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Biological data modeling
(BDM)

BDM for Computing BDM drawing
(informal diagrams, 
diagram software)

BDM and granularity

BDM with Conceptual 
Data Modeling (e.g., 

EER, UML, ORM)

BDM with 
Ontologies

BDM with other 
techniques

(e.g., pi calculus)
...

...

...

BDM with 
simple graphs 

(e.g., OBO, 
SKOS)

BDM with 
logic (e.g., 
OWL, DL)

Focus on lightweight 
ontologies (e.g., for 

data annotation, linked 
data, ontology-assisted 

data mining, etc.) 

Focus on 
automated 
reasoning

Traditional modeling 
(with or without 

extensions 
motivated by bio)

Ontology-driven 
modeling (informed 
by Ontology, logic-
based, inclusion of 
ontology fragments)

Focus on 
expressiveness

(with extensions: 
spatial, temporal, 
fuzzy, rough etc.)

Focus on 
applicability in

information systems
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Motivation

Scope: ontology-driven formal conceptual data modelling

Audience (here at MAIS): I assume you know the motivations
for conceptual data modelling and ontologies

Conceptual model for an implementation-independent view
Ontology for an application-independent view

What we will look at:

Formal conceptual data modelling
Ontology-driven conceptual data modelling

Both take a scientific approach to improving the quality of
conceptual data models (hence, also the resulting
applications), and facilitate use and reuse (interoperability)
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CDM for biological data analysis

Many one-off bioinformatics tools (perl scripts etc.) and
boutique databases

Use of conceptual data modeling in bioinformatics limited;
e.g., [BBP02, CKN+10, EJF07, Kee03, PLC+10, SZ05]

Mainly EER and various type of UML diagrams

Neither a link with ontologies (except for [EGOMA06]) nor a
formal approach

C. Maria Keet Ontology-driven formal conceptual data modelling



DLs for CDM
Extended CDM

Automated reasoning
Conclusions

Ontology-driven CDM for biological data analysis

More precise and correct representations for correct
(automated) inferences and biological knowledge discovery,
surpassing human capacity (e.g., [WSH07, KRM07])

Better data management, hence, way to make (better) use of
the ‘write-only’ databases and ‘data silos’ (e.g., [CKN+10])

Reduce redundancy in scientific experiments (e.g., [MBSJ08])

Ontological guidance for recurring modelling issues (e.g.,
[Kee03, AGK08, KA08, EJF07])

Avoid adding to the pile of one-off tools

Reusability of the information represented at the conceptual
layer
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1 DLs for CDM
DLRifd syntax and semantics
CMcom

2 Extended CDM
Ontology-driven modeling
Very expressive languages

3 Automated reasoning

4 Conclusions
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DLRifd syntax and semantics
CMcom

Introduction

Q: Which language features are ‘essential’ for biological data
modeling?

Q: Does it make any difference which conceptual data modeling
language we use for biological data modeling?
⇒ Some claim so, and different languages are used (EER, UML

Class diagrams, UML Activity Diagrams, and UML Sequence
Diagrams, ORM)

Q: What is the greatest common denominator (or core) of the
industry-grade conceptual data modeling languages?
⇒ Compare ER, EER, UML class diagrams, ORM, and ORM2

and identify greatest common denominator: [Kee08]
(Extends and refines [CDGL+98, CLN98, CLN99, ACK+07, Kee09])

DLRifd used to formally define the generic common conceptual

data modeling language CMcom, i.e., with syntax and

(model-theoretic) semantics, and a mapping between the two
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DLRifd syntax and semantics
CMcom

The base language: DLR

Take atomic relations (P) and atomic concepts A as the basic
elements of DLR, which allows us to construct arbitrary relations
(arity ≥ 2) and arbitrary concepts according to the syntax:
R −→ >n| P | ($i/n : C ) | ¬R | R1u R2

C −→ >1| A | ¬C | C1 u C2 | ∃[$i ]R | ≤ k[$i ]R

i denotes a component of a relation; if components are not named, then

integer numbers between 1 and nmax are used, where n is the arity of the

relation. Only relations of the same arity can be combined to form

expressions of type R1u R2, and i ≤ n
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DLRifd syntax and semantics
CMcom

