
Modeling issues and choices in the Data Mining
OPtimization Ontology

C. Maria Keet1, Agnieszka Ławrynowicz2, Claudia d’Amato3, and Melanie Hilario4

1 School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, and
UKZN/CSIR-Meraka Centre for Artificial Intelligence Research, South Africa

keet@ukzn.ac.za
2 Institute of Computing Science, Poznan University of Technology, Poland

agnieszka.lawrynowicz@cs.put.poznan.pl
3 Dipartimento di Informatica, Universita degli Studi di Bari, Italy

claudia.damato@uniba.it
4 Artificial Intelligence Laboratory, University of Geneva, Switzerland

melanie.hilario@unige.ch

Abstract. We describe the Data Mining OPtimization Ontology (DMOP), which
was developed to support informed decision-making at various choice points of
the knowledge discovery (KD) process. It can be used as a reference by data min-
ers, but its primary purpose is to automate algorithm and model selection through
semantic meta-mining, i.e., ontology-based meta-analysis of complete data min-
ing processes in view of extracting patterns associated with mining performance.
DMOP contains in-depth descriptions of DM tasks (e.g., learning, feature selec-
tion), data, algorithms, hypotheses (mined models or patterns), and workflows.
Its development raised a number of non-trivial modeling problems, the solution
to which demanded maximal exploitation of OWL 2 representational potential.
We discuss a number of modeling issues encountered and the choices made that
led to version 5.3 of the DMOP ontology.

1 Introduction

Meta-learning, or learning to learn, is defined in computer science as the application of
machine learning techniques to meta-data about past machine learning experiments; the
goal is to modify some aspect of the learning process in order to improve the perfor-
mance of the resulting model. Traditional meta-learning focused on the learning phase
of the data mining (or KD) process, and regarded learning algorithms as black boxes,
correlating the observed performance of their output (learned model) with characteris-
tics of their input (data). Though learning is the central phase of the KD process, the
quality of the mined model depends strongly also on other phases (e.g. data cleaning
or feature selection). Knowledge on how the different components of the data min-
ing process interact opens up a way for optimizing KD processes. However, besides
the existence of CRISP-DM [1], a high-level standard process model for developing
knowledge discovery projects, this is far from being understood.

The primary goal of the Data Mining OPtimization Ontology (DMOP, pronounced
dee-mope; http://www.dmo-foundry.org/) is to support all decision-making steps
that determine the outcome of the data mining process. It focuses specifically on DM



tasks that require non-trivial search in the space of alternative methods. While DMOP
can be used by data mining practitioners to inform manual algorithm selection and
model (or parameter) selection, it has been designed to automate these two operations
through semantic meta-mining [2]. Semantic meta-mining is distinguished from tra-
ditional meta-learning by the following properties: i) it extends the meta-learning ap-
proach to the full knowledge discovery process taking into account the interdependen-
cies and interactions between the different process operations; ii) it opens up the black
box by explicitly analysing DM algorithms along various dimensions to correlate ob-
served performance of learned hypotheses with both data and algorithm characteristics;
iii) it represents expertise on the DM process and its components in the DM ontology
and knowledge base.

DMOP was developed within the EU FP7 e-LICO project (http://www.e-lico.
eu) where it provided DM expertise to the Intelligent Discovery Assistant (IDA), com-
prised of an AI planner and semantic meta-miner. The planner produces a set of candi-
date workflows that are correct but not necessarily optimal with respect to a given cost
function. To help the planner to select the best workflows from a massive set of work-
flow candidates, an ontology-based meta-learner mines past data mining experiments
in order to learn models for recommending best combinations of DM algorithms to be
used in a KD process to achieve the best performance for a given problem, data set and
evaluation function.

To support semantic meta-mining, DMOP models a detailed taxonomy of algo-
rithms used in KD processes, each described in terms of its underlying assumptions, the
cost functions and optimization strategies it uses, the classes of hypotheses—models or
pattern sets—it generates, and other properties. This allows meta-learners using DMOP
to generalize over algorithms and their properties, including those algorithms that did
not appear in the training set, provided they are annotated in DMOP. DMOP is com-
plemented by the DM knowledge base that uses terms from DMOP to model existing
data mining algorithms and their implementations (operators) in popular DM software
(such as RapidMiner or Weka). Meta-data recorded during data mining experiments are
described using terms from DMOP and its associated KB and stored in data mining
experiment repositories, providing training and testing data for the meta-miner.

