
An Architecture for Generating Questions,
Answers, and Feedback from Ontologies

Toky Raboanary[0000−0001−6133−4643] and C. Maria Keet[0000−0002−8281−0853]

Department of Computer Science, University of Cape Town, South Africa
traboanary,mkeet@cs.uct.ac.za

Abstract. Automatically generating questions, answers, and feedback
from ontologies and conceptual models is crucial for learning activities
and knowledge validation. Existing proposals are limited to predefined
types of questions and the modelling style that they are tailored to, lack
feedback generation, and their core algorithm are dependent on those
characteristics, therewith hampering maintainability and reusability. We
designed a new architecture where the question, answer and feedback
specifications, the core algorithm for selecting the contents from the on-
tology, and the verbaliser are modularised for resolving these problems.
We instantiated the architecture as a proof-of-concept, examined three
test cases, and showed that it compares favourably to related work.

Keywords: Ontology-based Question Generation · Ontology-based Feed-
back Generation · Architecture · Natural Language Generation · Template-
based Question Generation · Ontologies for Education.

1 Introduction

Natural Language Generation (NLG) is increasingly being used for daily con-
sumption of information; e.g., the automatic generation of weather forecasts
and reports (e.g., [17]) and generating articles about soccer matches. NLG also
provides benefits for educational technologies, such as automating question gen-
eration and marking for computer-assisted language learning exercises [6, 10],
generating quizzes from DBpedia [18] and improving student learning in the Bi-
ology domain [4, 3] by means of ‘intelligent textbooks’. We focus on generating
questions with their answers and feedback from structured knowledge, namely
ontologies and conceptual models, i.e., from the TBox (terminological knowl-
edge) rather than ABox (assertional knowledge). These systems are developed
for different purposes, including education [4, 3, 2, 19, 11, 16, 20] and ontology
(knowledge base) validation [1, 13], and they offer different types of questions,
being mainly Multiple Choice Questions (MCQs), but also similarity, yes/no,
and short answer questions. They generally focus on controlling MCQ question
difficulty and generating distractors [2, 19, 11]. Nevertheless, some look at the
verbalisation of the questions (rendering the questions in a natural language)
and the feedback generation (e.g., [11]).

Existing approaches are based on predefined types of questions and tested
or/and evaluated with one or few ontologies, not considering the different mod-
elling styles (e.g., [19, 11, 1]). Then, it is still being determined how they can



be reused for other types of questions (if possible). In addition, their axiom
prerequisites for generating a type of question, i.e., the prerequisites that an on-
tology should satisfy for generating a particular type of question, are not clear.
A partial disentanglement was proposed by [16], where question preconditions
were specified that further provide control on question generation, but those ax-
iom prerequisites and their mappings with the templates1 are embedded in the
core algorithm, which limits the maintainability, extensibility, reusability and
generalisability of the approach.

Also, in the educational environment, providing feedback to learners is cru-
cial. Leo et al. [11] developed an ontology-based multi-term MCQs question for
the medical domain. They provided an explanation for the correct and incorrect
options as feedback. However, they only consider four fixed types of questions
and only use one ontology. Hence, it may not support other ontologies with
different modelling styles, naming schemes and types of questions.

To the best of our knowledge, existing proposals are limited to predefined
types of questions and the modelling style that they are tailored to, and lack
feedback generation. To address these problems, we aim to develop a new ar-
chitecture for generating questions, answers and feedback so that it can flexibly
support different types of questions with their axiom prerequisites and different
modelling styles, deal with complex answer types and provide feedback explain-
ing the answer of the question, while using a unique core algorithm.

The principal concept of the designed architecture is to modularise the ques-
tion, answer and feedback specifications, the core algorithm for selecting the
contents from the ontology, and the verbaliser to produce the sentences. These
specifications are structured in so-called question card with manageable sub-
parts. Our results show that 1) one can generate questions, answers and feed-
back from the architecture by only defining the specifications such that the whole
architecture does not have to be modified for more types of questions or consid-
ering more modelling styles; and 2) our analysis shows that this new architecture
is better than existing studies in terms of flexibility and functionality. The in-
stances of the question card, algorithms, source code and results are available at
https://github.com/mkeet/AQuestGO.