The base language: DLR

The model-theoretic semantics of DLR is specified through the
usual notion of interpretation, where I= (∆I , ·I), and the
interpretation function ·I assigns to each concept C a subset CI

of ∆I and to each n-ary R a subset RI of (∆I)n, such that the
conditions are satisfied following:

>In ⊆ (∆I)n (R1 u R2)I = RI1 ∩ RI2
PI ⊆ >In (¬C )I = ∆I \ CI
(¬R)I = >In \ R

I (C1 u C2)I = CI1 ∩ CI2
AI ⊆ ∆I ($i/n : C )I = {(d1, ..., dn) ∈ >In |di ∈ CI}
>I1 = ∆I (∃[$i ]R)I = {d ∈ ∆I |∃(d1, ..., dn) ∈ RI .di = d}

(≤ k[$i ]R)I = {d ∈ ∆I ||{(d1, ..., dn) ∈ RI1 |di = d |} ≤ k}
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DLRifd syntax and semantics
CMcom

The base language: DLR

A knowledge base is a finite set KB of DLR (or DLRifd) axioms
of the form C1 v C2 and R1 v R2.
An interpretation I satisfies C1 v C2 (R1 v R2) if and only if the
interpretation of C1 (R1) is included in the interpretation of C2

(R2), i.e. C
I(t)
1 ⊆ C

I(t)
2 (R

I(t)
1 ⊆ R

I(t)
2 ).

>1 denotes the interpretation domain, >n for n ≥ 1 denotes a
subset of the n-cartesian product of the domain, which covers all
introduced n-ary relations.
($i/n : C ) denotes all tuples in >n that have an instance of C as
their i-th component.
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DLRifd syntax and semantics
CMcom

DLRifd

DLRifd has two additional constructs compared to DLR:

identification assertions on a concept C , which has the form
(id C [i1]R1, ..., [ih]Rh), where each Rj is a relation and each ij
denotes one component of Rj .
Non-unary functional dependency assertions on a relation R,
which has the form (fd R i1, ..., ih → j), where h ≥ 2, and
i1, ..., ih, j denote components of R

Syntax and semantics as for DLR
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DLRifd syntax and semantics
CMcom

CMcom syntax

Definition 1 (Conceptual Data Model CMcom syntax)

A CMcom conceptual data model is a tuple
Σ = (L,rel,att,cardR ,cardA, isaC , isaR , isaU ,disjC ,
coverC ,disjR ,key,extk, fd,obj,rex,rdm) such that:

- L is a finite alphabet partitioned into the sets: C (class
symbols), A (attribute symbols), R (relationship symbols), U
(role symbols), and D (domain symbols); the tuple
(C,A,R,U ,D) is the signature of the conceptual data model
Σ.

- rel is a function that maps a relationship symbol in R to an
U-labeled tuple over C, rel(R) = 〈U1 : C1, . . . ,Uk : Ck〉, and
k is the arity of R.

- ...
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DLRifd syntax and semantics
CMcom

CMcom semantics

Definition 2 (CMcom Semantics)

Let Σ be a CMcom conceptual data model. An interpretation for
the conceptual model Σ is a tuple B = (∆B ∪∆BD , ·B), such that:

∆B is a nonempty set of abstract objects disjoint from ∆BD ;

∆BD =
⋃

Di∈D∆BDi
is the set of basic domain values used in Σ;

and

·B is a function that maps:

Every basic domain symbol D ∈ D into a set DB = ∆BDi
.

...
Every attribute A ∈ A to a set AB ⊆ ∆B ×∆BD , such that, for
each C ∈ C, if att(C ) = 〈A1 : D1, . . . ,Ah : Dh〉, then,
o ∈ CB → (∀i ∈ {1, . . . , h},∃ai .
〈o, ai 〉 ∈ ABi ∧ ∀ai .〈o, ai 〉 ∈ ABi → ai ∈ ∆BDi

).

...
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DLRifd syntax and semantics
CMcom

CMcom semantics

Definition 3 (Mapping CMcom into DLRifd)

Let Σ = (L,rel,att,cardR ,cardA, isaC , isaR , isaU ,disjC ,
coverC ,disjR ,key,extk, fd,obj,rex,rdm) be a
CMcom conceptual data model. The DLRifd knowledge base, K,
mapping Σ is as follows.

