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1 Introduction

A rapid increase of development and publication of new
ontologies has occurred in recent years, reaching well
over 200 ontologies and an increasing number is under
development. Earlier modelling issues are currently
being, or already have been, addressed or even surpass
the required solution up to a point that is has generated
new problems. Notable advances are the foundational
ontologies, the mushrooming of freely available bio-
ontologies, and the W3C standard for OWL as common
ontology language in the Semantic Web. However,
solving one problem moves the goal-posts. For instance,
which ontologies are reusable for one’s own ontology,
what are the consequences choosing one over the other?

The successor of OWL, OWL 2 (Motik et al., 2009b),
actually has 5 languages tailored for different purposes:
which one should be used for what and when? Ontology
development methodologies, of which one might want to
assume to hold the answers, offer one way for how one
can develop an ontology, or present (subsets of) possible
scenarios, such as ‘Building an ontology by reusing
ontologies or ontology modules’, which do not say which
type of ontologies there are and which ones are amenable
for reuse or may even be intended for reuse, what the
purpose of the gain of such reuse is, and which version
of that ontology is most suitable for reuse within the
chosen purpose of the new ontology. Put differently,
there is a difference between using, say, score cards that
one has to fill in (e.g., in Suarez-Figueroa et al., 2008)
and to have an overview of the available options and
the consequences for choosing one or the other, i.e.,
the interaction between the options at different stages
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in the methodology. While there exists literature that
provide incomplete and overlapping options at some of
the stages in a methodology, first and foremost they
lack the dimension of the interactions and consequences.
In addition, despite that several ontology development
methodologies are available, many developers actually
do not use them1. Which strategies and additional
methods do developers employ when they do not adhere
to a particular methodology? What are the possible
permutations at each step? What are the choices they
face, and can they be categorised in types of choices?
Does a choice for one method, tool, language and so
forth lock one into another, or are some of them even
mutually exclusive? If so, why do they go together or
are they mutually exclusive, and can or should that be
changed?

In this paper, we seek to answer these questions
by, first, integrating a literature analysis, our own
experiences in ontology development, and results
of a survey we conducted so as to identify the
key parameters. The ontology design parameters are
structured into five main groups in order to provide
a succinct and clear overview of the principal options
at several different stages of the ontology development
process. The main five groups are: purpose, reuse of
ontologies, bottom-up ontology development strategies,
the language to represent the ontology, and the
reasoning services. The second part presents the
novel contribution with the outcome of the analysis
regarding the practical and theoretical dependencies
between the key parameters; this is summarised in
Table 1. It addresses interdependencies such as “given
a purpose which ontology language suits best?” and the
interactions between purpose, language, and bottom-
up development strategy. The dependencies themselves
have to do primarily with inherent computational
challenges, insufficient tools and limitations of existing
ones, and usage of domain ontologies. We also present
several useful combinations of the five parameters, which
can guide the novice developer toward comparatively
suitable and easy combinations. In addition to the
theoretical analysis, we also consider the background
and setting of a set of randomly selected ontologies
and those that the survey respondents were involved
in, which indeed do tend to adhere to the proposed
dependencies between the parameters. The results
presented in this paper can be used in, e.g., the
design of a software-supported selection procedure as
part of a flexible ontology development methodology,
so that ontology development will not only be made
more easily accessible concerning where to commence
given one’s resources and desired goals but also shorten
the development process by proposing combinations
of parameters that lead to a feasible implementation
scenario.

The remainder of the paper is structured as follows.
After clarifying the notions of ontologies and methods
in Section 2, we proceed to list the design parameters
and illustrate them insofar as they bear an effect on

the dependencies (Section 3). The dependencies between
the parameters are described and discussed in Sections
4 and 5, and we close with conclusions in Section 6.

2 Preliminaries

To put the main section in the right context, we first
have to address some terminological aspects about what
is—or can be—meant to be an ontology, and the notions
of methods and methodologies themselves.

2.1 Ontologies and ontological commitments

The most quoted definition of an ontology as a
specification of a conceptualization by Gruber (1993)
has been discussed widely and refined over the years.
For instance, a more detailed definition is that it
is “a logical theory accounting for the intended
meaning of a formal vocabulary, i.e. its ontological
commitment to a particular conceptualization of the
world. The intended models of a logical language
using such a vocabulary are constrained by its
ontological commitment. An ontology indirectly reflects
this commitment (and the underlying conceptualization)
by approximating these intended models.” (Guarino,
1998), or a formal representation of reality instead of
a representation of our conceptualisation of entities
in reality. Practically from an engineering perspective,
the reality-vs.-conceptualization representation is a
philosophical quarrel which acts out as differences of
opinion during the modelling stage when there is a
disagreement about an axiom if it has to represent the
way how some vocal or large groups of people think
about something or if it also has to be the most truthlike
with respect to the reality it aims to represent. For
instance, if Whale should be represented as a subclass
of Fish or of Mammal: the former is a biologically
incorrect assumption by many people and may end up
as such in a folksonomy, but, in accordance with the
reality representation and the notion of what it is to be
a mammal, only the latter should be represented in an
ontology.

Where ontological commitments affect not only the
subject domain but also the language, are considerations
such as an ontology of universals (or concepts or
classes), of individuals, or if it can be a combination
of the two. From the philosophers’ and modellers’ side,
one separates an ontology of universals from one of
particulars. However, the main authors behind the W3C
standardised ontology language OWL simplified the
definition of an ontology into it “being equivalent to
a Description Logic knowledge base” (Horrocks et al.,
2003), hence, it being a combination of the intensional
terminological axioms (TBox) and the extensional
assertional axioms about instances (ABox). In the
remainder of the paper we assume a clear separation
between the classes and instances and, given that most
existing ontologies are in the area of the healthcare and



Dependencies between Ontology Design Parameters 199

life sciences that focus on type-level generalisations, a
logical theory in the sense of TBox statements only.

2.2 Methods and methodologies for ontology
development

Methodologies seek to provide a structured way of
developing ontologies from start to deployment to
maintenance. This paper analyses steps and methods
that do, or can, form part of ontology development
methodologies so as to augment the methodologies with
the dimension of the interdependencies between the
steps and methods they contain. Examples of decision
steps are which foundational ontology to reuse, if any,
and the choice of language. Examples of methods that
contribute to methodologies for ontology development
are, among others, Ontology Design Patterns that offer
small, reusable, pieces of an ontology or modelling
pattern of usage (Presutti et al., 2008), OntoClean to
design an ontologically well-formed taxonomy (Guarino
and Welty, 2004), ‘debugging’ ontologies to pinpoint to
errors (Horridge et al., 2008), and NLP-based ontology
learning (Witte et al., 2007) to speed up finding
candidate terms and relations for one’s domain ontology.
Methodologies can be grouped according to different
axes, such as aimed at single, one location ontology
development vs. distributed ontology development, or
paper-based vs. tooling support and have varying levels
of support for managerial tasks such as project planning
and versioning; for instance, Methontology, On-To-
Knowledge, KACTUS, MoKi, and NeOn (Fernandez
et al., 1999; Suarez-Figueroa et al., 2008; Ghidini
et al., 2009) (the reader is referred to (Corcho et al.,
2003) for an analysis of requirements and a comparison
between such ontology development methodologies).
These methodologies take a waterfall or iterative
approach without revealing dependencies between their
different stages. However, such assumed independence
neither holds in practice—be it with respect to the
soft skills or the available tools—nor is it feasible even
theoretically, as we shall see in Section 4.

3 Design parameters

In this section we describe the five principal categories
of design parameters: purpose of the ontology, reusing
ontologies, bottom-up development of ontologies,
representation languages, and reasoning services. For
each one, we list the parameters, and elaborate on them
afterwards insofar as it affects, or will contribute to, the
explanation of the dependencies between them.

3.1 Purposes of the ontologies

One can take into account the possible aims for
which the ontology will be developed. However, this is
anathema for the ontology purist, because an ontology
is supposed to be implementation independent—even

irrespective if an application will be linked to it
or will have any computational use at all—and as
such, an ontology has the sole purpose of representing
reality, our conceptualisation of reality, or some other
domain of interest. A caveat with choosing explicitly
for a specific purpose, is that a few years after initial
development of the ontology, it may get its own life
and be used for other purposes. This can require a
re-engineering of the ontology (currently being carried
out with the Gene Ontology (GO) and Foundational
Model of Anatomy (FMA)), which generally costs more
resources than anticipating upfront that an ontology
may be used for different purposes. Nevertheless, in the
practice of ontology engineering, purposes tend to play
an important role and oftentimes are even expected
to be formulated at the commencement of ontology
development. Based on a literature review and survey
we carried out (Alberts et al., 2008), the different types
of purposes can be summarised as follows (each with a
reference that provides a typical example):

1. Querying data by means of an ontology (ontology-
based data access) through linking databases to an
ontology (Poggi et al., 2008; Alberts et al., 2008;
Rodriguez-Muro et al., 2008);

2. Data(base) integration, most notably the strand
of applications initiated by the Gene Ontology
Consortium and a successor, the OBO Foundry
(Gene Ontology Consortium, 2004; Smith et al.,
2007);

3. Structured controlled vocabulary to link
data(base) records and navigate across databases
on the Internet, also known as ‘linked data’ (Bizer
et al., 2009, in press);

4. Using it as part of scientific discourse and
advancing research at a faster pace (Keet,
2005; Madin et al., 2008), including experimental
ontologies in a scientific discipline and usage in
computing and engineering to build prototype
software;

5. Coordination among and integration of Web
Services (Goble et al., 2007);

6. Incorporating the ontology in an ontology-
driven information system destined for run-time
usage, such as in scientific workflows, multi-agent
systems, ontology-mediated data clustering, and
user interaction in e-learning (Henze et al., 2004;
Kim et al., 2006; Zhou et al., 2005);

7. Ontologies for natural language processing,
including development and use of ontologies in
applications such as annotating and querying
Digital Libraries and scientific literature,
Question-Answering systems, and materials for
e-learning (Alexopoulou et al., 2008; Vila and
Ferrández, 2009; Witte et al., 2007);
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8. As full-fledged discipline “Ontology (Science)”
(Smith, 2008), where an ontology is a formal, logic-
based, representation of a scientific theory;

9. Tutorial ontologies to learn modelling in the
ontology development environment (e.g., the wine
and pizza ontologies (Horridge et al., 2004)).