The remainder of this paper is structured as follows: Section 2 presents the
architecture for the question, answer and feedback generation, Section 3 illus-
trates the proof-of-concept implementation, presents test cases and compares it
to related work, and we conclude in Section 4.

2 Architecture

The description of the architecture, as depicted in Fig. 1, is divided into four
categories: the inputs, the content selection algorithm (CSA), the verbaliser and
the outputs for generating the questions, answers and feedback from an ontology.

We present the different components and the decision choices for obtaining
a flexible architecture.
1 A template is a linguistic structure containing slots, which are intended to be re-
placed by relevant words to construct a sentence.



Fig. 1: The proposed architecture (QAF= Questions, Answers and Feedback)

2.1 Inputs

There are two types of input: the ontology and so-called question card, the latter
of which can be subdivided into the abstract content for the ontology, slot and
QAF (Questions, Answers and Feedback) specification. The architecture requires
a well-formed instance of the question card and a consistent ontology.

Ontology or conceptual model. This is the structured knowledge to be fed
into the NLG process without changing its structure and contents.

Question card. The question card, which is presented in Fig. 1 and Fig. 2, com-
prises three main elements for a given type of question, such as ‘yes/no question
containing 2 classes and one property’: the slot specification, the set of axiom
prerequisites and the QAF specification. Essentially, the latter concerns the ‘lin-
guistic templates’ formalising the questions, answers and feedback (be they basic
or grammar-infused templates [12]). The slot specification describes the different
slots intended to be used in the axiom prerequisites and the linguistic templates.
The set of axiom prerequisites is the set of preconditions that need to be satisfied
by the ontology to be able to generate questions for that type of question. The
linguistic templates are the linguistic structures to be filled in from the selected
ontology vocabulary elements to generate the sentences. Listing 1.1 presents an
example of an instance of the question card, which also illustrates in lines 11
and 12 that it can deal with different modelling styles.

Listing 1.1: Example of a qCard1 question card instance that deals with two
different modelling styles, represented in an abstract specification (see online
supplementary material for the equivalent XML representation). C and OP are
the sets of classes and object properties (OPs), respectively.

1 question card name: qCard1 (a question card instance)
2 type of question: Which X prop Y?
3 begin {slot specification}



Fig. 2: An ORM model of the components of ‘Question card’ with the other
entities

4 slot (1, 2, 3): ‘[X]’, ‘[Y]’ and ‘[Z]’ representing a class in C1 = {∀c ∈ C : c ⊏
Thing} − {SocialObject,PhysicalObject}

5 slot (4): ‘[Soc]’ representing the class SocialObject
6 slot (5): ‘[Phy]’ representing the class PhysicalObject
7 slot (6): ‘[inheresIn]’ representing the OP inheresIn
8 slot (7): ‘[prop]’ representing an OP in OP1 = {∀p ∈ OP : p ⊏ TopObjectProperty}
9 end {slot specification}

10 begin {set of axiom prerequisites}
11 axiom prerequisites (1) (first modelling style): (a) [X] ⊑ [Phy], (b) [Y] ⊑ [Soc],

(c) [Phy]¬[Soc], (d) [Soc] ⊑ ∃[inheresIn].[Phy], (e) [Y] ⊑ ∃[inheresIn].[X], (f) [Y] ⊑ ∃[prop].[Z],
(g) [X]¬[Y]

12 axiom prerequisites (2) (second modelling style): (a) [Y] ⊑ [X], (b) [Y] ⊑ ∃[prop].[Z]
13 end {set of axiom prerequisites}
14 begin {QAF specification}
15 begin {question template (qt)}
16 qt(1): What type of [X/noArticle] [prop/*OP Verb-third] [Z]? (‘noArticle’

and ‘OP Verb-third’ mean that the class X should be written without any article,



and the template qt(1) can only be used if the OP prop is classified as a verb (see
[16]) and will be conjugated in the third person, respectively.)