DMOP provides a unified conceptual framework for analyzing DM tasks, algo-
rithms, models, datasets, workflows and performance metrics, and their relationships,
which is described in Section 3. To fulfill requirements of this in-depth analysis, we
have encountered a number of non-trivial modeling issues in DMOP development, of
which the main ones are discussed in Section 4. DMOP’s goals and required coverage
resulted in using almost all OWL 2 features.

2 Related work

An overview of early approaches to methodical descriptions of DM processes may be
found in [2]. The majority of work concerning formal representation of data mining in
ontology languages is aimed at the construction of workflows for knowledge discovery.
One line of this research deals with the development of distributed KD applications on
the Grid [3, 4]. The pre-OWL DAMON ontology provides a characterization of avail-
able data mining software in order to allow the user the semantic search for appropriate



DM resources and tools [3]. The ontology of GridMiner Assistant (GMA) [4] aims to
support dynamic, interactive construction of data mining workflows in Grid-enabled
data mining systems. Other ontologies developed for DM workflow construction are
KDDONTO [5], KD ontology [6] and DMWF [7], all of them using OWL as a ma-
jor representation language. These ontologies are focused on modeling algorithms’ in-
puts/outputs to enable generation of valid compositions of them. For instance, a Hier-
archical Task Network (HTN) based planner eProPlan [7], uses DMWF to plan a set
of valid workflows based on operator (algorithm implementation) preconditions and
effects modeled in DMWF by means of SWRL rules.

Very few existing DM ontologies go beyond supporting workflow construction. On-
toDM [8] aims to provide a unified framework for data mining, contains definitions of
the basic data mining concepts, but lacks a particular use case. Exposé [9] aims to pro-
vide a formal domain model for a database of data mining experiments. It uses OntoDM
together with the data mining algorithms from DMOP, and a description of experiments
(algorithm setup, execution, evaluation) to provide the basis of an Experiment Markup
Language. The primary use of OntoDM and Exposé may thus be viewed as providing
controlled vocabulary for DM investigations.

Concluding related work, none of the related ontologies was developed with as goal
the optimization of the performance of KD processes. They do not provide sufficient
level of details needed to support semantic meta-mining. In particular, the ontologies
focused on workflow construction do not model internal characteristics of algorithms
but just their inputs and outputs. Hence they aid in answering the question how to build
a valid workflow, but not necessarily how to build an optimal workflow.

3 Overview of DMOP

The primary goal of DMOP is to support all decision-making steps that determine the
outcome of the data mining process. A set of competency questions were formulated at
the start of the project, some of which are: “Given a data mining task/data set, which of
the valid or applicable workflows/algorithms will yield optimal results (or at least better
results than the others)?”, “Given a set of candidate workflows/algorithms for a given
task/data set, which workflow/algorithm characteristics should be taken into account
in order to select the most appropriate one?”, and even more detailed ones, such as
“Which learning algorithms perform best on microarray or mass spectrometry data?”.
Due to space limitations, this overview of DMOP will not discuss the answers to these
competency questions explicitly.

The core concepts of DMOP (Fig. 1) are the different ingredients that go into the
data mining process (DM-Process). The input is composed of a task specification (DM-
Task) and training/test data (DM-Data) provided by the user; its output is a hypothesis
(DM-Hypothesis), which can take the form of a global model (DM-Model) or a set of
local patterns (DM-PatternSet). Tasks and algorithms as defined in DMOP are not pro-
cesses that directly manipulate data or models, rather they are specifications of such
processes. A DM-Task specifies a DM process (or any part thereof) in terms of the input
it requires and the output it is expected to produce. A DM-Algorithm is the specifica-
tion of a procedure that addresses a given Task, while a DM-Operator is a program
that implements a given DM-Algorithm. Instances of DM-Task and DM-Algorithm do no



DM‐Algorithm
addresses implements executes

DM-OperatorDM‐Task DM‐Opera�on

DM‐ProcessDM‐Workflow

hasSubworkflow hasSubprocess

DM‐Hypothesis

DM‐Data

specifiesInputClass

specifiesOutputClass

hasInput

hasOutput

realizes

achieves

DM‐Pa�ernSetDM‐Model

executes

Fig. 1. The core concepts of DMOP.

more than specify their input/output types; only processes called DM-Operations have
actual inputs and outputs. A process that executes a DM-Operator also realizes the DM-
Algorithm implemented by the operator and achieves the DM-Task addressed by the
algorithm. Finally, a DM-Workflow is a complex structure composed of DM operators, a
DM-Experiment is a complex process composed of operations (or operator executions).
An experiment is described by all the objects that participate in the process: a workflow,
data sets used and produced by the different data processing phases, the resulting mod-
els, and meta-data quantifying their performance. In the following, the basic elements
of DMOP are detailed.

