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Abstract. A scenario in ontology development and its use is hypothesis testing,
such as finding new subconcepts based on the data linked to the ontology. During
such experimentation, knowledge tends to be vague and the associated data is
often incomplete, which OWL ontologies normally do not consider explicitly. To
fill this gap, we use OWL 2 and their application infrastructures together with
rough sets. Although OWL 2 QL is insufficient to represent most of rough set’s
semantics, the mapping layer of its Ontology-Based Data Access framework that
links concepts in the ontology to queries over the data source suffice to ascertain
if a concept is rough, which subsequently can be modelled more precisely in an
OWL 2 DL ontology. We summarise the trade-offs and validate it with the HGT
ontology and its 17GB genomics database and with sepsis, which demonstrates
it is an encouraging step toward comprehensive and usable rough ontologies.

1 Introduction

It has been noted that scientist want to use ontologies together with data, such as hy-
pothesizing that some subclass or relation exists and subsequently to validate this either
in the laboratory or against the instances already represented in the knowledge base [1].
For such a putative new concept, one would want to be able to find those instances with
the right combination of object and data properties, i.e., taking a ‘guessed’ collection
of attributes that is subsequently experimentally validated against the data (e.g., [2]).
Such guessing includes dealing with incomplete or otherwise vague data and informa-
tion. Ideally, for all relevant individuals belonging to the putative concept, each value
of the chosen properties is distinct, but this may not be the case due to the limited data
or insufficiency of the selected properties so that some individuals are indistinguish-
able from each other and therewith instantiating a rough concept that represents the
intensional aspects of the rough set. Despite the vagueness, it still can be useful in the
ontology engineering process to include such a rough concept in the ontology

Hence, a rough ontology can be useful. To support such usage of ontologies, one
needs a language with which one can represent, at least, rough concepts as the inten-
sional representation of the corresponding rough set and a way to persistently relate
the instance data to the rough concepts. Various extensions of Description Logics (DL)
and OWL languages have been proposed for rough ontologies [3–8], which diverge in
commitment as to which aspects of rough sets are included in the ontology language
and they concern theory instead of demonstrating successful use of the rough ontology
in ontology engineering. As it turns out, there is no perfect DL language, reasoner, and
ontology development tool that does it all with respect to the semantics of rough sets,
nor will there be if one adheres to the hard requirement of staying within the decidable



fragment of first order logic, let alone within the tractable zone. However, some results
can be obtained already: in addition to representing most of rough sets’ semantics with
the recently standardised OWL 2 DL, the linking to data and, moreover, ascertaining if
a concept is really a rough concept can be achieved within the framework of Ontology-
Based Data Access (OBDA) [9] by exploiting the mapping layer. To demonstrate it is
not merely theoretically possible to have rough concepts and vague instances in one’s
ontologies, but that it is indeed practically possible, we take the use cases about horizon-
tal gene transfer (HGT) with a hypothesized (rough) concept Promiscuous Bacterium,
and demonstrate how this can be modelled more precisely in an OWL 2 DL ontology
(but not used with the data) and deployed in an OBDA system using a simpler ontology
(roughly in OWL 2 QL) so that the instances from the 17GB large HGT-DB database
can be retrieved using a structured process of automation and manual intervention.

The remainder of the paper is structured as follows. We summarise the theoretical
assessment on the feasibility of rough ontologies in Section 2. Experimental results with
rough concepts and with vague instances will be presented in Section 3 and we close
with conclusions in section 4.

2 Rough concepts and rough ontology languages

To be able to have a correspondence of a rough set with a rough concept in a rough on-
tology and to represent its essential characteristics, we first outline the basics of rough
sets following the standard “Pawlak rough set model” [10] and then summarize require-
ments and trade-offs to include such roughness features in DL-based OWL ontologies.