17 qt(2): What type of [X/noArticle] [prop/*OP VerbPrep-third] [Z]?
18 qt(3): What type of [X/noArticle] [prop/*OP HasNouns-third] that is [Z]?
19 qt(4): What type of [X/noArticle] is [prop/*OP IsNounsPrep] [Z]?
20 qt(5): What type of [X/noArticle] is [prop/*OP IsPastParticipleBy] [Z]?
21 qt(6): What type of [X/noArticle] is [prop/*OP IsPastParticiplePrep] [Z]?
22 end {question template (qt)}
23 begin {answer pattern}
24 answer template: The answer is [Y].
25 axiom pattern: [Y]
26 end {answer pattern}
27 feedback template: The answer is [Y] since it is a [X] that [prop] [Z].
28 end {QAF specification}

Slot specification. The slot specification (e.g., lines 3-9 in Listing 1.1) permits
defining and restricting the tokens’ scope. A token can be either a class or an
object property (OP). This may be a single class or OP, only subclasses or sub-
OPs thereof or both (Inclusion method in Fig. 2). Also, it allows the exclusion
of classes or OPs that are unfavourable for the generation of questions (e.g., in
Listing 1.1, line 4). Leo et al. [11] also considered this exclusion process, but the
flexibility of the axiom prerequisites and the linguistic templates were missing.

Set of axiom prerequisites. A type of question has a set of axiom prerequisites
to be able to deal with the fact that there are different ways to represent the
same piece of knowledge. As an illustration, one may adopt a top-down ontology
development and reuse a foundational ontology, or a bottom-up approach. Fol-
lowing that, there may be different axiom patterns that are similar [5] and they
would be verbalised in the same way. For instance, one may represent ‘A student
is a person.’ with a subsumption relation or represent ‘student’ as a role that a
person plays (see [5]). Thereby, we designed the question card to support several
axiom prerequisites for a given type of question. In our example in Listing 1.1,
the two axiom prerequisites in lines 11 and 12 are defined in the instance qCard1
for dealing with the two different modelling styles: a role representation and a
subsumption relation representation, respectively.

QAF specification. (e.g., lines 14-28 in Listing 1.1) A type of question has sets of
questions, answers and feedback templates. More than one linguistic template is
required since the verbalisation of the axiom patterns may differ depending on
the specifications of the entities involved in the sentence generation, e.g., Part-
Of-Speech (POS) tagging and the Object Property (OP) naming scheme. For
instance, the adequate template from the axiom Book ⊑ ∃isBorrowed-by.Student
is “Is [X : Noun][P : OP Is Past Part By] [Y : Noun]?”2, with X and Y are classes
and P is an OP, and a valid question is “Is a book borrowed by a student?” rather

2 In this example, Noun means that the POS of a class (X, Y) is a noun.
[OP Is Past Part By] indicates that the OP is composed of ‘is’, a verb in a past
participle form and ‘by’ (i.e., passive voice).



than “Does a book borrowed by a student?”. Thereby, we design the question
card to accommodate several linguistic templates so that the verbalisation ap-
proach may implement a strategy to select the appropriate one.

One may combine ontology element-based and natural language-driven tem-
plates (strategy chosen in Listing 1.1) by constraining the entities in the slot
specification and the axiom prerequisites definitions (e.g., X ⊑ Document for,
say, an ontology about libraries). Furthermore, for grammar-infused templates
[12] for languages with complex grammars, one can go a step further to reusabil-
ity and interoperability with the task ontology ToCT for declaring templates [14].
Either way, the ontology elements must be mentioned in the linguistic templates
for the mappings between them and the axiom prerequisites.