DM Tasks: The top-level DM tasks are defined by their inputs and outputs. A
DataProcessingTask receives and outputs data. Its three subclasses produce new data
by cleansing (DataCleaningTask), reducing (DataReductionTask), or otherwise trans-
forming the input data (DataTransformationTask). These classes are further articulated
in subclasses representing more fine-grained tasks for each category. An Induction-
Task consumes data and produces hypotheses. It can be either a ModelingTask or a
PatternDiscoveryTask, based on whether it generates hypotheses in the form of global
models or local pattern sets. Modeling tasks can be predictive (e.g. classification) or
descriptive (e.g., clustering), while pattern discovery tasks are further subdivided into
classes based on the nature of the extracted patterns: associations, dissociations, devia-
tions, or subgroups. A HypothesisProcessingTask consumes hypotheses and transforms
(e.g., rewrites or prunes) them to produce enhanced—less complex or more readable—
versions of the input hypotheses.

Data: As the primary resource that feeds the knowledge discovery process, data
have been a natural research focus for data miners. Over the past decades meta-learning
researchers have actively investigated data characteristics that might explain generaliza-
tion success or failure. Fig. 2 shows the characteristics associated with the different Data
subclasses (shaded boxes). Most of these are statistical measures, such as the number of



NumInstances
NumCategoricalFeatures

NumContinuousFeatures

NoiseSignalRatio AbsoluteFreq

ClassAbsFreq

RelativeFreq

ClassRelFreq

NumClasses

ClassImbalance

ClassEntropy

MaxFishersDiscriminantRatio

VolumeOfOverlapRegion

MaxFeatureEfficiency

ProportionOfBoundaryPoints

AvgFeatureEntropy

AvgPairwiseMutalInformation
Entropy

NumDistinctValues

AvgMutualInformationNumOutliers

MaxValue

MeanValue

MinValue

Stdev

ErrorRateOfDecisionStump

hasFValuehasTable

ContinuousFeature CategoricalFeature

InstanceDataSet

...

Data

FeatureValue

ContFValue CategFValue

LabelledDataSet

DataTable

CategoricalLabelledDataSet

...

hasFeature Feature

isa

object property

ProportionOfMissingValues...

Fig. 2. Data characteristics modeled in DMOP.

instances or the number of features of a data set, or the absolute or relative frequency of
a categorical feature value. Others are information-theoretic measures (italicized in the
figure). Characteristics in bold font, like the maximum value of Fisher’s Discriminant
Ratio, which measures the highest discriminatory power of any single feature in the data
set, are geometric indicators of data set complexity (see [10] for detailed definitions).

DM Algorithms: The top levels of the Algorithm hierarchy reflect those of the Task
hierarchy, since each algorithm class is defined by the task it addresses. However, the Al-
gorithm hierarchy is much deeper than the Task hierarchy: for each leaf class of the task
hierarchy, there is an often dense subhierarchy of algorithms that specify diverse ways
of addressing each task. For instance, the leaf concept ClassificationModelingTask in the
DM-Task hierarchy maps directly onto the ClassificationModelingAlgorithm class, which
has three subclasses [11]. Generative methods compute the class-conditional densities
p(x|Ck) and the priors p(Ck) for each class Ck. Examples of generative methods are
normal (linear or quadratic) discriminant analysis and Naive Bayes. Discriminative
methods such as logistic regression compute posterior probabilities p(Ck|x) directly
to determine class membership. Discriminant functions build a direct mapping f(x)
from input x onto a class label; neural networks and support vector classifiers (SVCs)
are examples of discriminant function methods. These three Algorithm families spawn
multiple levels of descendant classes that are distinguished by the type and structure of
the models they generate.