Practical examples have their specific peculiarities
and implementation, but the type of purpose will fit
in one of the above, although e.g., Denaux et al.
(2009)’s experiment to extract purpose phrases from
ontology documentation of geography ontologies might
be extended to a larger corpus of ontologies that have
better ontology annotations and thereby contribute to a
more refined categorisation than the list presented here.

Observing the purposes, it is noteworthy that five
items concern data integration in some way, being items
1, 2, 3, 5, and 6. Recollecting the data integration
strategies that have been developed over the past 20
years, they are: (i) Physical schema mappings with
Global As View (GAV), Local As View (LAV), or
GLAV, (ii) Conceptual model-based data integration,
(iii) Data warehouses, (iv) Data federation, (v) Data
marts, (vi) Services-mediated integration, (vii) Peer-to-
peer data integration, and (viii) Ontology-based data
integration, being on top of, at least, i, ii, (possibly
also iii iv, v, vi) through an ontology or linked data
by means of an ontology. While some of them can
be realised without ontologies, ontologies have proven
their value in the endeavours. For instance, the GO
for linking data (Gene Ontology Consortium, 2000),
connecting different legacy tools (Athanasiadis et al.,
2009), data federation (Amoroso et al., 2008), RDF-
ized warehouse with an ontology (Belleau et al., 2008)
as well as first steps toward RDF-focussed database
federation (Cheung et al., 2009). It is important to
observe that for such ‘ontologies for data integration’,
in fact, an ontology serves different purposes within the
integration scenario and thereby brings forth different
requirements for the ontology language, tools, and
ontological commitments.

A more challenging purpose that entails at least data
linking, if not full integration, is using ontologies in
scientific workflows, such as Wings (Kim et al., 2006)
that uses both the ontology and its reasoning services
for the generation of workflows, keeping consistency,
and linking sections of a workflow, and the Taverna
workbench (Goble et al., 2007), which uses a set of
ontologies to manage the data and information flow by
means of a domain ontology, workflow ontology, and
services ontology. The latter, in turn, puts demands
on interoperability not only among subject domain
ontologies, like (Smith et al., 2007), but also among
ontologies with orthogonal content and complementary
purposes, so that it requires a careful orchestration.

3.2 Reusing ontologies

With the uptake of ontology development and
mushrooming of ontologies made available on the Web,
ontology repositories and semantic search systems, such
as Swoogle2, the TONES Ontology Repository3, and
BioPortal4 can be helpful. However, not all ontologies
are just more of the same and equally suitable for reuse
in one’s own ontology. The main types of ontologies that
potentially can be reused in part or whole are:

1. Foundational ontologies that provide generic top-
level categorisations;

2. ‘Reference ontologies’ that contain the main
concepts of a subject domain;

3. Domain ontologies that have a (partial) overlap
with the new ontology;

4. For each of items 1-3, resource usage
considerations, such as

(a) The availability of the resource, such as
openly available, copyright, and usage
restrictions;

(b) If the source is being maintained or an
abandoned one-off effort;

(c) The ontology is a result of a community
effort, research group, or if it has already
some adoption or usage;

(d) If it is subject to standardization policies or
has stable releases;

(e) If the ontology is available in the desired or
required ontology language.

The foundational ontologies can give a head-start in
the development by providing a basic structure, such
as endurants being disjoint from perdurants, types of
processes, attributes (qualities), and a set of basic
relations; e.g., GFO, DOLCE, BFO, RO (Herre and
Heller, 2006; Masolo et al., 2003; Smith et al., 2005).
The use of such ontologies (or not) requires one to
decide how to represent certain kinds of knowledge,
most notably ‘attributes’. In the traditional sense, an
attribute a ∈ A is a binary functional relation from an
object o in a universe of objects U to a value v in
the value domain V (i.e., A 7→ U × V ), for instance, a
person’s age as hasAge 7→ Person×Age or a flower’s
colour hasColour 7→ Flower × Colour. None of the
foundational ontologies use this approach to represent
properties of objects (Borgo and Masolo, 2009). Instead,
properties such as Colour are entities (unary predicates)
in their own right and are related simply with a binary
relation to objects; e.g. in BFO, Colour is a kind of
dependent continuant that inheres in an independent
continuant (Flower) and in DOLCE, such ‘attributes’
are subsumed by the category Quality that relates to
Endurant (roughly: objects) or Perdurant (informally:
processes) by means of the qt relation and each quality
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has a separate relation to qualia, which can be, among
others, Temporal Region or Spatial Region. That
is, the compact notion of ‘attribute’ in information
systems and conceptual data modeling languages, such
as ER and UML class diagrams, is flattened out in the
foundational ontologies into at least two relations and
three entities (unary predicates). From an ontological
perspective, the verbosity of this attribute-free approach
is an advantage with respect to modelling ‘attributes’
more precisely (but it may not necessarily be from an
implementation perspective) and it has been shown to
greatly enhance transparency and reusability5, which is
a sought-after characteristic for foundational ontologies.

Reference ontologies are more restricted in scope, but
they are also intended for reuse, such as an ontology of
measurements, of time (Hobbs and Pan, 2004) and ‘top-
level’ ontologies for a domain, such as BioTop6. Domain
ontologies, in turn, can build upon such foundations and
expand on it for the particular subject domain at hand,
such as for traits of rice in Gramene that extends GO
and marine microbial loops that reuses DOLCE (Jaiswal
et al., 2002; Keet, 2005). Generally, then, the developer
adheres to the foundational ontology commitments, but
does not debate and decide on it anymore.

Further down the line are so-called ‘application
ontologies’, which, however, are another term for
logic-based conceptual data models. These type of
ontologies are explicitly not included in the list
above, because they will generate more problems than
they solve: in computing and engineering, ontologies
themselves were proposed to address computationally
the commonalities and mismatches in conceptual data
models, in the sense of providing an application-
independent representation at a higher abstraction level
(see also Jarrar et al. (2003); Schreiber (2007) on this
topic). For instance, in a conceptual data model for a
zoo, one my want to have a class Llama and a key or
reference scheme in numbers, whereas another database
management system may have the identification of
llamas represented with a string; then it is through
the common understanding and precise representation of
what a llama is—represented in the ontology—that an
agreement can be established that both software systems
deal with representations of llamas. If one designates
such conceptual data models to be ontologies, then
one cannot properly use ontologies anymore for data
integration and thereby deprive oneself of a powerful
solution and generate new problems by (i) taking away
one layer in the successive abstraction steps and (ii)
inventing and proliferating ontology mapping languages
(Brockmans et al., 2009) and supporting tools.

The fourth item has nothing to do with the content
of the ontology, but are orthogonal considerations that
interfere with the choice which ontology to reuse for
one’s purpose. Aspects (a-d) are ‘soft’ considerations: if
an ontology has usage restrictions, is an abandoned one-
off effort, and has not been adopted by other ontologists,
then one probably should think twice before using it,
but there nevertheless can be compelling reasons to do

so. Item (e) reveals a dependency with other design
parameters, and will be discussed in Section 4.

3.3 Bottom-up development of ontologies through
ontology learning

Although ontology developers will find something of use
in the available ontologies, they often have to develop
part of the ontology themselves. There are several
strategies to speed up this labour- and knowledge-
intensive task, which that focuses on extracting the
subject domain semantics present in ‘legacy’ (i.e.,
currently operational) sources. The type of sources and
principal techniques (ordered in decreasing order of
formality) are:

1. Reuse of other knowledge-based representations:
conceptual data models of database and
application software, such as UML diagrams, ER
diagrams, and ORM models;

2. Extraction of types from a database physical
schema and data in databases (i.e., database
reverse engineering) and object-oriented software
applications, and least common subsumer and
clustering to infer new concepts;

3. Abstractions from or formalisations of models in
textbooks and diagram-based software;

4. Thesauri and other structured vocabularies;

5. Other (semi-)structured data, such as spreadsheets
and company product catalogs;

6. Text mining of documents to find candidate terms
for concepts and relations;

7. Terminologies, lexicons, and glossaries;

8. Wisdom of the crowds tagging, tagging games, and
folksonomies;

This list is roughly in concordance with Suarez-Figueroa
et al.’s (2008) analysis, who also discuss the various
typologies of non-ontological resources for bottom-up
development of ontologies. In the remainder of this
section, characteristics of the source material and
approaches will be highlighted insofar as they interfere
with respect to the dependencies between the different
ontology design parameters.