The axiom pattern is also considered in the answer pattern of the question
card to ease the automatic marking of the responses provided by learners in an
educational setting. In addition, this could be useful for the generation of MCQs.

Mappings between the axiom prerequisites and linguistic templates. The map-
pings connect what is stated in the axiom prerequisites and stated in the lin-
guistic templates for generating the sentences. The two above structures share
the same slot names defined in the slop specification, which serve as mappings.
Thereby, the place of the slot only depends on the definition of the linguistic
template. For instance, in Listing 1.1 line 16, the slot [X] in the linguistic tem-
plate represents a class that is defined in the axiom prerequisites in line 11 and
the slot specification in line 4.

Linguistic template used in the question card. The question card is abstract. Its
principle is that one may use it for different types of linguistic templates, such
as ‘grammar-infused template’ [12], since the verbaliser is not embedded in the
main algorithm (CSA). In this study, the chosen linguistic template is accom-
modated to the verbalisation approach of AQuestGO [16] (We shall discuss the
choice of this question generation approach in Subsection 2.3.). Thereby, we se-
lect ontology element-based and natural language-driven templates as linguistic
templates, and the rest of the paper is based on that.

2.2 Content Selection Algorithm

The algorithm finds all instances satisfying the abstract specifications in a given
instance of the question card and an ontology, and the results are used for the
verbalisation. The first step is to parse the instance of the question card. Then,
the algorithm processes it with the ontology to get the valid axioms for the gen-
eration of the questions, the answers and feedback based on the specifications
in the considered instance of the question card, namely, the set of axiom pre-
requisites and the slot specification. After reducing the research space from the
latter, it recursively searches all semantically and logically valid forms of axioms
based on the definitions of the axiom prerequisites. Then, CSA associates each
selected ontology vocabulary element with the specified slots. Thereafter, it out-
puts the lists of pairs of slots and ontology elements to generate the questions,



answers and feedback. As an illustration, by using the instance of the question
card in Listing 1.1 and the African Wildlife Ontology (AWO) that we adapted in
earlier work [16], one can obtain the following output: {([Y],CarnivosoursPlant),
([X],Plant), ([Z],Animal), ([prop], eats)}, satisfying the second axiom prerequi-
sites in the instance of the question card. And the explanation of the selection is
the following axioms: CarnivorousPlant ⊑ ∃eats.Animal, CarnivorousPlant ⊑ Plant.

One may define different axiom prerequisites to express different modelling
styles in a unique or different instance(s) of the question card. Either way, the
algorithm just needs to receive the necessary slot specification the adequate
axiom prerequisites.

The algorithm and the source code can be found in supplementary materials.

2.3 Verbaliser

Apart from the linguistic templates in the question card and the ontology, the
verbaliser only receives the slot and ontology element pairs selected by CSA.
Thereby, one may use any ontology verbaliser here. Practically for the reali-
sation of the architecture, we will reuse and extend the one of [16] because
it 1) explicitly incorporates axiom prerequisites for generating questions from
the TBox of ontologies, 2) has shown to generate good questions with respect
to the syntactic and semantic quality thereof, and 3) it is open source. Their
approaches only work with natural language-driven or ontology element-based
templates. Our verbaliser can combine them because of the mappings, offering
more flexibility.

2.4 Outputs

There are three main categories of outputs: the questions, answers and feedback
in natural language. Moreover, the explanation of the results is also provided
by CSA. The explanation is the concrete instance of valid axioms satisfying the
axiom prerequisites for a given ontology. For instance, with AWO, the axioms:
CarnivorousPlant ⊑ ∃eats.Animal, CarnivorousPlant ⊑ Plant explains the genera-
tion of the results from the axiom prerequisites: a) [Y] ⊑ [X], (b) [Y] ⊑ ∃[prop].[Z]
in Listing 1.1 line 12. The answers can also be axioms, a class or an OP, and/or
Boolean format, and/or sets of pairs of slot and ontology elements.