2.1 Rough sets

The Pawlak rough set model is depicted informally in Fig. 1 and formally, it is as fol-
lows. I = (U,A) is called an information system, where U is a non-empty finite set of
objects and A a finite non-empty set of attributes and such that for every a ∈ A, we
have the function a : U 7→ Va where va is the set of values that attribute a can have.
For any subset of attributes P ⊆ A, one can define the equivalence relation IND(P )
as IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, a(x) = a(y)} so that IND(P ) generates
a partition of U , which is denoted with U/IND(P ). If (x, y) ∈ IND(P ), then x and
y are p-indistinguishable with respect to the attributes in P . From the objects in uni-
verse U , we want to represent set X such that X ⊆ U using the attribute set P where
P ⊆ A. X may not be represented in a crisp way—the set may include and/or exclude
objects which are indistinguishable on the basis of the attributes in P—but it can be
approximated by using lower approximation, PX = {x | [x]P ⊆ X}, and upper ap-
proximation, PX = {x | [x]P ∩X 6= ∅}, where [x]P denotes the equivalence classes
of the p-indistinguishability relation. The lower approximation is the set of objects that
are positively classified as being members of setX , i.e., it is the union of all equivalence
classes in [x]P . The upper approximation is the set of objects that are possibly in X; its
complement, U −PX , is the negative region with sets of objects that are definitely not
in X (i.e., ¬X). Then, “with every rough set we associate two crisp sets, called lower
and upper approximation” [10], which is commonly denoted as a tuple X = 〈X,X〉.



The difference between the lower and upper approximation, BPX = PX − PX , is
the boundary region of which its objects neither can be classified as to be member of
X nor that they are not in X; if BPX = ∅ then X is, in fact, a crisp set with respect
to P and when BPX 6= ∅ then X is rough w.r.t. P . The accuracy of approximation,
αPX , provides a measure of how well the rough set approximates the target set with
respect to P , e.g., αPX = |PX|

|PX| . Clearly, if αPX = 1, then the boundary region BPX

is empty and thus X is crisp. Useful for reasoning is that PX ⊆ X ⊆ PX .

Set X
Lower 
approximation

            Upper 
approximation

Universe U         Granule 
with object(s)

Fig. 1. A rough set and associated notions (Source: based on [10]).

2.2 Prospects for rough OWL ontologies

Due to space limitations, only the outcome of the analysis will be summarised here; a
more comprehensive assessment and argumentation is described in [11].

OWL ontologies use a richer language [12] than the simple I = (U,A) of rough
sets, in particular concerning how to represent ‘attributes’ of a concept C ∈ C (with
object properties R ∈ R or data properties D ∈ D) and object properties’ properties.
Another difference is that we need a model-theoretic semantics for lower and upper
approximation, C and C, and rough concept, “oC”, and impose that the attributes used
to compute C and C are represented in the ontology.

The semantics of the approximations is straightforward, with E denoting the reflex-
ive, symmetric and transitive indistinguishability (i.e., equivalence) relation: C = {x |
∀y : (x, y) ∈ E → y ∈ C} and C = {x | ∃y : (x, y) ∈ E ∧ y ∈ C}. Regarding
rough sets’ tuple notation, X = 〈X,X〉, there can be an analougous one for concepts,
oC = 〈C,C〉, but this cannot be represented as such in the ontology. A solution to this
is to ‘flatten out’ the tuple by relating C and C to oC with newly introduced object
properties, say, lapr and uapr (i.e., quantifying over sets, not objects that are member
of the respective sets). This enables one to make explicit the knowledge about how the
three concepts relate to each other: oC is identified by the combination of its C and C,
which is analogous to a weak entity type in EER, i.e., for each oC, there is exactly one
C and one C, and vv. Last, for rough set’s A, the set of ‘attributes’ in OWL amounts to
R∪D, and each pi ∈ P to compute the rough concepts must have oC as its domain.

Overall, we now have a more precise notion of oC cf. the tuple notation in [6], use
both R and D for the ‘attributes’ of the concepts (cf. R only in [5, 8]), include the
properties of the indistinguishability relation (cf. their omission in [7] or a similarity
relation [3]), and adhere to proper declaration of C, C, and oC in that they all have the
same collection of properties fromR∪D (cf. different sets of attributes in [8]).