The first two items tend to be grouped together,
but are quite distinct. Reuse of conceptual data models
seems to require only a mapping or transformation
(i.e., approximation) to a suitable ontology language.
However, UML, ER, and ORM do not exactly fit into an
OWL species or even one unique Description Logic (DL)
language (Artale et al., 2007a; Berardi et al., 2005; Keet,
2007), for the mere facts that ORM is undecidable and
there is no single formalisation of UML class diagrams
or ER. Practically, this means that one has to develop
transformations for each ontology language and each
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tool that offers conceptual modelling functionalities. In
addition, it makes a certain commitment on how to
represent ‘attributes’ (cf. Section 3.2): transformations
from UML and ER will be heavy in the use of OWL’s
data properties, whereas ORM’s philosophy is more
in line with the foundational ontologies’ approach to
flatten them into multiple relations.

The sources in item 2 are further away from an
ontology than those of item 1. For the sake of simplicity,
let us ignore issues such as data duplication, violations
of integrity constraints, and denormalised databases.
Data stored in the database, which are mathematically
instances, sometimes are thought of by the domain
expert as representing concepts; e.g., the terms in the
GO are intended to denote concepts (universals), but
in the GO database they are stored as values in a 2-
column table. Biological databases as well as databases
at the back-end of content management systems have
a mixture of the two so that some database data
have to be imported into the ontology as concepts
(OWL classes), whereas other data in the database have
to be imported into the OWL ABox and therewith
transformed from values into objects. This is a well-
known reverse engineering challenge, even for reverse
engineering to a conceptual data model (Hainaut et al.,
1993), let alone if one wants to take the even larger jump
directly to an ontology (Lubyte and Tessaris, 2007).

Bottom-up development of ontologies by using
other diagrams and its drawing tools is relatively
under-explored. Software for drawing diagrams in,
predominantly, the life sciences, such as PathwayAssist7

to visualise metabolic pathways, essentially have their
own icon vocabulary and diagrams. This informal
but structured representation of information can be
exploited to develop automatically a preliminary version
of a domain ontology by (i), formalizing the ‘icon
vocabulary’ in a suitable logic language, (ii) choosing
a foundational ontology (taxonomy, relations), (iii),
categorising the formalised icons accordingly, (iv)
loading each diagram into the ontology, and (v) verifying
the results with the domain expert, which has been
experimented with using STELLA models for ecology
and environmental sciences (Keet, 2005).

There are many terminologies and thesauri and a
few of them are being adapted for the Semantic Web,
such as the NCI Thesaurus8. These endeavours tend
to end up as bottom-up development instead of a
straightforward reuse of the resource and formalisation
into SKOS or OWL (Soergel et al., 2004). The reasons
for this is that a thesaurus’ core relations are broader
term (BT), narrower term (NT), and related term
(RT), and some auxiliary ones (e.g., UF/USE), which
are semantically heavily overloaded relations: BT/NT
is not the same as is a and RT can be any type
of relation, and, consequently, those relationships are
used inconsistently. In addition to this low ontological
precision, a categorisation of basic types such as
those of foundational ontologies is absent and many
terms and relations are actually a lexicalisation of

a conceptualisation, so that one has to manually
reassess the whole thesaurus again in order to add the
implicit semantics explicitly. Thus, simply formalising
a thesaurus does not suffice to obtain an ontology.
An example of elaborate ‘ontologising’ thesauri in the
fisheries domain, which were augmented with a DOLCE
foundation, is described in (Gangemi, 2005).

Another approach that initially seemed an easy
route to bottom-up development, is the use of Natural
Language Processing (NLP) techniques. The activities
can be divided into development of the TBox by
means of searching for candidate terms and relations in
text documents, and ontology populations (ABox) that
amounts to document retrieval enhanced by ontologies
and tagged text (e.g., GoPubMed (Dietze et al., 2008)).
The former is known to be challenging and an iterative
process that requires considerable domain expert input
(Alexopoulou et al., 2008; Gliozzo et al., 2007). The
main reasons for the problem of not finding immediate
matches are the ambiguity of natural language and
the choice to collapse the notion of ontology with
natural language instead of using them as orthogonal
or complementary components for which a lexicalised
ontology is more suitable (Cimiano et al., 2007).

Last, one can try to squeeze out the little semantics
available in spreadsheets, using perhaps RDF as an
intermediate representation (Han et al., 2006) (but
see also Madin et al. (2008)). If also this fails to
extract useful terms and relations, one could resort to
the ‘wisdom of the crowds’, but this also depends on
the subject domain so that at times ‘the crowd’ are
students in the discipline, and enhanced by a gaming
component. An alternative to this approach is to let the
reasoner compute a concept description based on sample
instances (Baader et al., 2007).

3.4 Representation languages

Depending on the purpose(s) and, in practice, available
resources, such as time, money, domain experts,
and available baseline material, one tends to end
up with either (a) a very large simple ontology,
i.e., mostly a taxonomy without, or with very few,
properties (relations) linked to the concepts, where
‘large’ is, roughly, > 10000 concepts, so that a
simple representation language suffices; (b) a large
and elaborate ontology, which includes rich usage of
properties, defined concepts, and, roughly, requiring
the language expressiveness of that of expressive DL
languages, such as OWL-DL; or (c) a small and
very complex ontology, where ‘small’ is, roughly,
< 250 concepts, and requiring a very expressive
ontology language. Put differently, a separate dimension
that interferes with the previous parameters, is the
representation language, because some languages scale
up better computationally than others. Moreover,
certain choices for reusing ontologies or legacy material,
or goal, may lock one into the language that will be
used to represent the ontology. To obtain a better view
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on this aspect, we address older and newer ontology
languages, and pointers to various extensions.

3.4.1 Older Knowledge Representation and
Ontology Languages

With “older” languages, we refer to the pre-OWL
stage, where ontologies were developed in a logical
language of one’s preference. The languages of choice
from the side of AI were, among others, first order
predicate logic, knowledge interchange format (KIF),
KL-ONE, Loom, conceptual graphs, DL, and F-logic,
and later also DAML and OIL and DAML+OIL. From
a domain expert side, some variations, extensions, or
simplifications have been made to these languages and
a subsequent renaming has occured. For instance, the
OBO format of the GO and similar ontologies is a
directed acyclic graph with additional house-keeping
items, the Protégé development tool had originally a
frames-based system, and TAMBIS’s and GALEN’s
GRAIL language is based on a DL. Then, even if
ontologies adhered to the same language, say, full first-
order logic, then the computational representation in
software still can be different, such as the syntax of
the Prover9 and Isabelle theorem provers. Each of these
languages have their advantages and disadvantages, but
what is problematic in general is that there are so many
languages that are not always fully interchangeable and
that modelling workarounds to mitigate a language’s
limitations are often poorly documented, if at all.
This complicates ontology reuse and integration,
development, use of tools for bottom-up development
of ontologies, and ontology-driven information systems.
Hence, a standardized ontology language is a step
forward to solve ontology interoperation challenges.

3.4.2 Web Ontology Languages OWL and OWL 2

By 2004, things had converged to the W3C standardised
Web Ontology Language OWL (Horrocks et al., 2003;
McGuinness and van Harmelen, 2004), which is useful
from at least the domain modeler’s and tool developer’s
perspective to have one common format to represent
an ontology. In addition to choosing OWL a priori,
core ontology developers as well as user-bases of some
of the older ontology languages have chosen to provide
converters from the prior language to an OWL language,
such as oboinOwl (Golbreich and Horrocks, 2007), FMA
to OWL (Zhang et al., 2006), and both DOLCE and
BFO are now available also in one or more OWL
versions.