There are different outputs so that one can exploit the results depending on
the objectives. Thereby, it offers flexibility for the question, answer and feedback
generation approaches.

3 Implementation and Evaluation

For validating the feasibility of the architecture, a particular instantiation was
implemented. This was then tested on three examples to verify that it can indeed
generate questions, answers and feedback. We will report on this first. Second,
we compare the architecture to other systems and architectures, demonstrating
its more comprehensive functionality and flexibility.



3.1 Implementation and Test Cases

We briefly present the implementation of the architecture. We choose the XML
language to represent instances of the question card for reusability and inter-
operability. We implemented the question, answer and feedback generation with
JAVA since we make use of OWL API [9] for manipulating the ontology and
HermiT reasoner [8] for implementing CSA. The syntax of the axiom prerequi-
sites is based on Manchester syntax; slots are used instead of ontology elements.
Regarding the verbalisation, WordNet [15] was used for basic POS tagging, and
SimpleNLG [7] resolved agreement of subject and verb, gerund form generation
and article checking.

The test cases were carefully selected to show that one can generate results
and deal with i) complex types of questions, ii) different modelling styles and
iii) the types of questions that AQuestGO is designed for [16] by adopting the
architecture. An extended version of the AWO is used for the first test, which was
also used by [16], and two test ontologies for the second test (see supplementary
materials), containing the following:

1. ontologya, with: Person ⊑ PhysicalObject, Student ⊑ SocialObject, SocialObject
⊑ ∃inheresIn.PhysicalObject, Student ⊑ ∃inheresIn.Person, PhysicalObject ⊑
¬SocialObject and Student ⊑ ∃borrows.Book (a subsumption relation rep-
resentation); and

2. ontologyb, with: Student ⊑ Person and Book ⊑ Document (a role representa-
tion), where ontologyb is semantically similar to ontologya.

Complex types of questions. We chose AWO and qCard2 in Listing 1.2 for
the first test case, where two different questions (lines 18 and 19) were defined for
the same answer. And all questions that can be asked for the same answer will
be generated if the axiom prerequisites in line 14 are satisfied. One can remark
that the two different linguistic templates can use different slots.

Listing 1.2: Example of a qCard2 question card instance that deals with a com-
plex type of question, represented in an abstract specification (see online sup-
plementary material for the equivalent XML representation). C and OP are the
sets of classes and object properties (OPs), respectively.

1 question card name: qCard2 (a question card instance)
2 type of question: Which X prop Y?
3 begin {slot specification}
4 slot (1, 2, 3, 4, 5): ‘[X]’, ‘[Y]’, ‘[Z]’, ‘[W]’ and ‘[S]’ representing a class in

C1 = {∀c ∈ C : c ⊑ Animal}
5 slot (6, 7): ‘[P1]’ and ‘[P3]’ representing a class in C2 = {∀c ∈ C : c ⊑

PlantParts}
6 slot (8, 9, 10): ‘[P2]’, ‘[P4]’ and ‘[P5]’ representing a class in C3 = {∀c ∈ C :

c ⊑ Plant}
7 slot (11, 12, 13, 14): ‘[prop1]’, ‘[prop2]’, ‘[prop3]’ and ‘[prop4]’ representing an

OP in OP1 = {∀p ∈ OP : p ⊑ eats}
8 slot (15, 16): ‘[prop5]’ and ‘[prop6]’ representing an OP in OP2 = {∀p ∈ OP :

p ⊑ part-of}



9 slot (17): ‘[prop8]’ representing the OP live-on
10 slot (18): ‘[Omni]’ representing the class Omnivore
11 slot (19): ‘[L]’ representing the class Land
12 end {slot specification}
13 begin {set of axiom prerequisites}
14 axiom prerequisites (1): (a) [X] ⊑ [Z], (b) [X] ⊑ [Omni], (c) [S]¬[Omni],