Nevertheless, there are still three aspects to sort out for practical rough ontologies:
the necessity to represent the indistinguishability relation E, the identity of a rough
concept by its lower and upper approximation by means of identification constraints
involving OWL object properties, and linking the ontology to (large amounts of) in-
stances to ascertain if a putative rough concept is indeed rough or not. Currently, there
is no single DL or OWL language that can handle all three features, or even two of
the three. Narrowing the gap between ‘offer and demand’ by inventing a new language
is impractical: real identification of oC requires second order logic, or, as approxima-
tion, identification constraints for each rough concept, which is likely to increase the
computational complexity even further. Therefore, we shall push the envelope of ex-
tant languages and tools and make concessions regarding semantics and performance
in order to gain better insight into if development of a new language and corresponding
tools are worth the effort and if so, which aspect should be tackled first, and to assess
the amount of uptake by ontologists to experiment with rough concepts. For practical
reasons, then, we narrow down the ontology languages to the DL-based OWL species,
because they are W3C standardised languages, there are ontology development tools
for them, they have several automated reasoners, and they are the DL of choice among
the (bio-)ontologists.E’s reflexivity, symmetry and transitivity, can be represented with
OWL 2 DL [12]. Currently, oC can only be added as a “RoughC” with its relations to
the approximations so that it serves as human communication, i.e., there is no computa-
tional significance other than deducing C v C v C based on the declared knowledge
in the TBox. Then, given it is the interplay with the actual instances that is crucial for
roughness, we need also a system that can handle large amounts of data, which currently
locks one into DL-Lite/OWL 2 QL in the OBDA framework with QUONTO [9] that can
represent even less of rough set’s semantics (and of the subject domain) than OWL 2
DL. This issue can be counterbalanced partially by exploiting the mapping layer, al-
though this is not ideal because it is not as transparent and maintainable as representing
the subject domain semantics in the ontology, but we can assess our rough concepts and
instances.

3 Experimentation with a rough ontology and vague instances

Given the aforementioned trade-offs, we will demonstrate how one can have either an
ontology with rough concepts represented fairly comprehensively regarding their se-
mantics (Experiment 2 and 3) or have it with more limited semantics but linked to the
data and be able to perform the actual hypothesis testing against the data (Experiment
1). To be fair to the latest technologies for expressive OWL species, we also experiment
with a more expressive ontology with little data by revisiting the sepsis experiment of
[8] in Experiment 3.

3.1 Materials and Methods

Methodology. Different strategies for both experimentation and use of rough ontolo-
gies in operational ontology-driven information systems are possible. Because the link
to data is crucial for rough ontologies, we commence with the OBDA approach and



subsequently move to a more expressive language. The methodological steps for the
first two experiments are as follows:
1. Develop a basic ontology in OWL 2 QL or DL-LiteA stored as an OWL file;
2. Obtain the relational database in Oracle, DB2, MySQL, or PostgreSQL;
3. Set up the OBDA system;
4. Declare the mappings between the classes and properties in the OWL ontology and

SQL queries over the database in the OBDA system;
5. Find all rough concepts with respect to the data through posing ontology-mediated

queries (in SPARQL or EQL-Lite), evaluating the result set, and adding the con-
cepts to the ontology;

6. Migrate this ontology to an expressive OWL species, such as OWL 2 DL: (i) de-
clare the semantics from the WHERE clause in the SQL query of the mapping layer
as object and data properties in the ontology; (ii) add upper and lower approxima-
tions of each rough concept; (iii) add the indistinguishability object property with
its properties (reflexive, symmetric, transitive); (iv) add the axioms relating the ap-
proximations to the rough concepts and vv.;

7. When the rough reasoning services are implemented, run the reasoner with the
enhanced ontology to check satisfiability and consistency.

For step 6 in experiment 2, the following considerations are adhered to. Recollecting
the relevant part of OWL 2’s direct semantics [12]: take a vocabulary V with, among
others, VC denoting the set of classes, and its corresponding class interpretation func-
tion ·C that assigns to each class C ∈ VC a subset (C)C ⊆ ∆I , and VOP the set of
object properties where ·OP is the object property interpretation function that assigns to
each object propertyOP ∈ VOP a subset (OP )OP ⊆ ∆I×∆I . We add rough concept,
upper, and lower approximation such that oC,C,C ∈ VC , add the indistinguishability re-
lation Ind over∆I×∆I such that Ind∈ VOP and the ontology contains the assertions:
ReflexiveObjectProperty(a:Ind), SymmetricObjectProperty(a:Ind), and
TransitiveObjectProperty(a:Ind), and assign the semantics to the classes:

(C)I = {x ∈ ∆I | ∃y ∈ ∆I , (x, y) ∈ Ind ∧ y ∈ CI} (1)
(C)I = {x ∈ ∆I | ∀y ∈ ∆I , (x, y) ∈ Ind→ y ∈ CI} (2)
(oC)I = (〈C,C〉)I = 〈(C)I , (C)I〉 (3)

which amounts to the assertions for any C and C in OWL 2 DL functional syntax,
EquivalentClasses(C ObjectSomeValuesFrom(a:Ind a:C)) and
EquivalentClasses(C ObjectAllValuesFrom(a:Ind a:C))