One innovative feature of DMOP is the modeling and exploitation of algorithm
properties in meta-mining. All previous research in meta-learning has focused exclu-
sively on data characteristics and treated algorithms as black boxes. DMOP-based meta-
mining brings to bear in-depth knowledge of algorithms as expressed in their elaborate
network of object properties. One of these is the object property has-quality, which
relates a DM-Algorithm to an AlgorithmCharacteristic (Fig. 3). A few characteristics
are common to all DM algorithms; examples are characteristics that specify whether
an algorithm makes use of a random component, or handles categorical or contin-
uous features. Most other characteristics are subclass-specific. For instance, charac-



hasQuality AlgorithmCharacteris�cDM‐Algorithm

DataProcessing

AlgoCharacteris�c
Induc�onAlgo

Characteris�c

RandomComponent

HandlingOfCategoricalFeatures

HandlingOfCon�nuousFeatures

FeatureExtrac�on

AlgoCharacteris�c

CoordinateSystem

ScopeOfNeighborhood

Tranforma�onFunc�on

UniquenessOfSolu�on 

FeatureEvalua�onTarget

FeatureEvalua�onContext

FeatureWeigh�ng

AlgoCharacteris�c

Predic�veModeling

AlgoCharacteris�c

Classifica�on

AlgoCharacteris�c

Classifica�onRuleInduc�on

AlgoCharacteris�c

Classifica�onTreeInduc�on

AlgoCharacteris�c

...

BiasVarianceProfile

Classifica�onProblemType

HandlingOfClassifica�onCosts

ToleranceToClassImbalance

RuleInduc�onStrategy

SampleHandlingForInduc�on
TreeBranchingFactor

ToleranceToIrrelevantFeatures

ToleranceToCorrelatedFeatures

ToleranceToHighDimensionality

ToleranceToWideDataSets

LearningPolicy

HandlingOfInstanceWeights

ToleranceToNoise

ToleranceToMissingValues...

isa

object property

Fig. 3. Data mining algorithm characteristics.

teristics such as LearningPolicy (Eager/Lazy) are common to induction algorithms in
general, whereas ToleranceToClassImbalance and HandlingOfClassificationCosts make
sense only for classification algorithms.

Note that has-quality is only one among the many object properties that are used to
model DM algorithms. An induction algorithm, for instance, requires other properties
to fully model its inductive bias. For instance, the property assumes expresses its under-
lying assumptions concerning the training data. SpecifiesOutputType links to the class
of models generated by the algorithm, making explicit its hypothesis language or rep-
resentational bias. Finally, hasOptimizationProblem identifies its optimization problem
and the strategies followed to solve it, thus defining its preference or search bias.

4 Modeling choices and their discussion

In this section we present the main modeling choices, issues arisen, and solutions
adopted, therewith providing some background as to why certain aspects from the
overview in the preceding section are modeled the way they are.

4.1 Meta-modeling in DMOP

Right from the start of DMOP development, one of the most important modeling is-
sues concerning DM algorithms was to decide whether to model them as classes or
individuals. Though DM algorithms may have different implementations, the common
view is to see particular algorithms as single instances, and not collections of instances.
However, the modeling problem arises when we want to express the types of inputs
and outputs associated with a particular algorithm. Recall that in fact only processes
(executions of workflows) and operations (executions of operators) consume inputs and



produce outputs. DM algorithms (as well as operators and workflows) can, in turn, only
specify the type of input or output. Inputs and outputs (DM-Dataset and DM-Hypothesis
class hierarchy, respectively) are modeled as subclasses of IO-Object class. Then ex-
pressing a sentence like “the algorithm C4.5 specifiesInputClass CategoricalLabeled-
DataSet” became problematic. It would mean that a particular algorithm (C4.5, an in-
stance of DM-Algorithm class) specifies a particular type of input (CategoricalLabeled-
DataSet, a subclass of DM-Hypothesis class), but classes cannot be assigned as property
values to individuals in OWL. To tackle this problem, we initially created one artificial
class per each single algorithm with a single instance corresponding to this particu-
lar algorithm, as recommended in [12] (e.g. C4.5Algorithm class with single instance
C4.5). However, in our case, such modeling led to technical problems. Since each of
the four properties—hasInput, hasOutput, specifiesInputClass, specifiesOutputClass—
were assigned a common range—IO-Object—it opened a way for making semantically
problematic ABox assertions like C4.5 specifiesInputClass Iris, where Iris is a concrete
dataset. Clearly, any DM algorithm is not designed to handle only a particular dataset.