(d) [X]⊑ ∀[prop8].[L], (e) [X] ⊑ ∃[prop1].[Z] ⊓ ∃[prop2].[P1] ⊓ ∃[prop3].[P2] ⊓ ∃[prop3].[P3]
15 end {set of axiom prerequisites}
16 begin {QAF specification}
17 begin {question template (qt)}
18 qt(1): What [Z/noArticle], which is not [S] and [prop8/third] [L], [prop1/third]

some [Y] and the following plants or parts of plants: [P1], [P2] and [P3]?
19 qt(2): What is the mysterious object? It is [Z]. It is not [S] and [prop8/third]

[L]. It is [Omni], and [prop1/third] some [Y] and the following plants or parts of
plants: [P1], [P2] and [P3].

20 end {question template (qt)}
21 begin {answer pattern}
22 answer template: The answer is [X].
23 axiom pattern: [X]
24 end {answer pattern}
25 feedback template: The answer is [X/noArticle], since [X] is [Omni], which

means that [X] can eat animals and plants.
26 end {QAF specification}

The instantiation of the architecture can generate, for example, the two fol-
lowing questions 1) “What animal, which is not a carnivore and lives on land,
eats some animal and the following plants or parts of plants: a root, grass and a
fruiting body?” (Linguistic template in Listing 1.2, line 18) and 2) “What is the
mysterious object? It is an animal. It is not a herbivore and lives on land. It is
an omnivore, and eats some animal and the following plants or parts of plants:
a fruiting body, grass and a root.” (Linguistic template in Listing 1.2, line 19).
It can then generate the following answer: “The answer is warthog.” (Linguistic
template in Listing 1.2, line 22) and feedback: “The answer is warthog, since
a warthog is an omnivore, which means that a warthog can eat animals and
plants.” (Linguistic template in Listing 1.2, line 25). The axiom-based explana-
tion can also be provided as discussed previously in Subsection 2.4.

Different modelling styles. We used ontologya and ontologyb and the ques-
tion card presented in Listing 1.1 to show that the architecture can deal with
different modelling styles. When using ontologya, the first axiom prerequisites
(Listing 1.1, line 11) are selected by CSA since they are conformed to the con-
tent of the ontology. And the verbaliser generates the question: “What type of
person borrows a book?” (Linguistic template in Listing 1.2, line 16) and the
answer: “The answer is a student.”. The generated axiom-based explanation is:
Person ⊑ ¬Student, Student ⊑ ∃borrows.Book, Student ⊑ ∃inheresIn.Person,
Document ⊑ PhysicalObject, SocialObject ⊑ ∃inheresIn.PhysicalObject,
PhysicalObject ⊑ ¬SocialObject, and Student ⊑ SocialObject. And with the same
instance of the question card and ontologyb as input, CSA selects the second



Table 1: Comparison of the approach to existing studies; predef. = predefined;
TQ= type of question, TA= type of answer, SA= short answer, CA= complex
answer, FC= feedback on correct answer, FI= feedback on incorrect answer,
DF= dynamic feedback, MS= considering modelling styles, AP= considering
axiom prerequisites, RV= replaceable verbaliser and LR= language restriction.

Criteria [1] [16] [13] [19] [4] [11] our architecture
TQ predef. predef. predef. predef. predef. predef. flexible
TA predef. predef. predef. predef. predef. predef. flexible
MCQs yes no no yes yes yes no
Yes/No yes yes yes no yes no yes
SA yes yes yes no yes no yes
CA no no no no no no yes
FC no no no no no yes yes
FI no no no no no yes no
DF no no no no no no yes
MS no no no no no no yes
AP no yes no no no no yes
RV no no no no no no yes
LR less than ALC ALC n/c SHIQ n/c n/c none

axiom prerequisites for generating the same results with a different explanation:
Student ⊑ ∃borrows.Book and Student ⊑ Person.