From a formal and Semantic Web perspective,
OWL is placed on top of RDF(S) and has its basis
in Description Logics (DL) languages and reasoning
services (Horrocks et al., 2003; Baader et al., 2003).
OWL actually consists of three languages of which two
are DL-based species, OWL-DL and OWL-Lite, and an
OWL full, which is an undecidable RDFS species. Its
successor OWL 2 consists of a full species that is again

based on RDFS, and four DL-based species: OWL 2 DL
and three ‘lighter’ versions, being OWL 2 EL, OWL 2
QL, and OWL 2 RL (Grau et al., 2008; Motik et al.,
2009b,a). The main motivation for including four DL-
based ontology languages in the standard, is to allow
tailoring the choice of ontology language to fit best
with the purpose of the ontology, and in particular
for a scalable and multi-purpose Semantic Web. OWL
2 DL is the most expressive one and based on the
DL language SROIQ (Horrocks et al., 2006), whereas
OWL 2 EL and OWL 2 QL are computationally well-
behaved fragments to achieve better performance with
larger ontologies and ontologies linked to large amounts
of data in secondary storage (databases), respectively.
For instance, the medical terminology SNOMED CT
with about 300 000 concepts is represented in OWL
2 EL (in EL++) and the QuOnto reasoner scales up
to millions of tuples also with operational databases
(Calvanese et al., 2010) and using a minor variant of
OWL 2 QL, DL-LiteA, that has more features and
adheres to the unique name assumption9 (Calvanese
et al., 2009). OWL 2 RL is inspired by Description
Logic Programs and pD∗ and has special features
to handle forward-chainging rules, yet restricts the
OWL 2 DL syntax to keep decidability. Trade-offs
between expressiveness of the ontology languages are
illustrated and discussed in (Keet and Rodŕıguez, 2007).
For instance, with OWL 2 DL one can avail of the
following features in the ontology that OWL 2 QL does
not have: role chaining, qualified number restrictions,
enumerated classes, covering constraint over concepts,
and transitivity on simple roles. On the other hand,
with the leaner OWL 2 QL one can obtain similar
performance as with relational databases thanks to
the low computational complexity of the language
(Calvanese et al., 2009), whereas for OWL 2 DL one
never can achieve that (Motik et al., 2009a). Overall,
each language has its advantages and disadvantages,
and it would be useful to have an automated semantic
transformation between any one of them. However, at
the time of writing, no freely available applications exist
that lets a modeller seamlessly and transparently change
one ontology language for another for a given OWL 2-
formalised ontology.

Given that the OWL 2 development came in response
to experiences from OWL implementers, it is not
unthinkable that an “OWL 3” will emerge, depending
experiences gained with OWL 2. There is a ‘language
game’ between modellers and logicians and a new
list of problems has been made public (Schulz et al.,
2009). Some of the issues Schulz and co-authors raised,
however, can already be addressed in a DL language and
a suitable automated reasoner, but they require various
extensions to the OWL languages.

3.4.3 Extensions to the standard languages

The various challenges for representing subject domain
semantics more precisely have resulted in development
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of logic-based languages in many directions. Limiting
ourselves to DL languages, for they may have the
greatest chance of being incorporated in some way into
an “OWL 3”, or at least being compatible with the
standard OWL languages, then one can identify the
work in progress into three distinct dimensions:

• Uncertainty: statements are true or false, but due
to lack of knowledge we can only estimate to which
probability / possibility / necessity degree they are
true or false; e.g.: it rains in Galway or it does not,
and the probability / possibility / necessity degree
that it rains in Galway is 0.81;

• Vagueness: statements involve concepts for which
there is no exact definition, such as tall, small,
close, far, cheap, expensive; hence the statements
are true to some degree, whereby the values
are taken from a truth space, be it a multi-
valued truth-space as in fuzzy logic, or the
approximations of rough sets; e.g., “A Swedish
citizen is very tall to degree 0.78”;

• Temporal: instead of having wieldy ternary
predicates including time t, one can include more
succinct notions of time with the until and
since operators, as well as the Allen temporal
relations (e.g., before, while) using some version
of Linear Temporal Logic or Computational Tree
Logic. One then can represent information such as
“Brain concussion after loss of consciousness” and
“Caterpillar transformed into Butterfly” with the
intended semantics and reason over such temporal
knowledge.

There are languages and tools for probabilistic and
fuzzy extensions to both several DL and OWL languages
(Lukasiewicz and Straccia, 2008; Straccia., 2008). The
probabilistic OWL language itself—and in particular
(ψ | φ)[l, u] which means “generally, if an object belongs
to φ, then it belongs to ψ with a probability
in [l, u]”—can already solve Schulz et al.’s (2009)
problem of representing “Hepatitis hasSymptom Fever
in most but not all cases”: by default, hepatitis has
as symptom fever, so that we have in the ontology
(∃hasSymptom.Fever | Hepatitis)[1, 1].

Rough and fuzzy-rough DL and OWL-based ontology
languages are introduced by, most notably, Bobillo and
Straccia (2009) and Jiang et al. (2009). However, the
little experimentation that has been carried out revealed
that work is yet to be done to make it usable (Keet,
2010).

There are promising initial results in the direction
of temporal logics: there are more and less expressive
temporal DL languages, such as DLRUS and TDL-
Lite (Artale et al., 2002, 2007b; Lutz et al., 2008), its
demonstrated usefulness for part-whole relations (Artale
et al., 2008), and there is an OWL with temporal classes
using a metric temporal logic (Keberle, 2009) for which
there is an extension to the Pellet reasoner, OWL-
MeT10, to reason over the ontology. Such logics can, to

a greater or lesser extent, deal with typical examples of
SNOMED CT’s “Bypass after grafting” (Schulz et al.,
2009) and that Macrophage is a transformation of
Monocyte (Keet, 2009). However, it is not clear yet
if, and if so which, of these approaches will reach the
maturity to be fully deployed in ontology development
environment (ODE) tools.

Last, mereotopology and spatial logics, including the
RCC set of spatial relations (Randell et al., 1992),
may be of use. It is already known that RCC8 cannot
be represented fully in OWL and trade-offs are under
investigation (e.g., by Grütter and Bauer-Messmer
(2007) regarding environmental data of the Swiss Alps).
Any other extensions with respect to DLs-as-ontology-
language, such as notions of belief revision, are in even
earlier stages of research. Notwithstanding this, one
always has the option to choose a non-DL logic as
ontology language to meet one’s needs (given that there
are first order logic model checkers and theorem provers,
such as Prover9 and Isabelle), but this comes at the cost
of undecidability and performance losses.

3.5 Reasoning services

Automated reasoning services for ontologies can be
grouped into three main categories: the DL-based
reasoning services that gained prominence especially in
the context of the Semantic Web, ontological reasoning
services that aid the modeller to represent the subject
domain semantic better, and reasoners that use a variety
of different technologies to solve reasoning scenarios that
the common DL-based reasoners do not address. In this
section, we describe the high-level aspects as to what
they do and what their purposes are.

3.5.1 Description logics-based reasoning services

The DL-based reasoning services fall into three
categories, which are available to a greater or lesser
extent due to features or limitations of the language and
the ODEs that present the inferences.

1. ‘Standard’ reasoning services for ontology usage:
satisfiability and consistency checking, taxonomic
classification, instance classification;

2. ‘Non-standard’ reasoning services to facilitate
ontology development: explanation/justification,
glass-box reasoning, pin-pointing errors, least-
common subsumer;

3. Querying functionalities, such as epistemic and
(unions of) conjunctive queries;

Examples that clearly demonstrate the benefit of
instance classification to the point of discovering
(more precisely: deriving) novel biological knowledge
and saving the researcher laboratory equipment and
time are Wolstencroft et al. (2007) and Bandini
and Mosca (2006), respectively. The other standard
reasoning services are useful for ontology development,
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in particular when one chooses an expressive language
or has a large ontology. However, if the reasoner finds
unsatisfiable or inconsistent concepts, as a consequence,
it may be that there are many more concepts
unsatisfiable so that it becomes difficult to find the
root of the problem. To this end, the ‘non-standard’
reasoning services have been developed, and the notions
of pinpointing errors and explaining the entailments in
particular (Brandt and Turhan, 2001; Horridge et al.,
2008; Parsia et al., 2005).

Query functionalities logically and technically are
part of the reasoning services, where the focus is not
mere string matching (“find me [concept/role] x”) but,
e.g., “for the Firmicutes, retrieve the organisms and
their genes that have a GC3 contents higher than 80”
that uses a comparison operator (Calvanese et al., 2010),
“is concept x part of concept y?” where x and y do not
necessarily stand in a direct parthood relation, querying
under incomplete information (Calvanese et al., 2009),
or, e.g. “all devices that assist with upper limb mobility”
that requires first an evaluation over the type-level
ontology to find the type of devices that have declared
an object property, say, assistsWith that has as range
UpperLimbMobility and then to retrieve only those
instances from the data (Alberts et al., 2008; Keet et al.,
2008).

More requirements for reasoning services for use with
bio-ontologies have been identified (Keet et al., 2007),
which are partially satisfied by the extant reasoning
services, partially in the pipeline (such as hypothesis
testing with usable linking of data to an ontology),
and partially belong to what can be dubbed ontological
reasoning services.

3.5.2 Ontological reasoning services

With ontological reasoning services we denote those
algorithms that do contribute to ontological correctness
of the knowledge represented in the ontology, but which
are not part of the reasoning services for the logic-based
ontology language in which the ontology is represented,
hence, the obtained knowledge cannot be derived from
that logical theory in, say, OWL. Thus far, we are
aware of two such reasoning services, being OntoClean
(Guarino and Welty, 2004) and the RBox reasoning
service (Keet and Artale, 2008).