Recollect that (3) is approximated in an ontology by adding the two properties, uapr,
lapr∈ VOP that each have oC as domain, and cardinality exactly 1: ObjectProperty-
Domain(a:upar a:oC), ObjectPropertyDomain(a:lapr a:oC), ObjectExact-
Cardinality(1 a:uapr a:C), and ObjectExactCardinality(1 a:lapr a:C).
This is added to the ontology for each rough concept and its approximations.

Materials. Linking data from one or more data sources to an ontology is carried out
with the OBDA system based on the theory and tools described in [9]. In short, the
semantic layer was realised with Protégé 3.3.1 and the OBDA plugin for Protégé, with
which one develops and inspects the OWL ontology and declares the mappings between



the classes and properties in the ontology and SQL queries over the data source (persis-
tently stored in an .obda file). The application layer is the OBDA plugin for Protégé as
well, which allows the user to pose the SPARQL user-queries over the ontology and in-
spect the query answer. The automated reasoner that takes care of unfolding and rewrit-
ing the SPARQL user-query into the SQL query over the data sources is QUONTO. The
data layer consists of a single Oracle 10g database based on the HGT-DB database [14]
that stores data about horizontal gene transfer and was kindly made available for testing
purposes by its developers.

The ontology language for this particular implementation of the OBDA system is
the OWL-ized DL language DL-LiteA [9]. From an ontologist perspective, the DL-LiteA
ontology for OBDA, and in particular the HGT ‘application ontology’, has typical char-
acteristics of a logic-based simple conceptual data model, which has 31 classes, 32 ob-
ject properties, 61 data properties, and 108 subclass axioms that deal with organisms
and their properties (such as name, amount of genes, and chromosomes) and genes
with their properties (such as its function, location, and its statistics).

For the OWL2 DL representation of the HGT ontology and rough concepts, Protégé
4.0 was used with Fact++. The domain knowledge for Experiment 3 is taken from [8]
and also required OWL 2 DL. Protégé 4.0 with Pellet 2.0 and FaCT++, and Racer Pro
Preview 2.0 were used and the experiments were carried out on a Macbook Pro with
Mac OS X v 10.5.8 with 2.93 GHz Intel core 2 Duo and 4 GB memory.

The supplementary files—ontologies, mappings, queries, and data—are available
online through http://obda.inf.unibz.it/obdahgtdb/obdahgtdb.html.

3.2 Results

The setting for the first and second experiment about HGT is as follows. A geneticist
has an idea about what a “promiscuous bacterium” is because some bacteria transfer and
receive much more genes from other bacteria than others do. It is not fully understood
who they are and why this is the case, hence the first step is to analyse the data using
properties that indicate a certain promiscuity so as to find bacteria with comparatively
many anomalous (foreign) DNA in their chromosome.

Experiment 1 (Promiscuous bacteria in OBDA) We specify a first attempt for repre-
senting the notion of PromiscuousBacterium in the ontology as a subtype of Organism,
so that it must have more than 5 so-called FlexibleHGTgeneClusters (a set of overlap-
ping, adjacent or nearby genes on the chromosome that are horizontally transferred) and
the Percentage of genes on the chromosome that are predicted to be horizontally ac-
quired as> 10. Given the limitations of the language and to not have the intended mean-
ing of PromiscuousBacterium (as in (9), below) partially in the ontology and partially
in the mapping layer, we chose to put all properties in the OBDA mapping layer; that
is, we have PromiscuousBacterium v Organism in the OWL ontology, and then made
a mapping between PromiscuousBacterium in the ontology and an SQL query over the
relational database (see Fig. 2): the head of the mapping with the class in the ontology
and those attributes in the database with which we identify a promiscuous bacterium, is
shown with the line PromiscuousBacterium(getPromBact($abbrev,$ccount,
$percentage)) under mapping M:0 and the mapping body, i.e., SQL query over the



Fig. 2. Mappings for PromiscuousBacterium and its subclass PromBactPrime in the OBDA plugin.

database, below it. Querying the database through the ontology with a SPARQL query
using the OBDA Plugin for Protégé and answered using QUONTO, 98 objects are re-
trieved where Dehalococcoides CBDB1 (dehaloc) and Thermotoga maritima (tmar)
are truly indistinguishable bacteria, i.e. they have the same values for all the selected
and constrained attributes. A few others are very close to being so, such as Pelodictyon
luteolum DSM273 (plut) and Synechocystis PCC6803 (synecho3) who have both 6
clusters and 10.1% and 10.2%, respectively, which, practically, still lie within the error-
margin of genomics data and its statistics; see online material for the full result set.
Thus, by virtue of dehaloc and tmar, PromiscuousBacterium is a rough concept.