We noticed that CategoricalLabeledDataSet could be perceived as an instance of
a meta-class—the class of all classes of input and output objects, named IO-Class in
DMOP. In this way, the sentence C4.5 specifiesInputClass CategoricalLabeledDataSet
delivers the intended semantics. However, we also wanted to express sentences like
DM-Process hasInput some CategoricalLabeledDataSet. The use of the same IO object
(like CategoricalLabeledDataSet) once as a class (subclass of IO-Object) and at other
times as an instance required some form of meta-modeling. In order to implement it, we
investigated some available options. This included an approach based on an axiomati-
sation of class reification proposed in [13], where in a metamodeling-enabled version
Ometa of a given ontology O, class-level expressions from O are transformed into in-
dividual asssertions such that each model of Ometa has two kinds of individuals, those
representing classes and those representing proper individuals, and meta-level rules are
encoded in class level. We resigned from it due to its possible efficiency issues raised
in the paper.

To this end, we decided to use the weak form of punning available in OWL 2. Pun-
ning is applied only to leaf-level classes of IO-Object; non-leaf classes are not punned
but represented by associated meta-classes, e.g., the IO-Object subclass DataSet maps
to the IO-Class subclass DataSetClass. Similarly, the instances of DM-Hypothesis class
represent individual hypotheses generated by running an algorithm on the particular
dataset, while the class DM-HypothesisClass is the meta-class whose instances are the
leaf-level descendant classes of DM-Hypothesis. Except for the leaf-level classes, the
IO-Class hierarchy structure mimics that of the IO-Object hierarchy.

4.2 Property chains in DMOP

DMOP has 11 property chains, which have been investigated in detail in [14]. The prin-
cipal issues in declaring safe property chains, i.e., that are guaranteed not to cause unsat-
isfiable classes or other undesirable deductions, are declaring and choosing properties,
and their domain and range axioms. To illustrate one of the issues declaring property
chains, we use hasMainTable ◦ hasFeature v hasFeature: chaining requires compatible
domains and ranges at the chaining ‘points’, such as the range of hasMainTable and



domain of hasFeature, and with the domain and range of the property on the right-
hand side. In this case, hasFeature’s domain is DataTable that is a sister-class of has-
MainTable’s domain DataSet, but the chain forces that each participating entity in has-
Feature has to be a subclass of its declared domain class, hence DataSet v DataTable is
derived to keep the ontology consistent. Ontologically, this is clearly wrong, and has-
Feature’s domain is now set to DataSet or DataTable. Each chain has been analysed in
a similar fashion and adjusted where deemed necessary (see [14] for the generic set of
tests and how to correct any flaws for any property chain).

DMOP typically contains more elaborate property chains than the aforementioned
one. For instance, realizes ◦ addresses v achieves, so that if a DM-Operation realises a
DM-Algorithm that addresses a DM-Task, then the DM-Operation achieves that DM-Task,
and with the chain implements ◦ specifiesInputClass v specifiesInputClass, we obtain
that when a DM-Operator or OperatorParameter implements an AlgorithmParameter or
DM-Algorithm and that specifies the input class IO-Class, then the DM-Operator or Op-
eratorParameter specifies the input class IO-Class.

4.3 Alignment of DMOP with the DOLCE foundational ontology

It may seem that the choice whether, and if so how, to map one’s domain ontology
to a foundational ontology is unrelated to interesting modeling features of the OWL
language. This is far from the case, although the modeling arguments (summarised and
evaluated in [15]) still do hold. The principal issues from a language viewpoint are:
1) to import or to extend, 2) if import, whether that should be done in whole or just
the relevant module extracted from the foundational ontology, 3) how to handle the
differences in expressiveness that may exist—and possibly be required—between the
foundational ontology and the domain ontology, 4) how to rhyme different modeling
‘philosophies’ between what comes from Ontology, what is represented in foundational
ontologies, and what is permitted in OWL (i.e., features that are objectionable from an
ontological viewpoint, such as class-as-instance, nominals, and data properties). Due to
space limitations, we only summarise how DMOP was mapped to DOLCE [16].

