izindlulamithi zidla ihlamvana elilodwa ('all giraffes eat at least one twig')
- yonke indlulamithi idla noma yiliphi ihlamvana ('each giraffe eats some twig')
- zonke izindlulamithi zidla noma yiliphi ihlamvana ('all giraffes eat some twig')
- yonke indlulamithi idla ihlamvanathize ('each giraffe eats some twig')
Possible patterns for existential quantification

a. \(<\text{All-concord for NC}_x>\text{onke }<\text{pl. } N_1, \text{ is in NC}_x>\text{ conjugated verb} <N_2 \text{ of NC}_y> <\text{RC for NC}_y><\text{QC for NC}_y>dwa.\)

b. \(<\text{All-concord for NC}_x>\text{onke }<\text{pl. } N_1, \text{ is in NC}_x>\text{ conjugated verb} noma <\text{copulative } ng/y \text{ adjusted to first letter of } N_2><\text{EP of NC}_y>\text{phi }<N_2>\).

c. \(<\text{All-concord for NC}_x>\text{onke }<N_1 \text{ in NC}_x> <\text{conjugated verb} <N_2>\text{thize};\)
Example

- \(\forall x \ (\text{Professor}(x) \rightarrow \exists y \ (\text{teaches}(x, y) \land \text{Course}(y))) \)
- Professor \(\sqsubseteq \exists \text{teaches}.\text{Course} \)
- Each Professor teaches at least one Course
Example

- $\forall x \ (\text{uSolwazi}(x) \rightarrow \exists y \ (\text{ufundisa}(x, y) \land \text{Isifundo}(y)))$
- $\text{uSolwazi} \sqsubseteq \exists \text{ufundisa}.\text{Isifundo}$
- ?
∀x (uSolwazi(x) → ∃y (ufundisa(x, y) ∧ Isifundo(y)))

uSolwazi ⊆ ∃ ufundisa.Isifundo
Motivation

isiZulu NLG

Part-whole relations and related aspects

Discussion

Conclusions

<table>
<thead>
<tr>
<th>NC</th>
<th>AU</th>
<th>PRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>u-</td>
<td>m(u)-ba-</td>
</tr>
<tr>
<td>1a</td>
<td>u-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>a-</td>
<td>-</td>
</tr>
<tr>
<td>2a</td>
<td>o-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>u-</td>
<td>m(u)-mi-</td>
</tr>
<tr>
<td>5</td>
<td>i-</td>
<td>(li)-</td>
</tr>
<tr>
<td>6</td>
<td>a-</td>
<td>ma-</td>
</tr>
<tr>
<td>7</td>
<td>i-</td>
<td>si-</td>
</tr>
<tr>
<td>8</td>
<td>i-</td>
<td>zi-</td>
</tr>
<tr>
<td>9a</td>
<td>i-</td>
<td>-</td>
</tr>
<tr>
<td>(6)</td>
<td>i-</td>
<td>ma-</td>
</tr>
<tr>
<td>9</td>
<td>i(n)-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>i-</td>
<td>zi(n)-</td>
</tr>
<tr>
<td>11</td>
<td>u-</td>
<td>(lu)-</td>
</tr>
<tr>
<td>(10)</td>
<td>i-</td>
<td>zi(n)-</td>
</tr>
<tr>
<td>14</td>
<td>u-</td>
<td>bu-</td>
</tr>
<tr>
<td>15</td>
<td>u-</td>
<td>ku-</td>
</tr>
<tr>
<td>17</td>
<td>ku-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x, (uSolwazi(x))</th>
<th>Isifundo(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC QCoral + onke</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>u-onke → wonke</td>
</tr>
<tr>
<td>2</td>
<td>ba-onke → bonke</td>
</tr>
<tr>
<td>1</td>
<td>u-onke → wonke</td>
</tr>
<tr>
<td>2a</td>
<td>ba-onke → bonke</td>
</tr>
<tr>
<td>3a</td>
<td>u-onke → wonke</td>
</tr>
<tr>
<td>(2a)</td>
<td>ba-onke → bonke</td>
</tr>
<tr>
<td>3</td>
<td>u-onke → wonke</td>
</tr>
<tr>
<td>4</td>
<td>i-onke → yonke</td>
</tr>
<tr>
<td>5</td>
<td>li-onke → lonke</td>
</tr>
<tr>
<td>6</td>
<td>a-onke → onke</td>
</tr>
<tr>
<td>7</td>
<td>si-onke → sonke</td>
</tr>
<tr>
<td>8</td>
<td>zi-onke → zonke</td>
</tr>
<tr>
<td>9a</td>
<td>i-onke → yonke</td>
</tr>
<tr>
<td>(6)</td>
<td>a-onke → onke</td>
</tr>
<tr>
<td>9</td>
<td>i-onke → yonke</td>
</tr>
<tr>
<td>10</td>
<td>zi-onke → zonke</td>
</tr>
<tr>
<td>11</td>
<td>lu-onke → lonke</td>
</tr>
<tr>
<td>(10)</td>
<td>zi-onke → zonke</td>
</tr>
<tr>
<td>14</td>
<td>ba-onke → bonke</td>
</tr>
<tr>
<td>15</td>
<td>ku-onke → konke</td>
</tr>
</tbody>
</table>