Types of questions defined in AQuestGO. Raboanary et al. [16] investi-
gated 10 types of educational useful questions. The instances of the question
card are able to represent all these types of questions, and we did the gen-
eration by using AWO. As an illustration, from the type of question: yes/no
with one class and one property, one can generate the question: “Does a bumble
bee fly?”, the answer: ‘yes’ and the explanation: BumbleBee ⊑ ∃Participate-In.Fly,
with BumbleBee ⊑ Endurant and Fly ⊑ Perdurant. All results are available online.

3.2 Comparing the new Architecture to the Existing Studies

We compare and discuss the new architecture with the relevant existing studies
[11, 16, 1, 13, 19, 4] considering the following criteria: the dynamic aspect of the
types of questions and answers, the generation of feedback, the consideration
of the modelling styles and the axiom prerequisites, the replaceability of the
verbaliser and the language restriction. The comparison is presented in Table 1.

Existing studies only deal with predefined types of questions. Their architec-
ture is rigid and cannot support flexibility. This limits their approach’s main-
tainability, extensibility, reusability and generalisability. The newly designed ap-
proach does not suffer this problem since all specifications are defined externally
in instances of the question card, which offers flexibility. The types of answers
are flexible in our architecture, whereas it is not the case for the others. Our



architecture can specify the answer as a very complex axiom or a very long text,
while [1, 13, 16] are only limited to yes/no and short answer questions, for in-
stance. Leo et al. [11] consider feedback generation. However, since their types
of questions are predefined, they are not dynamic. They took into account gen-
erating feedback for incorrect answers, a feature our architecture does not have,
and it does not generate the distractors of MCQs. However, one may use Alsub-
ait’s findings [2] to adapt our study for MCQs generations, for instance. Then,
only our architecture considers dealing with different modelling styles, and apart
from our study, only [16] considers the axiom prerequisites that need to be in an
ontology for generating a particular type of question. Also, our approach does
not have language restrictions when expressing the axiom prerequisites.

Further, observe that other verbalisers with different verbalisation techniques
can be attached to the architecture since the output of the content selection
algorithm is a list of pairs of token and ontology elements. It is also amenable to
generating questions for other languages, such as French or Malagasy, provided
the ontology has such vocabulary and the templates are in said language.

4 Conclusion

We designed a new architecture for generating questions, answers and feedback
from ontologies that is able to deal with non-predefined types of questions and
different modelling styles. The test cases from an instantiation of the architec-
ture show that the new architecture offers flexibility since all processes can be
done by only instantiating the question card externally for defining the neces-
sary specifications for generating the questions, answers and feedback. Further,
our analysis shows that our study compares favourably to existing proposals in
terms of flexibility and functionality. This architecture is a step to generalising
the generation of questions, answers and feedback from ontologies. As future
work, we plan to automatically create question cards to reduce manual efforts
as well as human-in-the-loop control mechanisms.

Acknowledgements TR acknowledges support from the Hasso Plattner Insti-
tute for Digital Engineering through the HPI Research School at UCT.

References

1. Abacha, A.B., Dos Reis, J.C., Mrabet, Y., Pruski, C., Da Silveira, M.: Towards
natural language question generation for the validation of ontologies and mappings.
Journal of Biomedical Semantics 7(1), 1–15 (2016)

2. Alsubait, T.: Ontology-based multiple-choice question generation. Ph.D. thesis,
University of Manchester, Manchester, England (2015)

3. Chaudhri, V.K., Clark, P.E., Overholtzer, A., Spaulding, A.: Question generation
from a knowledge base. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) Proceedings of the 19th International Conference on Knowledge Engineering
and Knowledge Management, EKAW 2014. LNAI, vol. 8876, pp. 54–65. Springer,
Linköping, Sweden (2014)



4. Chaudhri, V., Cheng, B., Overholtzer, A., Roschelle, J., Spaulding, A., Clark, P.,
Greaves, M., Gunning, D.: Inquire Biology: A textbook that answers questions. AI
Magazine 34(3), 55–72 (2013)