The two main reasons to align DMOP with a foundational ontology were the con-
siderations about attributes and data properties, where extant non-foundational ontology
solutions were partial re-inventions of how they are treated in a foundational ontol-
ogy (see next section), and reuse of the ontology’s object properties. DOLCE, GFO,
and YAMATO are available in OWL and have extensive entities on ‘attributes’ and
many reusable object properties. At the time when the need for a mapping arose, YAM-
ATO documentation was limited and GFO less well-known by the authors, which led
to the case of mapping DMOP to DOLCE-lite (it now can be swapped for GFO and
BFORO anyway, thanks to the foundational ontology library ROMULUS [http://
www.thezfiles.co.za/ROMULUS/]. The only addition to DOLCE’s perdurant branch
is that dolce:process has as subclasses DM-Experiment and DM-Operation. Most DM
classes, such as algorithm, software, strategy, task, and optimization problem, are sub-
classes of dolce:non-physical-endurant. Characteristics and parameters of such entities
have been made subclasses of dolce:abstract-quality, and for identifying discrete val-
ues, classes were added as subclasses of dolce:abstract-region. That is, each of the four
DOLCE main branches have been used. Regarding object properties, DMOP reuses



mainly DOLCE’s parthood, quality, and quale relations. Choosing the suitable DOLCE
category for alignment and carrying out the actual mapping has been done manually;
some automation to suggest mappings would be a welcome addition. Mapping DMOP
into DOLCE had the most effect regarding representing DM characteristics and param-
eters (‘attributes’), which is the topic of the next section.

4.4 Qualities and attributes

A seemingly straightforward but actually rather intricate, and essentially unresolved, is-
sue is how to handle ‘attributes’ in OWL ontologies, and, in a broader context, measure-
ments. For instance, each FeatureExtractionAlgorithm has as an ‘attribute’ a transforma-
tion function that is either linear or non-linear. One might be tempted to take the easy
way out and simply reuse the “UML approach” where an attribute is a binary functional
relation between a class and a datatype; e.g., with a simplified non-DMOP intuitive
generic example, given a data property hasWeight with as XML data type integer,
one can declare Elephant v =1 hasWeight.integer. And perhaps a hasWeightPre-
cise with as data type real may be needed elsewhere. And then it appears later on
that the former two were assumed to have been measured in kg, but someone else us-
ing the ontology wants to have it in lbs, so we would need another hasWeightImperial,
and so on. Essentially, with this approach, we end up with exactly the same issues as
in database integration, precisely what ontologies were supposed to solve. Instead of
building into one’s ontology application decisions about how to store the data in the
information system (and in which unit it is), one can generalize the (binary) attribute
into a class, reuse the very notion of Weight that is the same in all cases, and then have
different relations to both value regions and units of measurement. This means to un-
fold the notion of an object’s property, like its weight, from one attribute/OWL data
property into at least two properties: one OWL object property from the object to the
‘reified attribute’—a so-called “quality property”, represented as an OWL class—and
then another property to the value(s). The latter, more elaborate, approach is favoured in
foundational ontologies, especially in DOLCE, GFO and YAMATO. DOLCE uses the
combination Endurant that has a qt relation to Quality (disjoint branches) that, in turn,
has a ql relation to a Region (a subclass of the yet again disjoint Abstract branch). While
this solves the problem of non-reusability of the ‘attribute’ and prevents duplication of
data properties, neither ontology has any solution to representing the actual values and
units of measurements. But they are needed for DMOP too, as well as complex data
types, such as an ordered tree and a multivariate series.

We considered in more detail related work on qualities, measurements and similar
proposals from foundational ontologies, to general ontologies, to domain ontologies for
the experimental sciences [16–20]. This revealed that the measurements for DMOP are
not measurements in the sense of recording the actual measurements, their instruments,
and systems of units of measurements, but more alike values for parameters, e.g., that
the TreeDepth has a certain value and a LearningPolicy is eager or lazy, and that some
proposals, such as OBOE [18], are versions of DOLCE’s approaches1. This being the
case, we opted for the somewhat elaborate representation of DOLCE, and added a minor

1 DOLCE materials differ slightly, with quale as relation in [16] and as unary in [17] and in
the DOLCE-lite.owl, and Region is a combination of a (data) value + measurement unit



DM-Data

dolce:non-physical-endurant dolce:abstract

DataType DataFormat

dolce:quality

dolce:region

dolce:abstract-regiondolce:quale

dolce:abstract-quality

anyType

hasDataValue

Characteristic Parameter

hasDataType

hasDataType

dolce:has-quale

dolce:particular

dolce:has-quality

dolce:q-location

TableFormat

DataTable hasTableFormat

DataCharacteristic

has-quality

Fig. 4. Condensed section and partial representation of DMOP regarding ‘attributes’.