Bonke oSolwazi

- **look-up NC**
- **pluralise**
- **for-all**
∀x (uSolwazi(x) → ∃y (ufundisa(x, y) ∧ Isifundo(y)))

Bonke oSolwazi bafundisa

... for relevant NC. Here:

ngi-
u-
u-
si-
ni-
ba-
\forall x (uSolwazi(x) \rightarrow \exists y (ufundisa(x, y) \land Isifundo(y)))

uSolwazi \subseteq \exists ufundisa.Isifundo

Bonke oSolwazi bafundisa Isifundo
\[\forall x \ (u\text{-}Solwazi(x) \rightarrow \exists y \ (y \text{-} fundisa)) \]

- look-up NC
- get RC
- get QC
- add -dwa

Bonke oSolwazi bafundisa Isifundo esisodwa
More details: ESWC’17 demo paper [Keet et al.(2017)]
http://www.meteck.org/files/geni/VerbaliserisiZuluScreencast.mov
Outline

1. Motivation
 - A few application scenarios
 - NLG and knowledge management

2. isiZulu NLG

3. Part-whole relations and related aspects

4. Discussion

5. Conclusions
Common part-whole relations

Part-whole relation

- part-of
- s-part-of (objects)
- spatial-part-of (processes)
- involved-in (processes)
- stuff-part-of (different stuffs)
- located-in (2D objects)
- contained-in (3D objects)
- member-of (object/role-collective)
- portion-of (same stuff)
- participates-in (object-process)
- constitutes (stuff-object)
- mpart-of
Attempt at structuring part-whole relations in isiZulu

- **Less discriminating**: `ingxenye`/`SC+CONJ` used for parthood, involvement, membership, stuff parts, participation of individual objects (vs. collectives), containment (w-p only)
- **More discriminating**: portions, participation, and constitution
Context-dependent surface realisation (no single label)

- Common medical ontologies axioms type $C \sqsubseteq \exists R.D$
- Verbalisation pattern if $R = \text{‘has part’}$:
 $\text{QCall}_{ncx,pl} \ W_{ncx,pl} \ SC_{ncx,pl} - \text{CONJ} - P_{ncy} \ RC_{ncy} - QC_{ncy} - dwa$
- SC ‘conjugation’ dependent on noun class of head noun (that plays the Whole)
- CONJ ‘conjunction’ phonologically conditioned na-
- 6 SCs for plurals, 3 CONJ variants $= 18$ cases
Context-dependent surface realisation (no single label)

- Common medical ontologies axioms type $C \sqsubseteq \exists R.D$
- Verbalisation pattern if $R=\text{‘has part’}$:
 \[\text{QCall}_{nc_x,pl} \text{ W}_{nc_x,pl} \text{ SC}_{nc_x,pl} \text{-CONJ-P}_{nc_y} \text{ RC}_{nc_y} \text{-QC}_{nc_y}-dwa \]
- SC ‘conjugation’ dependent on noun class of head noun (that plays the Whole)
- CONJ ‘conjunction’ phonologically conditioned \textit{na-}
- 6 SCs for plurals, 3 CONJ variants = 18 cases
- Examples:
 - \textit{bonke abantu banenhлизiyo eyodwa}
 ‘All humans have as part some heart’
 \textit{abantu nc=2, na+inhлизiyo=nenhлизiyo}
 - W=‘orchestra’ (nc5, SC=\textit{a-}) and P=‘musician’ \textit{isazi somnyuziki} \rightarrow \textit{anesazi somnyuziki}
 - W=‘computer’ (nc5) and P=‘CPU’ \textit{umqondo womshini} \rightarrow \textit{anomqondo womshini}
Containment of objects

Whole->part
Qcall(nc(x,pl)) W(nc(x,pl)) SC(nc(x,pl)) CONJ-P(nc(y)) RC(nc(y))-QC(nc(y))-dwa

Part->whole
Qcall(nc(x,pl)) P(nc(x,pl)) SC(nc(x,pl)) EP-LOC-W(nc(y)) -LOCSUF RC(nc(y))-QC(nc(y))-dwa

Ex. W->p: Zonke izisu zi-ne- ndilinga yokudla e-yo-dwa
All stomachs have and bolus of food at least one