For each A ∈ A, then, A v From :> u To :> ∈ K;

If C1 isaC C2 ∈ Σ, then, C1 v C2 ∈ K;

If R1 isaR R2 ∈ Σ, then, R1 v R2 ∈ K;

If U1 isaU U2 ∈ Σ, then K contains: [U1]R1 v [U2]R2;
R1 v ¬R2;

If rel(R) = {U1 :C1, . . . ,Uk :Ck} ∈ Σ, then
R v U1 :C1 u . . . u Uk :Ck ∈ K;

...
C. Maria Keet Ontology-driven formal conceptual data modelling



DLs for CDM
Extended CDM

Automated reasoning
Conclusions

DLRifd syntax and semantics
CMcom

Example: mapping to icons

 A 

B C 

For each Person, exactly one of the following holds: 
   some Author is that Person; some Editor is that Person. 
It is possible that more than one Author writes the same  
  Book and that the same Author writes more than one Book. 
Each Book, Author combination occurs at most once in the  
  population of Author writes Book. 
Each Author writes some Book. 
For each Book, some Author writes that Book. 

{disjoint,complete} 

Figure: Examples of graphical syntax for CMcomwith ORM2 drawn in
NORMA (A), UML class diagram drawn in VP-UML (B), and EER
drawn with SmartDraw (C).
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DLRifd syntax and semantics
CMcom

Example: mapping to icons

Author isa Person (directed arrow in UML, EER, ORM2)

card(Author, Writes, auth) = (1, n)
(1..* in UML, craw’s feet and line in EER, blob and line in ORM2)

key(Person) = id (underlined id in EER, (id) in ORM2)

{Author, Editor} disj Person
({disjoint} in UML, encircled d in EER, encircled X in ORM2)

{Author, Editor} cover Person

({complete} in UML, open shaft arrow in EER, encircled blob in ORM2)

Equivalent representation in DLRifd as: Author v Person

(subsumption), Author v ∃[auth]writes (at least one),
Author v ¬Editor (disjoint), Person v Author t
Editor (covering), and Person v ∃=1[From]id,
> v ∃≤1[To](id u [From] : Person) (key)
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DLRifd syntax and semantics
CMcom

EER, UML, and ORM in terms of CMcom

Definition 4

(CMEER) A CMEER conceptual data model is a tuple
Σ = (L,rel,att,cardR , isaC ,disjC ,coverC ,key,extk)
adhering to CMcom syntax and semantics.

Definition 5

(CMUML) A CMUML conceptual data model is a tuple
Σ = (L,rel,att,cardR , isaC , isaR ,disjC ,coverC ,
key,extk, fd,obj,pw)
adhering to CMcom syntax and semantics, except for the
aggregation association pw, with syntax pw = {U1 : C1,U2 : C2},
that has no defined semantics.
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DLRifd syntax and semantics
CMcom

EER, UML, and ORM in terms of CMcom

Definition 6

A CMORM2− conceptual data model is a tuple
Σ = (L,rel,att,cardR ,cardA, isaC , isaR , isaU ,disjC ,
coverC ,key,extk, fd,obj,disjR ,rex,rdm)
adhering to CMcom syntax and semantics.
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DLRifd syntax and semantics
CMcom

Example: constraints among relations

Thymidinephos
phorylase

Thymidine

Phosphate

binds / bound to

binds / bound to

[bindsT]

[bindsP]
HIVsubtype

Donor

Recipient

[HIVtransmission]

... transmitted from ... to ...

A. B.

in CMcom:
{bindsT, bindsP} rex binds

In DLRifd:
ThymidinePhosphorylase v (∃≤1[bindsT]binds1 t ∃≤1[bindsP]binds2),

[bindsT]binds1 v ¬[bindsP]binds2
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Ontology-driven modeling
Very expressive languages

Three main scenarios

Provide a solution to a recurring modeling problem, informed
by ontology and foundational ontologies (e.g., part-whole
relations [KA08, AGK08])

Use an ontology to generate several conceptual data models
(e.g., [EGOMA06, JDM03, SS06])

Integrate (a section of) an ontology into the conceptual data
model that subsequently is converted into data in the
database (e.g., KEGG, GO for annotation)
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Ontology-driven modeling
Very expressive languages

Solution to a recurring modeling problem

(Re-)Usable components of foundational ontologies (e.g.,
BFO, DOLCE, GFO, ...)

High-level categories
Generic relationships (parthood, participation, dependency,
constitution, etc.)