While the DL-based reasoners, such as FaCT++
and Racer, compute the subsumption hierarchy
based on the declared object- and data properties,
OntoClean computes the hierarchy based on the
concepts’ metaproperties. That is, for each concept in
the hierarchy, one determines the kind of rigidity (rigid,
semi-rigid, anti-rigid), identity, unity, and dependence,
and then it sorts the concept in its appropriate order
according to ontologically-motivated rules such as
‘Given two concepts, p and q, when q subsumes p: if
q is anti-rigid, then p must be anti-rigid’ and that a
rigid concept can subsume an anti-rigid one, but not
vice versa. For instance, Person (rigid) can subsume

CollegeStudent (anti-rigid), but not the other way
around: it is always the case that each college student
is also an instance of person, but it is not the case that
every person is a college student.

The RBox reasoning service ensures that the role
hierarchy is modelled correctly with respect to the
subject domain. Whereas from a pure logic-and-
reasoning standpoint, a hierarchy of relations (OWL
object properties) is declared as given assertions and
assumed to be correct, the RBox reasoning service
checks if the sub-relations have their domain and
range restriction such that these concepts are equal or
subsumed by the domain and range of its super-relation.
This is useful in particular for hierarchies of part-
whole relations, but one can use it with other object
relation hierarchies as well; e.g., r location has as
domain and range region and unit has domain region
and range measurement-unit, then when the relation
hierarchy has the assertion unit v r location, the
RBox reasoning service verifies that measurement-unit
v region holds in the concept hierarchy (as is the case
in the OWL-ized DOLCE-lite Plus) and not vice versa.

3.5.3 Other technologies

Although the Semantic Web technologies are gaining
momentum for ontology engineering, its technologies are
modular in the sense that one can, e.g., swap a DL-
based reasoner for another one that takes an OWL file
as input. We briefly mention three different directions
for alternative reasoning technologies.

While it is possible to carry out instance
classification with an OWL ontology (Wolstencroft
et al., 2007), one has to declare the domain and range
of each OWL object property, have defined concepts
for more classification, and not too much data. If
those constraints cannot be met, then data clustering
techniques for instance classification can be a viable
option to explore, be they ontology-enhanced (Zhou
et al., 2005) or not.

There are reasoners for probabilistic ontologies,
such as Da Costa and Laskey’s (2006) approach that
combines first order logic with Bayesian networks to
reason over the probabilistic OWL PR-OWL.

Constraint programming is already being deployed
for reasoning over conceptual data models (Cabot et al.,
2008), and the step to do so for ontologies as well is
relatively minor then. Possible advantages to have a
constraint-based reasoner are that one already can have
ternary relations and reason with temporal relations.

This concludes the brief exposé of ontology
development parameters that will be assessed on their
dependencies in the next section.
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OWL Language Ontology reuse
SKOS 2 QL 2 EL 2 DL DL Exten- founda- refe- domain

sions tional rence
Purpose ⇓

1. Query data – + – – – + – – ±
2. Database integration + + + – – ± ± ± +
3. Integration / record
navigation

+ + + – – – – ± +

4. Part of scientific
discourse

– – – + + + + + +

5. Web services
orchestration

– – + ± + – ± + +

6. ODIS ± + + – ± ± ± + +
7. ontoNLP + + + – ± – ± + +
8. Science – – – + ± + + + –
9. Tutorial ontology – – – + + ± – – +
Reasoning services ⇓

1. Standard – ± ± + + +
2. Non-standard – ± ± + + –
3. Querying – + + – – ±
4. Ontological + + + + + +

Bottom-up ⇓
1. Other KR/CM – ± ± + + –
2. DB reverse – ± ± + + –
3. Textbook models – – ± + + +
4. Thesauri + ± + – – –
5. Other semi-structured ± ± + – – –
6. Text mining + ± + – – –
7. Terminologies + ± + – – –
8. Tagging + ± + – – –

Ontology reuse ⇓
1. Foundational – – – + ± –
2. Reference – ± ± + + –
3. Domain ± ± + + + –

Table 1 Basic cross-matching between realistic combinations of parameters. The more complex dependencies, such as the
interaction between purpose, language, and reasoning service, can be obtained from traversing the table (purpose ↔
language and language ↔ reasoning services), likewise for, e.g., the dependencies between purpose and bottom-up
development, assessing purpose ↔ language and then bottom-up ↔ language.

4 Dependencies between parameters

Given the aforementioned parameters, one obviously has
to choose something when developing an ontology. Here
we are not interested in how the developer has to choose,
but instead in the question what are consequences of
such choices? For instance, given purpose 4 (ontology
as part of scientific discourse), then which ontology
language and which reasoning services would suit best?
Or, given that one’s bottom-up ontology development
tool locks one into OWL 2 QL, then what can one use
the ontology for? Answers to such questions are included
in Table 1, where “–” is to be understood “discouraged
or not possible”, “±” as “might work” but, e.g., no tool
is available yet to do it or another combination is more
suitable to achieve the optimal results, and “+” as a
“workable or good combination”. Although each entry in
the table deserves an explanation, we will illustrate the

guiding principles and rationale, from which the others
follow. This section is divided into dependencies due to
computational challenges, ontologies and their subject
domains, useful combinations, and an experimental
assessment of extant ontologies and their developers.

4.1 Dependencies due to computational challenges

An important factor is the trade-off between
expressiveness of the language and the things one
can do with an ontology represented in the language;
for a practical explanation, the reader is referred to
Keet and Rodŕıguez (2007), and for a more rigorous
treatise on computation and computability, one can
consult, e.g., Hopcroft et al. (2001). For instance, it is
computationally utterly intractable to pose (unions of)
conjunctive queries over medium to large-sized OWL-
DL and OWL 2 DL ontologies, especially when they are
linked to data, whereas OWL 2 QL was designed for
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this purpose. This advantage of OWL 2 QL comes at
the cost of expressiveness of the language (see §3.4.2),
so representing much of a scientific theory is not really
possible; hence we obtain “+” in purposes 1-3 for
‘simple’ ontology languages, “+” for purposes 4, 5, 8
and 9 for expressive ontology languages, and a “+”
for science (purposes 4 and 8) and very expressive
languages (OWL 2 DL and extensions).

A downside of expressive ontology languages is
that it is much easier to make mistakes when
representing the subject domain and to lose oversight
over the deductions. Therefore, besides the standard
reasoning services, the non-standard reasoning services
are important and, in fact, developed for exactly that
purpose, so that there is a corresponding “+” in the
table. The reasons why OWL 2 QL & non-standard
reasoning services has “±” is that explanation in DL-
Lite (Borgida et al., 2008) does not give the user as
much and as useful information as with the others,
because DL-Lite is a language of low espressiveness,
and it has not been implemented yet to verify the
theory. This holds even more so for OWL extensions,
given that no non-standard reasoning services have been
developed even in theory (therefore “–”). In this light, it
might seem curious to have all “+” for the ontological
reasoning services intersected with the language.
However, they are orthogonal to the DL-based reasoning
services and the item lumps together OntoClean
and the RBox reasoning service that are useful
in different scenarios. OntoClean gains importance
especially with taxonomies when few, if any, object- and
data properties have been described (thereby rendering
meaningless the standard subsumption reasoning with
DL-based reasoners) so that one can avail of at
least the ontological subsumption reasoning to have
a comparatively good taxonomy. The RBox reasoning
service assumes object properties have been declared in
the RBox and have been used widely in the ontology,
which is typical for ontologies that are represented in an
expressive language.

Looking at language extensions together with
ontology reuse, there are “–” because there are
hardly any real ontologies beyond toy examples. This
does not mean that theoretically it is impossible,
but one has to note that the more languages one
uses for representing ontologies, the more challenging
ontology reuse will become and the more it will
be a case of ontology re-engineering (approximation,
extensions, simplification etc.). For the same reason,
the combination of other representation formalism and
conceptual models together with OWL extensions have
received a “–”; some theoretical results have been
obtained with a temporal EER (Artale et al., 2007c)
and fuzzy UML (Ma and Yan, 2007), but they are
not implemented even in proof-of-concept tools in
order to exploit such conceptual models for bottom-up
development. In fact, the former has a DL foundation
and can be seen in the light of DL or OWL extensions
being transferred to conceptual modeling instead of

vice versa. Nevertheless, such language extensions are
important for the formalisation of the vocabulary of
textbook models as bottom-up strategy (“+” in the
table). For instance, the so-called Central Dogma in
genetics is normally pictured in one figure where arrows
denote the temporal notion of after in the linear flow of
time from transcription of DNA to translation into the
protein, and likewise regarding the arrows in chemical
reactions that can map onto, among others, “next time”
(⊕) for an instantaneous reaction, “at some time in
the future” (3+) for equilibria, or “at all times in the
future” (2+) for irreversible reactions, as well as the
earlier mentioned (§3.3) STELLA models.