Ex. P->w: Zonke izindilinga zokudla zi-s-e- sis-wini esi-so-dwa
All boluses of food are contained stomach in at least one
Outline

1 Motivation
 - A few application scenarios
 - NLG and knowledge management

2 isiZulu NLG

3 Part-whole relations and related aspects

4 Discussion

5 Conclusions
Discussion

- Template-based approach is not applicable to isiZulu (and, more generally: Bantu languages that have noun classes)
 - Or: grammar engine needed
- Devising the patterns hampered by outdated literature
- Several preferences for patterns
- Algorithms nontrivial; covering:
 - ‘simple’ existential and universal quantification
 - taxonomic subsumption
 - negation (class disjointness)
 - conjunction
- Essentially contributing to documenting the grammar
Some other potential use: machine translation

- Google’s “all giraffes eat twigs” is translated as “yonke izindlulamithi udle amahlumela” (d.d. 14-1-2014) and as wonke ama-giraffe adle amahlumela (d.d. 3-12-2017)
 - But izindlulamithi is in noun class 10, so it goes with zonke; correct with our algorithms
 - Concordial agreement zidla, not udle or adle; correct with our algorithms
Some other potential use: machine translation

- Google’s “all giraffes eat twigs” is translated as “yonke izindlulamithi udle amahlumela” (d.d. 14-1-2014) and as wonke ama-giraffe adle amahlumela (d.d. 3-12-2017)
 - But izindlulamithi is in noun class 10, so it goes with zonke; correct with our algorithms
 - Concordial agreement zidla, not udle or adle; correct with our algorithms
Some other potential use: machine translation

- Google’s “all giraffes eat twigs” is translated as “yonke izindlulamithi udle amahlumela” (d.d. 14-1-2014) and as wonke ama-giraffe adle amahlumela (d.d. 3-12-2017)
 - But izindlulamithi is in noun class 10, so it goes with zonke; correct with our algorithms
 - Concordial agreement zidla, not udle or adle; correct with our algorithms

- Other issues that will be not easy for the statistical language approach: deep prepositions, part-whole relations, phonological conditioning, ...

- Some fun on the next page
(1) ‘swallowing is involved in eating’ → *ukugwinya kuhileleka ekudleni* → ‘swallowing involves eating’

(2) ‘all swallowing is involved in some eating’ → *konke ukugwinya kubandakanyeka ekudleni abanye* → ‘all swallowing is involved in eating others’

2 https://bwisehealth.com/article/how-healthy-are-your-friendships?lang=zulu
3 https://steroidio.com/zu/steroids-list/
1. ‘swallowing is involved in eating’ → ukugwinya kuhileleka ekudleni → ‘swallowing involves eating’
2. ‘all swallowing is involved in some eating’ → konke ukugwinya kubandakanyeka ekudleni abanye → ‘all swallowing is involved in eating others’

1. ‘all doctors participate in some operation’ → bonke odokotela bahlanganyela ekusebenzeni okuthile → ‘all doctors participate in some work’
2. ‘all electorates participate in at least one election’ → bonke abakhethiweyo bahlanganyela okungenani ukhetho olulodwa → ‘all the candidates participate at least one option’

3. https://steroidio.com/zu/steroids-list/
(1) ‘swallowing is involved in eating’ → *ukugwinya kuhileleka ekudleni* → ‘swallowing involves eating’
(2) ‘all swallowing is involved in some eating’ → *konke ukugwinya kubandakanyeka ekudleni abanye* → ‘all swallowing is involved in eating others’

(1) ‘all doctors participate in some operation’ → *bonke odokotela bahlanganyela ekusebenzeni okuthile* → ‘all doctors participate in some work’
(2) ‘all electorates participate in at least one election’ → *bonke abakhethiweyo bahlanganyela okungenani ukhetho olulodwa* → ‘all the candidates participate at least one option’

(1) ‘All humans have as part some heart’ → *Bonke abantu banengxenye yenhliziyo* → ‘All people have a part of the heart’
(2) ‘All humans have as part at least one heart’ → *Bonke abantu banengxenye okungenani inhliziyo eyodwa* → ‘All people have at least one part’ (…)
(3) ‘All humans have part at least one heart’ → *Bonke abantu banenkani okungenani inhliziyo eyodwa* → ‘All people are stubborn at least one heart’

2 https://bwisehealth.com/article/how-healthy-are-your-friendships?lang=zulu
3 https://steroidio.com/zu/steroids-list/
(1) ‘swallowing is involved in eating’ → *ukugwinya kuhileleka ekudleni* → ‘swallowing involves eating’
(2) ‘all swallowing is involved in some eating’ → *konke ukugwinya kubandakanyeka ekudleni abanye* → ‘all swallowing is involved in eating others’