5. Fillottrani, P.R., Keet, C.M.: Patterns for heterogeneous TBox mappings to bridge
different modelling decisions. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue,
F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) Proceedings (Part
I) of the 14th European Semantic Web Conference, ESWC 2017. LNCS, vol. 10249,
pp. 371–386. Springer, Portorož, Slovenia (Jun 2017)

6. Gardent, C., Perez-Beltrachini, L.: Using FB-LTAG Derivation Trees to Generate
Transformation-Based Grammar Exercices. In: Proc. of TAG+11. pp. 117–125.
ACL (2011), sep 2012, Paris, France

7. Gatt, A., Reiter, E.: SimpleNLG: A realisation engine for practical applications.
In: Krahmer, E., Theune, M. (eds.) Proceedings of the 12th European Workshop
on Natural Language Generation, ENLG 2009. pp. 90–93. Association for Compu-
tational Linguistics (ACL), Athens, Greece (Mar 2009)

8. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2
reasoner. Journal of Automated Reasoning 53(3), 245–269 (2014)

9. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

10. Lange, H., Ljunglöf, P.: Putting control into language learning. In: Davis, B., Keet,
C.M., Wyner, A. (eds.) Proceedings of Controlled Natural Language Workshop
(CNL’18). FAIA, vol. 304, pp. 61–70. IOS Press (2018)

11. Leo, J., Kurdi, G., Matentzoglu, N., Parsia, B., Sattler, U., Forge, S., Donato, G.,
Dowling, W.: Ontology-based generation of medical, multi-term MCQs. Interna-
tional Journal of Artificial Intelligence in Education 29(2), 145–188 (2019)

12. Mahlaza, Z., Keet, C.M.: A classification of grammar-infused templates for on-
tology and model verbalisation. In: Garoufallou, E., Fallucchi, F., Luca, E.W.D.
(eds.) Proc. of MTSR’19. CCIS, vol. 1057, pp. 64–76. Springer, Rome, Italy (2019)

13. Mahlaza, Z., Keet, C.M.: OWLSIZ: An isiZulu CNL for structured knowledge
validation. In: Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+). pp. 15–25 (2020)

14. Mahlaza, Z., Keet, C.M.: ToCT: A Task Ontology to manage complex templates.
In: Proceedings of the 12th International Conference on Formal Ontology in Infor-
mation Systems, FOIS 2021. CEUR, Bolzano, Italy (2021)

15. Miller, G.A.: WordNet: A lexical database for English. Communications of the
ACM 38(11), 39–41 (1995)

16. Raboanary, T., Wang, S., Keet, C.M.: Generating answerable questions from on-
tologies for educational exercises. In: Garoufallou, E., Ovalle-Perandones, M.A.,
Vlachidis, A. (eds.) Proc of MTSR’21. CCIS, vol. 1537, pp. 28–40. Springer (2022)

17. Ramos-Soto, A., Bugarin, A.J., Barro, S., Taboada, J.: Linguistic descriptions for
automatic generation of textual short-term weather forecasts on real prediction
data. IEEE Transactions on Fuzzy Systems 23(1), 44–57 (2014)

18. Rodŕıguez Rocha, O., Faron Zucker, C.: Automatic generation of quizzes from
DBpedia according to educational standards. In: Lahoud, I., Cardoso, E., Matta,
N. (eds.) Proceedings fo the 3rd Educational Knowledge Management Workshop,
EKM 2018. pp. 1035–1041. Lyon, France (Apr 2018), april 23 - 27, 2018

19. Venugopal, V.E., Kumar, P.S.: A novel approach to generate MCQs from domain
ontology: Considering DL semantics and open-world assumption. Journal of Web
Semantics 34, 40–54 (2015)

20. Venugopal, V.E., Kumar, P.S.: Automated generation of assessment tests from
domain ontologies. Semantic Web 8(6), 1023–1047 (2017)