Other theoretical and technical challenges that
make it practically a daunting task to develop an
ontology is the ‘overkill’ of using an expressive ontology
language, such as OWL 2 DL, with notoriously
underspecified ontology-like ‘simple’ but large artifacts
such as thesauri, terminologies, and tagging for use
in bottom-up ontology development; hence, receiving
a “–”. For instance, AGROVOC11 has about 30000
“descriptors” and the NCI metathesaurus contains
400,000 concepts mapped to 3,600,000 terms with
17,000,000 relationships, for which the OWL 2 DL
algorithms were not built. Instead, it is appropriate to
use scalable languages such as SKOS and OWL 2 EL,
and, if the thesaurus is not only transformed into an
ontology but also must be linked to large amounts of
data, then OWL 2 QL might be of use (which, however,
will blow up the encoding of the ontology due to the
restrictions put on the usage of the concept constructors
and relations). Initial results have been obtained to also
provide a tractable mechanism to link OWL 2 EL to
large amounts of data (Lutz et al., 2009; Baader et al.,
2010), which might gain prominence as usage scenario in
the near future. Notwithstanding the latter, it has been
observed that thesauri tend to have linguistic or lexical
aspects interwoven in the source (Soergel et al., 2004;
Wielinga et al., 2001), which can be an advantage in
particular for the purpose of an ontoNLP application or
record navigation.

Thus, there are both theoretical limitations following
from computability and engineering ones that concern
gaps in the availability or functionality of ontology
engineering tools, which make certain combinations
practically feasible or prohibitively expensive in the light
of the required resources.

4.2 Ontologies and subject domains

Different from theoretical and technical limitations, are
the “–” for tutorial ontology (purpose 9) and reuse
of foundational and reference ontologies. The principal
reason is that foundational ontologies tend to be rather
complex and not of immediate end-user (domain expert
modeller) interest, thereby posing a hurdle in getting
oneself acquainted with (logic-based) ontologies and
domain experts and software engineers generally have
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more affinity with topics such as pizzas, wines, and
university structures (at least initially).

A different assumption underlies the “–” crossing
science as purpose and reuse of domain ontologies: there
is not supposed to be any overlap between someone
else’s domain ontology Oother and one’s own envisioned
ontology ourO, but a complementarity instead, be it
through coordinated development and modularization
of the subject domains upfront (Smith et al., 2007)
or an extension of one of the branches of Oother.
This assumption follows directly from the reality-based
approach (§2.1) that says that there can be only
one ontology representing reality. Complementarity and
orthogonality may be assumed for at least the life
sciences, but it does not necessarily hold for social
sciences and humanities, where competing paradigms
and theories go in parallel. However, also for the
latter domain it is prudent to keep the competing
theories in separate ontologies, lest one ends up with
an inconsistent ontology for this reason. Regarding
complementarity, extension of Oother with the subject
domain one wants to develop an ontology for is feasible
and normally welcomed by developers of Oother. This is
different for extraction of a reusable section or a module
from Oother to use in ourO, because it is not trivial
to demarcate the module and practically extract it,
and it requires more careful versioning and maintenance
management of both Oother and ourO. Efforts have
gone into automating the extraction of “sub-ontologies”
(e.g., Konev et al., 2008), but they focus on finding
sections that are isolated from the rest due to absence of
connecting axioms, which may not necessarily coincide
or overlap with the section that represents the domain
of interest for the ontology developer. Hence, thus far,
upfront modularization can increase the potential for
reusability of, in particular, domain ontologies.

The values in the table for ontology reuse and the
ontology language are motivated by practical aspects
and characteristics of the ontologies. Foundational
ontologies are certainly not represented in SKOS and
not yet in OWL 2 QL or OWL 2 EL either, but
instead in a very expressive language. This does not
mean one cannot slim the foundational ontologies
further to, say, a DOLCE ultra-ultra-lite (ultra-lite
already exists), but it has not been done yet, thereby
delaying the possibility to reuse a much simplified
foundational ontology in a domain ontology intended
for runtime usage. The same line of argumentation
holds for reference ontologies in OWL 2 QL or OWL 2
EL, because these languages are intended for scalable
implementations and not to represent a fairly generic
subject domain as comprehensive as possible in an
expressive language.

Last, the “–” in the extensions column is due
to the limited knowledge about the extensions and
limited availability of tools to use them in ontology
development. Comparatively, the temporal extension
is most requested for foundational ontologies and
is currently incorporated in the (first order logic)

characterisation with ternary predicates (DOLCE,
GFO) or in the OWL ontology described in the comment
field (BFO). Another prohibiting factor is that when
a potentially reusable ontology is available, it may be
with the ‘wrong’ extension; e.g., a probabilistic one
whereas one wants to use it with vagueness predicates,
or its fuzzy predicates adhere to Lukasiewics semantics
whereas for one’s own ontology Zadeh semantics
suffices. In general, the issues that are raised by a
mismatch between the language in which Oother is
represented and the intended language for ourO are
under-investigated and insufficient tools are available
to (semi-)automatically go from one representation
language to another.

4.3 Useful combinations

While many combinations are theoretically possible,
it may have become clear from the previous two
sections why some parameters do, or do not, go
together. To synthesise those considerations, three
typical combinations of purpose, language, reasoning
services, bottom-up development, and ontology reuse
are outlined in this section.

A scenario that is popular for ontologies in science,
be it as part of an experiment or for representing a
scientific theory, is a mostly top-down approach that
reuses at least one foundational ontology, represents the
subject domain in a (very) expressive ontology language
(at least OWL DL), and uses both standard- and non-
standard reasoning services as part of the ontology
and its development process. Bottom-up activities, if
any, are separated from the main ontology development
process and used only to inform the modeller about
possible terms that may denote universals (concepts) or
relationships, which will be added in an semantically
enriched way only if deemed appropriate after careful
analysis. In addition, once the recent research outcomes
regarding uncertainty, vagueness, and temporal logics
become more widely known among the developers, one
may expect that ontologies will be enriched with these
dimensions; the latter will fill a known current gap, and
the former two may be interesting in particular in the
scientific method for hypothesis testing about the theory
itself.

At the other end of the spectrum and from
an engineering perspective, bottom-up ontology
development using relational databases and their
conceptual data models have appeal, despite that it
is a non-trivial task. Although conceptual modelling
languages are at least ExpTime (UML class diagrams)
or even undecidable (ORM) (Berardi et al., 2005;
Keet, 2007), the simplifications pushed through in the
RDBMS implementations make it easier to remain with
a much less expressive language, such as DL-LiteA or
even OWL 2 QL, which, in turn, fits well with Ontology-
Based Data Access (OBDA)12, powerful querying of
both the ontology and the associated data, and light-
weight data integration. Hence, an ontology-driven
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information system at run-time. In such a scenario,
however, there will be little opportunity for reuse
of ontologies for two main reasons: (a) at least the
foundational and reference ontologies, if not also any
(section of a) domain ontology, will have to be slimmed
first (see §4.2), and (b) incorporating such ontologies
in whole or in part into ourO increases the mismatch
between the knowledge in the ontology and the data
in the database or blows up the mappings between the
terms in the ontology and queries over the database,
which not only may affect the user experience when
querying the ontology but also puts a larger burden
on the system developer to design the implementation
(Keet et al., 2008).

The third scenario is a mixture of bottom-
up ontology development using thesauri, vocabularies
(including OBO ontologies), NLP tools for ontology
learning and population, Digital Libraries, and record
or entity navigation-based approaches, for which SKOS
and OWL 2 EL, and to a lesser extent possibly also
OWL 2 QL, are suitable. Due to the low expressiveness
of the language, one cannot obtain much from the
standard reasoning services, and bothering oneself with
top-down issues if an entity is an amount of matter or
a physical object is not very relevant for linked data
(that is, at present it is not perceived to be essential to
include). In addition, it is nigh on impossible to obtain
more subject domain semantics from the chosen sources
without a full manual analysis.

Having outlined the more comprehensive
combinations, this does not imply other combinations
are strongly discouraged or even impossible (a fourth
scenario will be discussed in Section 5); it just means
that other combinations will require relatively more
effort in ontology development where more theoretical
and engineering hurdles have to be overcome.

4.4 Experimental assessment

Besides theoretical motivations for dependencies
between ontology design parameters, we have examined
a random selection of 17 bio-ontologies on their
purposes, their subject domain, languages and so
forth and have conducted a survey among ontology
developers (11 respondents with another 10 ontologies).
The hypotheses, methodology, materials, results, and
discussion of the survey are described in a separate
technical report (Alberts et al., 2008); due to space
limitations, we will summarise only those outcomes
that are directly relevant to the design parameters. A
simplified list of dimensions of and about an ontology
that was used to categorise the selection of bio-
ontologies and asked about in the survey is included
in the appendix. The categorisation of the ontologies
according to these dimensions and their language as
identified with the DL Metrics feature in Protégé is
shown in Table 2. Note that recently the TONES
Ontology Repository13 has a longer list of ontologies
(232 ontologies d.d. 19-2-2010), which follow the same

pattern of type of ontology and the language used as
the sample in the table.