(1) ‘all doctors participate in some operation’ → *bonke odokotela bahlanganyela ekusebenzeni okuthile* → ‘all doctors participate in some work’
(2) ‘all electorates participate in at least one election’ → *bonke abakhethiweyo bahlanganyela okungenani ukhetho olulodwa* → ‘all the candidates participate at least one option’

(1) ‘All humans have as part some heart’ → *Bonke abantu banengxenye yenhliziyo* → ‘All people have a part of the heart’
(2) ‘All humans have as part at least one heart’ → *Bonke abantu banengxenye okungenani inhliziyo eyodwa* → ‘All people have at least one part’ (...)
(3) ‘All humans have part at least one heart’ → *Bonke abantu banenkani okungenani inhliziyo eyodwa* → ‘All people are stubborn at least one heart’

(1) *Abangani esibagcinayo banengxenye abayidlalayo enkulu empilweni esiyiphilayo* → ‘The friends we care about have a major part of our life’ → *Abangane esibakhathalelayo banengxenye enkulu yokuphila kwethu*
(2) *Kwamanye, banengxenye izifo, kungenzeka isisindo somzimba, kanye nezinguquko isimo ngokomzwelo kuhlhanganise nemizwelo nguquguqukayo* → ‘In some cases, they have infections, possibly weight loss, and emotional changes as well as flexible emotions’ → *Kwezinye izimo, banezinkinga, mhlawumbe ukulahlekelwa isisindo, nezinguquko zomzwelo kanye nemizwelo nguquguqukayo*

2 https://bwisehealth.com/article/how-healthy-are-your-friendships?lang=zulu
3 https://steroidio.com/zu/steroids-list/
Outline

1 Motivation
 - A few application scenarios
 - NLG and knowledge management

2 isiZulu NLG

3 Part-whole relations and related aspects

4 Discussion

5 Conclusions
Conclusions

- Knowledge-based approach to NLG
- Novel verbalisation patterns and algorithms for simple subsumption, disjoint classes, conjunction, and basic options with quantification
- Verbalising formally represented knowledge in isiZulu requires a grammar engine even for the relatively basic language constructs
- Due to, principally: i) the system of noun classes, ii) the system of complex agreement, iii) phonological conditioned copulatives, and iv) verb conjugation
- Other basic language model for annotation of verbs and nouns with deep prepositions
- Part-whole relations
Future work

- More constructors
- Conjugation of verbs other tenses, and more prepositions (taught *by, works for*)
- Phonological conditioning in a structured fashion
- More systematic way for the ‘patterns’
- Interaction with data-driven approaches (learning and verification)
References

The Description Logics Handbook – Theory and Applications.

Joan Byamugisha, C. Maria Keet, and Langa Khumalo.
Pluralising nouns in isiZulu and similar languages.

M. Curland and T. Halpin.
Model driven development with NORMA.
In *Proceedings of the 40th International Conference on System Sciences (HICSS-40)*, pages 286a–286a.
Los Alamitos, Hawaii.

Enrico Franconi, Paolo Guagliardo, and Marco Trevisan.
An intelligent query interface based on ontology navigation.
Hong Kong, February 2010.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.
Discourse Representation Structures for ACE 6.6.
Technical Report ifi-2010.0010, Department of Informatics, University of Zurich, Zurich, Switzerland, 2010.

Mustafa Jarrar, C. Maria Keet, and Paolo Dongilli.
Multilingual verbalization of ORM conceptual models and axiomatized ontologies.
References II

C. M. Keet.
Representing and aligning similar relations: parts and wholes in isiZulu vs English.

C. M. Keet and T. Chirema.
A model for verbalising relations with roles in multiple languages.
19-23 November 2016, Bologna, Italy.

C. M. Keet and L. Khumalo.
Grammar rules for the isiZulu complex verb.

C. Maria Keet and Langa Khumalo.
Toward verbalizing logical theories in isiZulu.
20-22 August 2014, Galway, Ireland.

C. Maria Keet and Langa Khumalo.
Basics for a grammar engine to verbalize logical theories in isiZulu.
August 18-20, 2014, Prague, Czech Republic.
C. Maria Keet and Langa Khumalo.
On the verbalization patterns of part-whole relations in isizulu.

C. Maria Keet, Musa Xakaza, and Langa Khumalo.
Verbalising owl ontologies in isizulu with python.

Tobias Kuhn.
A principled approach to grammars for controlled natural languages and predictive editors.

A comparison of three controlled natural languages for OWL 1.1.
Washington, DC, USA metropolitan area, on 1-2 April 2008.

Allan Third, Sandra Williams, and Richard Power.
OWL to English: a tool for generating organised easily-navigated hypertexts from ontologies.
poster/demo paper, Open University UK, 2011.
Thank you!

GeNi project details:
http://www.meteck.org/files/geni/

Questions?