Modeling guidance; e.g., OntoClean, OntoPartS

Informs and refines language features; e.g., relational
properties, role/relation-components (positionalism),
keys/identification

⇒ Tells how, has justification why
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Ontology-driven modeling
Very expressive languages

Example: catalysis

Einput

Eoutput

Ecatalyst R

i

o

c P

Molecule

EnzymeCatalysis
in

out

mediates
1..n

0..n
1

E R
in

out

mediates

Cofactor

mediates

1..n

role

role

BFO:Independent
Continuant

BFO:Dependent
Continuant

BFO:Continuant
A.

B.

C.

inherence

Figure: Static aspects of modeling single processes (catalytic reactions) in EER. A:

Elmasri et al.’s [EJF07] proposal, with input, output and catalyst molecules; B: The

essential roles played; C: An example of a more refined representation of catalysis,

informed by ontology, where the dashed entities and subsumption relationships are a

fragment of BFO.
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Ontology-driven modeling
Very expressive languages

Example: use of scenario 1 and 3
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Ontology-driven modeling
Very expressive languages

Generation of CDMs from one ontology

A B

proper part of

A BOntology: UML Diagram 1:

UML Diagram 2: A B
Name: String
MolWeight: Real

B

UML Diagram n:

...

...

1

*
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Ontology-driven modeling
Very expressive languages

Need for language extensions

Metabolic pathways (temporal)

Central Dogma, viral infection (temporal)

Development and transformations (temporal)

SmallMolecule etc (fuzzy)

‘typical’ and default cases (probabilistic)
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Ontology-driven modeling
Very expressive languages

Temporal: examples

Use, e.g., DLRUS and ERVT , with refinements on relation
migration [APS07, KA10]

hasRole Rdex autocatalysis

R Rdex R′ if and only if 〈o1, o2〉 ∈ RI(t) → ∃t′ > t.〈o1, o2〉 ∈ R′
I(t′)

rel(hasRole) = {bearer : RNAmolecule, role : Ribozyme}
rel(autocatalysis) = {substrate : RNAmolecule, catalyst : Ribozyme}

Monocyte dev Macrophage

Monocyte v 3+(Macrophage u ¬Monocyte)

Viral entry: binding, membrane fusion or detach, viral entry
(details in chapter)
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Standard reasoning services

CDM consistency

Class consistency

Class subsumption

Refinement of multiplicities

(instance classification and retrieval)

Examples: discovery of new protein phosphatase, quickly
finding suitable rubber or pharma molecules
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Querying and other reasoning services

Name
PID

Client LactoseIn
tolerance1..n

Nausea0..n

hasDigestive
Discomfort

hasSymptom

?

Gs Protein

alpha-
subunit

Cholera
Toxin

?

?

...?

Name
ID
HGTpct

Bacterium HGT 
Cluster

0..nhas
Cluster

?

5..n

hasCluster

HGTpct > 20

Promiscuous
Bacterium

I. III.II.

Figure: Graphical depictions of the three query patterns to find ‘new’
classes or relationships supported by the data; (i): correlation; (ii):
hypothesis about existence of subclass PromiscuousBacterium; (iii): path
query to check whether the Gs protein somehow relates to the
alpha-subunit of the CholeraToxin.
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Conclusions and future directions

Substantiated advantages of ontology-driven formal
conceptual data modeling:

Formal foundation for UML, EER, ORM, with CMcom, which
has an equi-satisfiable DLRifd knowledge base
Ontological guidance to motivate better modeling choices,
illustrated with a refinement for representing catalytic reactions
Claimed to be ‘non-representable’ biological knowledge can be
represented in CMcom (n-aries, constraints among
relationships)

Language extensions for, a.o., temporal knowledge;
demonstrated with related processes in a cascade of reactions

Automated reasoning services were illustrated for taxonomic
classification

Three different query patterns to find new type-level
information
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Outlook

Ontology-driven formal conceptual data modeling is still a
relatively young field

How to handle incomplete information in hypothesis testing
[Kee10]?

how OntoClean [GW04] ideas can be incorporated in
conceptual data modeling methodologies

Formal link between ontologies and conceptual data models

Development of CASE tools with both a unifying formalism
and an integrated automated reasoner, and multiple language
interfaces

Temporal reasoning beyond ERVT and its DLRUS
foundation, principally either as extension to UML Class
Diagrams or as formalization of Sequence and Activity
Diagrams
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