Synthesising the assessment, most of the ontologies
examined do not use the full expressivity of OWL-DL
or OWL 2 DL. Among these ontologies, expressiveness
of the ontology language that was used to represent
the ontology correspond roughly to OWL 2 EL or
QL, which suffice for the majority of bio-ontologies
that have as aim data integration and linking to data
sources. A definite trend can be observed that those
ontologies generally use a much less expressive language
compared to those focussed solely, or primarily, on
representing type-level knowledge of a scientific theory.
It is not clear why this is the case: do those ontology
developers use a simpler language because of the focus
on run-time usage of the ontologies linked to data, or
do they not need a more expressive language in the
first place? Curiously, there were discrepancies between
the language features that were actually used in the
ontology and the perceived requirements for language
features selected by the survey respondents. This goes
in both directions, i.e., where more is requested than
is used and that more features are used than were
requested. Given that selecting an ontology language
is important for all four other design parameters, it
deserves further investigation how to overcome this
mismatch.

Further, inspection of the domain ontologies revealed
that few of them reuse other ontologies, with the
exception of BioTop, Microbial Loop, Adolena, and
some of the OBO Foundry ontologies, but even they
use only a highly simplified version of DOLCE or BFO
and the Relation Ontology. The FMA, OBI, and BioPax
are reference ontologies themselves that possibly could
have been reused in whole or in part in the Human
Developmental Anatomy Ontology, MGED and NMR,
and PPI, respectively, but were not. Given that the
survey did not include a question about ontology reuse,
one can only speculate about the practical motivations
in addition to the theoretical ones described in §4.2,
and we are conducting experiments with modellers to
understand better what the practical motivations for
(non-)reuse are. Nevertheless, the history of the ontology
may provide some explanation: e.g., the SELEX, HGT,
and e-lis ontologies have a background in bottom-up
ontology development having used relational databases
and conceptual modelling as sources, and the Disease
Ontology was based upon (and mapped to) medical
billing codes, and therefore its developers may not have
wanted to bother themselves with foundational and
reference ontologies.

5 Discussion

Reflecting on the synthesis of the review on development
of ontologies, the design parameters, and their
dependencies, one is still left with an impression
that they are largely ‘soft’ issues for which it is not
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Ontology Characterizing DL Ontology type
Foundational Model of Anatomy, Lite14 N/A∗ a, c, h, i, l, n
ProPreO SHOIN (D) b, d, g, i, k
Ontology for biomedical investigations15 SHOIN (D) b, c, g, i, l, n
BioPax ALCHON (D) a, c, e, i/j, l, n
Cell Cycle Ontology SIN (D) a, d, g, j, k, n
HistOn ALCHIF(D) ab, d, g, j, k, o
NMR Ontology16 SH(D) ab, c, d, g, i, k
BioTop17 SH a, d, e, j, l, o
MGED Ontology ALEOF(D) b, c, g, j, k, m
Human Developmental Anatomy Ontology18 ALEOF(D) ab, c, f, i, k, m
Microbial Loop19 ALCHI a, d, g, j, k, o
Cell Type Ontology ALE(D) b, c, h, j, k, m
Gene Ontology20 ALE(D) b, c, h, i, k, m
Protein-Protein Interaction Ontology21 ALE(D) b, c, h, i, k, m
Mammalian Phenotype Ontology22 AL(D) b, c, f, i, k, m
Disease Ontology23 AL b, c, h, j, k, m
FungalWeb24 FL0 b, cd, g, j, k, m
“OBO Foundry; particular GO, PATO, SO, Anatomy, ..” ab, c, h, i, k, m

GO ALE(D)
PATO∗ AL
SO∗∗ SHI

Cell Cycle Ontology SIN (D) a, b, d, h
Microbial Loop ALCHI a, d, g, j, k, o
iCAPTURer in development a, d, f, g, k
“OAT” N/A a, b, g, j
e-lis ALCHN b, d, g, i, k, o
“cars (automotive domain)” ALCOIF(D) d, g, j, k, o
adolena SHIQ a, b, d, g, j, k, o
HGT legacy representation b, d, h, j, k, o

(ORM2, in NORMA)
SELEX DL-LiteA b, d, g, j, k
*: too large to load in Protégé

Table 2 DL characterization of the expressivity of several bio-ontologies sorted in (approximate) decreasing order with
respect to the complexity of the language in the first part of the table and in order of the survey respondents in the
second part of the table, each with their type and purposes of those ontologies in the third column (see Appendix
for the meaning of the letters in the right-most column).

unthinkable to find a counter-example and some of the
borderline cases (“±”) in Table 1 might change for the
better in the future once more tools have been developed
and more ontologies have been developed. Viewed
from this angle, ontology development still seems
more experimentation and skills than a scientifically
underpinned endeavour. Nevertheless, most inherent
challenges, such as the limitations due to computational
complexity of the ontology languages and the challenges
for reusing foundational ontologies in domain- and
‘application ontologies’, remain and have their scientific
bases and argumentations as to why this is the case.
Concerning the useful combinations (§4.3), it is difficult
to establish why exactly they emerged: is it because
there were tools to do it, or were the tools developed
to fit those scenarios? For instance, an appealing fourth
scenario is to develop a comprehensive ontology in a
very expressive language for the sake of representing
the subject domain as accurate and precise as possible,

and subsequently to use various ‘simplifiers’ to have
less expressive versions of the ontology in, say, OBO,
OWL 2 EL, and OWL 2 QL, that can be used in
various ontology-driven information systems. But (semi-
)automated semantic simplifiers still do not exist, even
though it has been requested for (e.g., by Keet et al.,
2008), and carrying it out and maintaining it manually
is rather prohibitive. This means a tool-pull to meet
implementation scenarios. This also holds for, e.g.,
the creative “model violation” to narrow down the
potentially interesting molecules from a large set to
a few, i.e., instance classification where the aim is to
have many inconsistent instances (Bandini and Mosca,
2006), and the use of ontologies in the Taverna workflow
system (Goble et al., 2007). Conversely, although rules
and ontologies, EL++, and DL-Lite do have a (very)
small user-base, making them part of the OWL 2
standard as profiles amounts to a push for the large
majority of ontology developers.
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We return now to the questions from the
introduction. The first question—which strategies
and additional methods do developers employ when
they do not adhere to a particular methodology—can
be answered with: the possible combinations of the
permutations in the five groups of design parameters.
What the possible permutations at each step are,
the choices the developers face, and if they can be
categorised in types of choices, can be answered, first
and foremost, with the list of structured parameters
described in Section 3, and, indirectly, with the
dependencies between them. Thus, on the question ‘does
a choice for one method, tool, language and so forth
lock one into another’, the answer is in the affirmative
and summarised in Table 1. Then, regarding the last
question—why do they go together or are exclusive,
and can or should that be changed—the answer
follows from the theoretical and practical assessment in
Section 4. Many dependencies can be traced back to the
ontology language with respect to the computational
complexity and implicit ontological commitment, then
to the subject domain, and to a lesser extent also the
bottom-up source material. Put differently, purpose and
reasoning services play second fiddle to the other three
groups of parameters. While it is true that a purpose
can lock one into a ontology language, it is the language
that imposes the constraint, likewise that the reasoning
services available depend on the language. This is not to
say that at the commencement of ontology development
one should first choose an ontology language, but merely
that for whichever combination of permutations one
chooses from the four other sets of parameters, success
of development certainly will be enhanced or obstructed
by the ontology language.

Last, and separate from the analysis presented in
this paper, it may be useful to develop a software-
supported procedure to select a workable combination of
parameters. For instance, a developer selects the desired
purpose and reasoning services and the software answers
with a suitable language, or she decides on a purpose
of the ontology and language so as to obtain a list
with the available reasoning services. Perhaps additional
functionality could be to provide also suggestions for
the most appropriate tools, which indirectly will reveal
gaps in software support for ontology development
(e.g., explanation in DL-LiteA, simplifiers, temporal
DL reasoners) that, when filled up, can increase the
amount of “+” in Table 1 and thereby serve the
ontologist better. This, in turn, may be extended
with soft constraints to facilitate ontology development
with modeller-oriented features of the tools, such as
intelligent ontology visualisation and graphical querying
to reduce the cognitive overload, and to find a minimal
set of tools one has to become acquainted with to carry
out the ontology development project.

6 Conclusions

To improve on the efficiency and effectiveness of
development of, primarily, domain ontologies, we
described five influential factors and their dependencies.
These five main parameters are (i) nine types of
purpose(s) of the ontology, (ii) what and how to
reuse the three main types of existing ontologies,
(iii) eight different types of approaches for bottom-
up ontology development from other legacy sources,
(iv) representation languages including the OWL and
OWL species and extensions, and (v) four types of
reasoning services. The dependencies between these
parameters have been structured, and follow primarily
from computational challenges—both theoretical and
application support—and types of ontologies with their
subject domain. The theoretical analysis was assessed
against a random selection of ontologies and a survey
among ontology developers, which revealed that they
roughly adhere to the outcome of the theoretical
analysis.

Future works is directed toward integrating the
dependencies into ontology development methodologies
and setting up a software-mediated guidance system
that can make suggestions how to proceed with ontology
development given particular requirements; thus, to
make the ‘soft’ knowledge about ontology development
more accessible and shorten the development process.