To improve the accuracy and examine if we can turn a subconcept of Promiscuous-
Bacterium into a crisp one, a new data property about the number of predicted genes
that are horizontally transferred—NrPredHGTgenes with integer values, set to >150—
is added and the second attribute set at >10 gene clusters, which thus revises the as-
sumption of what a promiscuous bacterium really is, i.e., we have a “PromBactPrime”
in the ontology such that PromBactPrime v PromiscuousBacterium. The head and body
of the mapping are depicted under M:1 in Fig. 2. The query answer has only 89 objects
and this change eliminated the indistinguishability of dehaloc and tmar, hence Prom-
BactPrime is a crisp concept with respect to the data stored in the database. ♦

Experiment 2 (Promiscuous bacteria in OWL 2 DL) In contrast to the OBDA set-
ting in Experiment 1, it is possible to represent the subject domain semantics of promis-
cuous bacteria in the OWL 2 DL ontology itself instead of in the mapping layer. The
PromiscuousBacterium is a subclass of Organism in the HGT ontology with an ad-
ditional object- and a data property, so that it must have more than 5 flexible hgt-gene



clusters (FlexibleHGTgeneCluster) and the percentage of genes on the chromosome that
are predicted to be horizontally acquired, Percentage, greater than 10. In compact DL
notation, we then have:

PromiscuousBacterium ≡ Organism u ∃ Percentage.real>10 u
≥ 6 hasHGTCluster.FlexibleHGTGeneCluster

(4)

In addition, we have to add the assertions regarding the indistinguishability relation Ind
(see Section 3.1 for relational properties) and that Promiscuous Bacterium has exactly
one lower and one upper approximation, PromBactLapr and PromBactUapr, as follows:

PromiscuousBacterium v = 1 lapr.PromBactLapr (5)
PromiscuousBacterium v = 1 uapr.PromBactUapr (6)

PromBactLapr ≡ ∀ Ind.PromBact (7)
PromBactUapr ≡ ∃ Ind.PromBact (8)

Given that we already know from Experiment 1 that PromiscuousBacterium is indeed
a rough concept and that the proposed refinement, i.e., PromBactPrime, is not, the ad-
ditional crisp concept requires only the full definition without relating it to a lower and
upper approximation:

PromBactPrime ≡ PromiscuousBacterium u ∃ Percentage.real>10 u
≥ 11 hasHGTCluster.FlexibleHGTGeneCluster u
∃ NrPredHGTgenes.integer>150

(9)

Querying or instance classification with this OWL 2 DL version and the HGT data,
however, is currently not feasible. ♦

Experiment 3 (Revisiting septic patients) Patients may be septic or are certainly sep-
tic, according to the so-called Bone criteria and Bone criteria together with three out
of another five criteria, respectively. For instance, the Bone criteria (from [8]) can be
encoded in OWL as being an EquivalentClass to BoneSeptic, as follows:
(hasDiagnosis some Infection and
hasSymptom some (Hypoperfusion or Hypotension or OrganDysfunction)
and (((temperature some int[> 38] or temperature some int[<36])
and (respiratoryRate some int[>20] or paco2count some int[<32]))
or ((temperature some int[>38] or temperature some int[<36]) and

heartRate some int[>90])
or ((temperature some int[>38] or temperature some int[<36]) and
(leukocyteCount some int[<4000] or leukocyteCount some int[>12000]))

or ((respiratoryRate some int[>20] or paco2count some int[<32]) and
heartRate some int[>90])

or ((respiratoryRate some int[>20] or paco2count some int[<32]) and
(leukocyteCount some int[<4000] or leukocyteCount some int[>12000]))

or (heartRate some int[>90] and (leukocyteCount some int[<4000] or
leukocyteCount some int[>12000]))))

The respective encodings in Protégé 4.0 and RacerPro 2.0 preview are available online
as supplementary material, as well as data of 17 ‘patients’ such that there are indistin-
guishable patients and the boundary region is not empty. Protégé 4.0 with Pellet 2.0
did not work at all. Protégé 4.0 with FaCT++ works well with a few dummy concepts
and a few instances, but the esoteric definitions for septic appeared to be more chal-
lenging: it crashed with an encoding including Ind and, with or without Ind, upon
saving and reopening the .owl file, it had reordered the braces in the definition in such
a way as to change its meaning so that it does not classify all 17 individuals correctly.