extension to that for our OWL ontology in two ways (see Fig. 4): i) DM-Data is associ-
ated with a primitive or structured DataType (which is a class in the TBox) through the
object property hasDataType, and ii), the data property hasDataValue relates DOLCE’s
Region with any data type permitted by OWL, i.e., anyType. In this way, one obtains a
‘chain’ from the endurant/perdurant through the dolce:has-quality property to the qual-
ity, that goes on through the dolce:q-location/dolce:has-quale property to region and
on with the hasDataValue data property to the built-in data type (instead of one single
data property between the endurant and the data type). For instance, we have Mod-
elingAlgorithm v =1 has-quality.LearningPolicy, where LearningPolicy is a dolce:quality,
and then LearningPolicy v =1 has-quale.Eager-Lazy, where Eager-Lazy is a subclass
of dolce:abstract-region (that is a subclass of dolce:region), and, finally, Eager-Lazy v
≤ 1 hasDataValue.anyType, so that one can record the value of the learning policy
of a modeling algorithm. In this way, the ontology can be linked to many different ap-
plications, who even may use different data types, yet still agree on the meaning of
the characteristics and parameters (‘attributes’) of the algorithms, tasks, and other DM
endurants.

A substantial amount of classes have been represented in this way: dolce:region’s
subclass dolce:abstract-region has 43 DMOP subclasses, which represent ways of carv-
ing out discrete value regions for the characteristics and parameters of the endurants
DM-Data, DM-Algorithm, and DM-Hypothesis. Characteristic and Parameter are direct
subclasses of dolce:abstract-quality, which have 94 and 42 subclasses, respectively.

4.5 Other modeling considerations

There are several other OWL 2 features that are or were used in DMOP to model the
subject domain. One that was used in some cases was the ObjectInverseOf, so
that for some object property hasX in an OWL 2 ontology, one does not have to ex-
tend the vocabulary with an Xof property and declare it as the inverse of hasX with

condensed into one (e.g. “80 kg”) in [16] to deal with attribute values/qualia (there were no
examples in [17] and the DOLCE-lite.owl)



InverseObjectProperties, but one can use the meaning of Xof with the ax-
iom ObjectInverseOf(hasX) instead. Both approaches were used initially and
eventually inverses were added explicitly where needed, for readability of the class ex-
pressions.

The so-called “object property characteristics” have been used sparingly, and only
the basic ‘functional’ characteristic is asserted. Local reflexivity was investigated on
a subsumes property for instances in DMOP v5.2, but eventually modeled differently
with classes and metamodeling/punning to achieve the desired effect. DOLCE’s part-
hood is transitive, hence it should be transitive in DMOP as well, but it was discovered
after the release of v5.3 that the object property copy function in Protégé does not
copy any property characteristics. This will be corrected in the next version. In general,
though, if one extracts the properties from an ontology, it ought to take with it at least
the characteristics of those properties (and, though arguable, also any domain and range
axioms declared for the selected properties).

The desire to specify the order of subprocesses remains, and a satisfactory solution
has yet to be found. Likewise, there are object properties in the current DMOP ver-
sion that merit closer investigation whether they are indeed more specific versions of
parthood; e.g., a DecisionCriterion is part of DecisionRule, but it merits further inves-
tigation whether, e.g., hasDecisionTarget with as domain DecisionStrategy and range
DecisionTarget is indeed a subproperty of has-part.

5 Conclusions

In this paper, the DMOP ontology has been presented. It provides a unified conceptual
framework for analyzing DM tasks, algorithms, models, datasets, workflows and per-
formance metrics, and their relationships. While modeling data mining knowledge in
DMOP, almost all OWL 2 features were used to solve a number of non-trivial modeling
issues that had been encountered. These include: i) the hurdle of relating instances to
classes and using classes as instances (and vv.), which has been solved by exploiting the
weak form of metamodeling with OWL’s punning available in OWL 2; ii) finding and
resolving in a systematic way the undesirable deductions caused by property chains;
iii) representation of ‘attributes’, where its solution is ontology-driven yet merged with
OWL’s data property and built-in data types to foster their reuse across applications; iv)
linking to a foundational ontology; and v) the considerations on adoption of the OWL
2 ObjectInverseOf to avoid extending the vocabulary with new properties to be
declared as the inverse of existing properties, but where human readability prevailed.

Current and future work includes investigating aspects such as DMOP object prop-
erties, the effects of ObjectInverseOf vs. InverseObjectProperties, and
the deductions with respect to the DM algorithms branch and metamodeling. DMOP
(version 5.2) has already been applied successfully to the meta-mining task [2]. Further
meta-mining experiments will be performed with the goal of validating the modelling
choices introduced in version 5.3.