Appendix

The simplified list of dimensions of and about an ontology,
which was used to categorise the selection of bio-ontologies
in Table 2 and asked about in the survey, is as follows:

1. Attitude toward the ontology:
(a) representing reality at the type-level, say, as a

way to represent a scientific theory;
(b) to link it to their data, hence, within an

(immediate) application focus;
2. Aim of the ontology:

(c) ontologies as more or less official standardization
effort;

(d) experimental ontologies that are part of doing
science (be it science in a subject domain or
within computer science and engineering);

(e) tutorial ontologies;
(f) ontologies for knowledge acquisition (e.g.,

machine learning, text mining, wisdom of the
crowd);

3. History of the development of the ontology:
(g) development de novo and (aimed at) being

formal ontologies;
(h) legacy ontologies that have been converted

automatically into OWL or are/were thesauri
that intend to be upgraded to passing for an
ontology;

4. Characteristic of the developers:
(i) within, e.g., the OBO Foundry scope designated

as a candidate ontology, or some other
consortium;
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(j) developed independently from centralised efforts,
i.e., in a particular research group, or by an
individual;

5. Scope of the content of the ontology
(k) domain ontology with Universe of Discourse

a sub-discipline in biology, ecology, chemistry,
biomedicine, healthcare;

(l) reference or top-level ontology, such as DOLCE,
GFO, BFO, FMA, BioTop;

6. Size and/versus expressivity of the language used for
the ontology:
(m) large but simple, i.e., mostly just a taxonomy

without, or very few, properties (relations)
linked to the concepts, where ‘large’ is, roughly,
> 10000 concepts;

(n) large and complex, where ‘complex’ includes
rich usage of properties, defined concepts, and,
roughly, requiring at least OWL-DL;

(o) small and complex, where ‘small’ is, roughly, <
250 concepts.
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C. M. Keet and M. Rodŕıguez. Toward using biomedical
ontologies: trade-offs between ontology languages. In
AAAI 2007 Workshop Semantic eScience (SeS 2007),
volume WS-07-11 of AAAI Technical Report, pages 65–
68. AAAI, 2007. 23 July 2007, Vancouver, Canada.

C. M. Keet, M. Roos, and M. S. Marshall. A survey of
requirements for automated reasoning services for bio-
ontologies in OWL. In Proceedings of the 3rd Workshop
on OWL: Experiences and Directions (OWLED 2007),
volume 258 of CEUR-WS, 2007. 6-7 June 2007,
Innsbruck, Austria.

C. M. Keet, R. Alberts, A. Gerber, and G. Chimamiwa.
Enhancing web portals with Ontology-Based Data
Access: the case study of South Africa’s Accessibility
Portal for people with disabilities. In C. Dolbear,
A. Ruttenberg, and U. Sattler, editors, Proceedings of
the Fifth OWL: Experiences and Directions (OWLED
2008), volume 432 of CEUR-WS, 2008. Karlsruhe,
Germany, 26-27 October 2008.

J. Kim, Y. Gil, and V. Ratnakar. Semantic metadata
generation for large scientific workflows. In Proceedings
of the 5th International Semantic Web Conference
(ISWC’06), 2006. Athens, GA, USA.

B. Konev, C. Lutz, D. Walther, and F. Wolter. Semantic
modularity and module extraction in description logics.
In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and
N. M. Avouris, editors, Proceedings of 18th European
Conference on Artificial Intelligence (ECAI’08),
volume 178 of Frontiers in Artificial Intelligence and
Applications, pages 55–59. IOS Press, 2008. Patras,
Greece, July 21-25, 2008.

L. Lubyte and S. Tessaris. Extracting ontologies from
relational databases. In D. Calvanese, E. Franconi,
V. Haarslev, D. Lembo, B. Motik, S. Tessaris, and A.-
Y. Turhan, editors, Proceedings of the 20th International
Workshop on Description Logics (DL 2007), pages 387–
395, 2007.

T. Lukasiewicz and U. Straccia. Managing uncertainty and
vagueness in description logics for the semantic web.
Journal of Web Semantics, 6(4):291–308, 2008.

C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal
description logics: A survey. In Proc. of the Fifteenth
International Symposium on Temporal Representation
and Reasoning (TIME’08). IEEE Computer Society
Press, 2008.



Dependencies between Ontology Design Parameters 215

C. Lutz, D. Toman, and F. Wolter. Conjunctive
query answering in the description logic el using a
relational database system. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence
IJCAI09. AAAI Press, 2009.

Z. Ma and L. Yan. Fuzzy XML data modeling with the
UML and relational data models. Data & Knowledge
Engineering, 63(3):972 – 996, 2007. ISSN 0169-023X.
25th International Conference on Conceptual Modeling
(ER 2006) - ’Four of the best papers presented.

J. S. Madin, S. Bowers, M. P. Schildhauer, and M. B. Jones.
Advancing ecological research with ontologies. Trends
in Ecology & Evolution, 23(3):159–168, 2008.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and
A. Oltramari. Ontology library. WonderWeb
Deliverable D18 (ver. 1.0, 31-12-2003)., 2003.
http://wonderweb.semanticweb.org.

D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview. W3C Recommendation.,
2004. http://www.w3.org/TR/owl-features/.

B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. OWL 2 Web Ontology Language
Profiles. W3c recommendation, W3C, 27 Oct. 2009a.
http://www.w3.org/TR/owl2-profiles/.

B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL
2 web ontology language structural specification and
functional-style syntax. W3c recommendation, W3C, 27
Oct. 2009b. http://www.w3.org/TR/owl2-syntax/.

B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL
ontologies. In Proceedings of the World Wide Web
Conference (WWW 2005), 2005. May 10-14, 2005,
Chiba, Japan.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies.
J. on Data Semantics, X:133–173, 2008.

V. Presutti, A. Gangemi, S. David, G. A. de Cea, M. C.
Surez-Figueroa, E. Montiel-Ponsoda, and M. Poveda. A
library of ontology design patterns: reusable solutions
for collaborative design of networked ontologies. NeOn
deliverable D2.5.1, NeOn Project, Institute of Cognitive
Sciences and Technologies (CNR), 2008.

D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based
on regions and connection. In Proc. 3rd Int. Conf. on
Knowledge Representation and Reasoning, pages 165–
176. Morgan Kaufmann, 1992.

M. Rodriguez-Muro, L. Lubyte, and D. Calvanese. Realizing
Ontology Based Data Access: A plug-in for Protégé.
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Notes

1A scientific answer to the question why this is the
case is outside the scope of this paper. Anecdotal
evidence directs toward a complex answer, including,
but not limited to, factors such as unfamiliarity that
methodolgies exist (ignorance of the modeller), how
to use a particular methodology (lack of training or
documentation), perceived gaps in the methodology
(inadequacy of the methodology, be it the theory or the
software support for it), and that one anyhow knows how
to model or insists on reinventing the wheel (arrogance of
the modeller).

2http://swoogle.umbc.edu/
3http://owl.cs.manchester.ac.uk/repository/
4http://bioportal.bioontology.org/
5This was already observed earlier in Object-Role Modeling;
see (Halpin and Morgan, 2008) for a recent overview and
more comprehensive argumentation.

6http://www.imbi.uni-freiburg.de/biotop/
7http://www.ariadnegenomics.com/products/

pathway-studio/
8http://ncim.nci.nih.gov/
9The unique name assumption (UNA) is the norm in
information systems, whereas OWL does not adhere to the
UNA. No UNA increases computational complexity (Artale
et al., 2009) and results in different inferences compared
to, e.g., relational database systems (see, e.g., the example
for the Haskey featrue in the OWL standard).

10http://ermolayev.com/owl-met/
11A vocabulary of terms regarding agriculture, http://aims.
fao.org/website/AGROVOC-Thesaurus/sub

12Realistically, however, the ‘ontology’ is much closer to a
conceptual model than an ontology, hence, ‘COnceptual
MOdel-based Data Access’ (comoda) would be a more
accurate term; see e.g. the experimental results with
operational databases in (Alberts et al., 2008; Calvanese
et al., 2010).

13http://owl.cs.manchester.ac.uk/repository/
14http://sig.biostr.washington.edu/projects/fm/

AboutFM.html; the OWL version, FMA-lite, can be
accessed through http://www.obofoundry.org/cgi-bin/

detail.cgi?id=fma_lite.
15http://www.obofoundry.org/cgi-bin/detail.cgi?id=

obi
16Descriptors relevant to the experimental conditions of

the Nuclear Magnetic Resonance (NMR) component in
a metabolomics investigation http://obo.sourceforge.

net/cgi-bin/detail.cgi?nmr, with general home page at
http://msi-ontology.sourceforge.net/

17http://www.imbi.uni-freiburg.de/biotop/
18http://obo.sourceforge.net/cgi-bin/detail.cgi?

human-dev-anat-abstract
19http://www.meteck.org/supplDILS.html
20http://www.geneontology.org/; the
go daily-termdb.owl was examined last on 25 Sept. 2008.

21http://obo.sourceforge.net/cgi-bin/detail.cgi?

psi-mi and its central development page at http://

psidev.sourceforge.net/mi/xml/doc/user/index.html
22http://obo.sourceforge.net/cgi-bin/detail.cgi?

mammalian\_phenotype
23http://diseaseontology.sourceforge.net/
24http://www.cs.concordia.ca/FungalWeb/