These observations are probably due to the fact that the software used is still in the
early stages. RacerPro 2.0 Preview never crashed during exerimentation and did return
the correct classifications within about 2 hours (the slow response time is likely due to
the heavy use of data properties with the concrete domains; Volker Haarslev, personal
communication). While the latter is an encouraging result because it works with the real
definitions and a small data set, the automated reasoning clearly does not scale to [8]’s
thousands of patients. ♦

3.3 Discussion

While a rough ontology such as the amended HGT ontology in OWL 2 DL did provide
a more comprehensive and transparent way of representing the declarative knowledge
of putative and actual rough concepts, it was only with the less expressive OWL 2 QL-
based OBDA-enabled system that it could be experimentally validated against the data
and that it was certain that there was no need to add approximations for PromBactPrime
in the ontology. Taken together, the ontologies, OBDA, and ontology development tools
with their respective reasoners provide a means to represent the steps of successive de-
vaguening during experimentation, they make the selected properties explicit, and, if
desired, one can keep both oPromiscuousBacterium and PromBactPrime in the ontolo-
gies without generating inconsistencies. The two-step process with OBDA and OWL 2
DL might seem cumbersome, but is an advance with respect to traceability compared
to separately querying the database with undocumented one-off queries and adding the
obtained knowledge to the OWL 2 DL ontology.

The feasibility to extend languages or tools to reflect the representation of the rough-
ness semantics and the experimentation in ontology engineering using a reasoner, is
theoretically, and thus also practically, limited. As last resort, one can add a RoughC
v > and let all rough concepts in the subject domain be subsumed by RoughC so that
the modeller informally can keep track of the rough concepts in the ontology. For OWL
2 DL, one can also define an extension as outlined in Section 3.1, which is similar to
that of [6]’s RDLAC . However, there is little to gain in automated reasoning due to
scalability issues as illustrated in the experiments. The added value of such extensions
may be questioned and the following two avenues will yield more usefulness from a
knowledge engineering perspective.

The first direction where improvements may be achieved, is to partition the data
source and import only data into the ABox of one or a few objects at a time, carry out
the instance classification, export the results, merge the results after each classification
step, and then assess the results; however, one-off scripting is not ideal. Alternatively,
a sophisticated modularization of both the ontology and the data(base) so as to execute
the reasoning only on small sections of the ontology and database (in the direction of,
e.g., [15]) might be an option in the near future. The second option concerns usability:
although rough ontologies work as proof-of-concept, the procedure to carry it out is
not user-friendly. One may be able to turn into a feature the interaction between the
more precise representation in OWL 2 DL and the linking to data with OWL 2 QL (or a
similar tractable language) by upgrading it to a named scientific workflow. This guides
the developer to carry out in a structured, traceable, and repeatable manner the tasks to
experiment with ontologies, the associated data, and the rough concepts.



4 Conclusions

Extending OWL ontologies with the core notions of rough sets revealed both theoretical
and practical challenges. Given rough sets’ semantics, there is no, nor will there be, a
DL-based OWL species that can represent all these aspects precisely, although expres-
sive languages, such as OWL 2 DL, come close and some tools, such as RacerPro, can
handle complex rough concept descriptions with a small amount of data. However, it
is the interaction with large amounts of data that makes any extension with roughness
interesting and necessary to find rough concepts, which is possible with the Ontology-
Based Data Access framework. Validation of the theoretical assessment was carried out
through experimentation with rough concepts and vague instances using the HGT case
study and sepsis. Current and future work pertains to looking further into modulariza-
tion to achieve a platform for hypothesis-driven usage of rough ontologies that will reap
the greatest benefits to meet the users’ requirements.

Acknowledgements I thank Umberto Straccia, Ferdinando Bobillo, and Mariano
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