Acknowledgements. This work was supported by the European Community 7th
framework ICT-2007.4.4 (No 231519) ”e-LICO: An e-Laboratory for Interdisciplinary
Collaborative Research in Data Mining and Data-Intensive Science”. We thank all our



partners and colleagues who have contributed to the development of the DMOP ontol-
ogy: Huyen Do, Simon Fischer, Dragan Gamberger, Lina Al-Jadir, Simon Jupp, Alexan-
dros Kalousis, Petra Kralj Novak, Babak Mougouie, Phong Nguyen, Raul Palma, Robert
Stevens, Anze Vavpetic, Jun Wang, Derry Wijaya, Adam Woznica.

References
1. Shearer, C.: The CRISP-DM model: The new blueprint for data mining. Journal of Data

Warehousing 5(4) (2000) 13–22
2. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-based meta-mining of

knowledge discovery workflows. In: Meta-Learning in Computational Intelligence. Volume
358 of Studies in Computational Intelligence. Springer (2011) 273–315

3. Cannataro, M., Comito, C.: A data mining ontology for grid programming. In: Proc. of 1st
Int. WS. on Semantics in Peer-to-Peer and Grid Computing. (2003) 113–134

4. Brezany, P., Janciak, I., Tjoa, A.M.: Ontology-based construction of grid data mining work-
flows. In: Data Mining with Ontologies. Hershey (2007)

5. Diamantini, C., Potena, D., Storti, E.: Supporting users in KDD processes design: a semantic
similarity matching approach. In: Proc. of the Planning to Learn Works. (2010) 27–34–134

6. Záková, M., Kremen, P., Zelezný, F., Lavrac, N.: Automating knowledge discovery work-
flow composition through ontology-based planning. IEEE Trans. Automation Science &
Engineering 8(2) (2011) 253–264

7. Kietz, J., Serban, F., Bernstein, A., Fischer, S.: Data mining workflow templates for in-
telligent discovery assistance and auto-experimentation. In: Proc of the ECML/PKDD’10
Workshop on Third Generation Data Mining (SoKD’10). (2010) 1–12

8. Panov, P., Dzeroski, S., Soldatova, L.N.: OntoDM: An ontology of data mining. In: ICDM
Workshops, IEEE Computer Society (2008) 752–760

9. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases - a new way
to share, organize and learn from experiments. Machine Learning 87(2) (2012) 127–158

10. Ho, T.K., Basu, M.: Measures of geometrical complexity in classification problems. In: Data
Complexity in Pattern Recognition. Springer (2006) 3–23

11. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
12. Noy, N., Uschold, M., Welty, C.: Representing Classes As Property Values on the Semantic

Web (2005) W3C Working Group Note, http://www.w3.org/TR/swbp-classes-as-values/.
13. Glimm, B., Rudolph, S., Völker, J.: Integrated metamodeling and diagnosis in OWL 2. In:

Proc. of ISWC’10, Springer-Verlag (2010) 257–272
14. Keet, C.M.: Detecting and revising flaws in OWL object property expressions. In ten Teije,

A., et al., eds.: Proc. of EKAW’12. Volume 7603 of LNAI., Springer (2012) 252–266
15. Keet, C.M.: The use of foundational ontologies in ontology development: an empirical as-

sessment. In: Proc. of ESWC’11. Volume 6643 of LNCS., Springer (2011) 321–335
16. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. Wonder-

Web Deliverable D18 (ver. 1.0, 31-12-2003). (2003) http://wonderweb.semanticweb.org.
17. Masolo, C., Borgo, S.: Qualities in formal ontology. In: Proceedings of the Workshop on

Foundational Aspects of Ontologies (FOnt 2005). (2005) Koblenz, Germany, Sept. 2005.
18. Saunders, W., Bowers, S., O’Brien, M.: Protégé extensions for scientist-oriented modeling

of observation and measurement semantics. In: Proc. of OWLED’11. Volume 796 of CEUR-
WS. (2011)

19. Bowers, S., Madin, J.S., Schildhauer, M.P.: A conceptual modeling framework for expressing
observational data semantics. In: Proc. of ER’06. Volume 5231 of LNCS., Springer (2008)
41–54

20. Hodgson, R., Keller, P.J.: QUDT - quantities, units, dimensions and data types in OWL and
XML. Online (September 2011) http://www.qudt.org/.


