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Abstract Intelligent information systems deploy ap-

plied ontologies or logic-based conceptual data models

for effective and efficient data management and to assist

with decision-making. A core deliberation in the design

of such systems, is how to link the knowledge to the

data. We recently designed a novel knowledge-to-data

architecture (KnowID) which aims to solve this critical

step through a set of transformation rules rather than

a mapping layer, which operate between models rep-

resented in EER notation and an enhanced relational

model called the ARM. This system description zooms

in on the novel tool for the core component of the trans-

formation from the Artificial Intelligence-oriented mod-

elling to the relational database-oriented data manage-

ment. It provides an overview of the requirements, de-

sign, and implementation of the modular transforma-
tions module that straightforwardly permits extension

with other components of the modular KnowID archi-

tecture.
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1 Introduction

Application ontologies, or logic-based conceptual data

models, as well as knowledge graphs, are used to achieve

effective data management with faster data analysis

thanks to querying at the conceptual layer. This ad-

vantage comes at a cost of devising a good and efficient

way to connect the knowledge to the data; an introduc-

tory overview of several options and considerations are

described in [12]. The very recently proposed KnowID

architecture [9] (see Fig. 1) is a highly modular architec-

ture for such applications, which takes Extended Entity

Relationship (EER) diagrams as application ontologies

and connects them to the data layer via the so-called

‘Abstract Relational Model’ (ARM) of [1] that uses spe-
cial object identifiers and a strict extension to SQL

for path queries (SQLP) that simplify querying [14].

Set within this context of the KnowID architecture,

the main contribution of this system description pa-

per is the presentation of the first proof-of-concept im-

plementation of connecting the AI-oriented knowledge

layer to the database-oriented data layer through trans-

formations, transforming application ontologies repre-

sented in EER to ARM and vice versa. It shows that

what ought to work theoretically, indeed does so prac-

tically. It has a front-end for model management that

is linked but decoupled from the back-end that carries

out the transformations and generates a log file that is

to be used subsequently for processing knowledge-based

queries. The back-end has an API, so that other mod-

ules can be ‘plugged in’ at a later stage. The business

logic is achieved with commonly supported data struc-

tures, which then are converted into the latest Seman-

tic Web and Knowledge Graph technologies, which is

demonstrated here with JSON. The source code, docu-
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Fig. 1 The KnowID architecture, with the focus of the system presented in this paper highlighted in bold black font text in the
two dark shaded boxes connected with the thick arrow: providing the knowledge-to-data connection as model transformations.

mentation, and test cases are available at http://www.

meteck.org/KnowID.html.

The currently most well-known proposed solution to

link knowledge represented in application ontologies to

data stored in database is called ontology-based data

access (OBDA) [3], which has closely related recent ac-

tivities with (virtual) knowledge graphs [15,20]. OBDA

uses a mapping layer between the ontology and the re-

lational database(s), and avails of query rewriting to

answer conjunctive queries. Both features are costly—

computationally [10] as well as in design and mainte-

nance [13]. Moreover, data analysts typically want to

be able to use the full SQL expressiveness and stay

with the closed world assumption that is better known

to them than the open world assumption in OBDA.

These issues are avoided in KnowID by using trans-

formation rules [9]. That theoretical design was yet to

be assessed on practical correctness, feasibility of im-

plementation, and flexible architectures to implement

it. The described system realises the knowledge-to-data

inter-layer connection in KnowID, and serves as a ba-

sis for its further development and application comple-

ment the well-known technologies that compose both

the knowledge and data layer. Furthermore, although

there are approaches to support diverse fragments of

the SQL query language in ODBA (see for example [4,

11]), they are incomplete and involve a complex trans-

formation leading to a loss of intuition for the modeller.

By using ARM, KnowID ensures that explicit primary

and foreign keys are hidden from the user’s view so

queries appear more naturally to modellers, and also

can be expressed more compactly. This is very relevant

for example for query explanation [16] as well as query

formulation and understanding [14]. See [9] for a more

detailed comparison of both architectures.

The remainder of this system description paper first

briefly recaps the key points of the KnowID architecture

(Section 2), to then expand on the system design and

implementation (Section 3). System testing and a use

case are touched upon in Section 4. We discuss and

close in Section 5.

2 Theoretical background

Our approach to combining intensional knowledge (K)
with large amounts of data (D) is depicted in Fig. 1.

It consists in a pipeline starting with a conceptual data

model or application ontology K represented as an EER

diagram. After the steps of formalisation and materi-

alisation of deductions, this EER diagram is used to

obtain an abstract relational model schema in ARM,

which is the basis for i) the relational database schema

for D, ii) the data completion of D with the intensional

knowledge, iii) the reformulation of SQLP queries into

SQL queries to be evaluated over the completed data.

The pipeline has the following three key components:

– Knowledge, at the type/class-level (i.e., with enti-

ties that can be instantiated), which is represented

formally in a logic. This type-level theory should be

independent of systems design aspects (so, e.g., no

PK/FK and OO object identifiers and similar in the

model);

– Structured data, stored in a relational database or

an RDF triple store (not unstructured text docu-

ments).

– Automated reasoning support with, as a minimum,

querying the data using the vocabulary elements

from the knowledge layer. It should avail of the for-

mally represented knowledge in some way (so, not

just a graphical query interface for the stored data

like in query-by-diagram).
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relation Academic ( (self OID, anum INT, aname STRING,

office STRING, school OID),

primary key (self),

constraint sch foreign key (school)

references school,

pathfd (anum) -> self,

disjoint with (module, school, teach) )

Fig. 2 Top: Graphical renderings of a sample ARM schema,
resembling a relational model graphical notation (left) and a
knowledge graph notation (right). Bottom: textual represen-
tation of the Academic relation from the ARM schema

EER is a conceptual data modelling language [17]

which is able to express in a graphical notation ad-

vanced requirements for information systems, and has

been widely applied in database design as well as in

other more abstract modelling tasks. Even though other

popular languages exist that could also be used in the

knowledge layer of KnowID, EER was chosen because

of the well known transformation between EER and the

relational model (which is similar enough to the ARM

to provide a solid ground), and also because it is widely

used in the database community. There are also several

logic-based reconstructions of EER, which therewith fa-

cilitates automated reasoning over the diagrams.

The Abstract Relational Model (ARM) is a general-

isation of the relational model (RM) which includes an

abstract domain of entities OID used for object identi-

fiers, and an associated new self attribute for each re-

lation in an ARM. This self with an OID has an under-

lying theory of referring expressions such that the iden-

tifiers in ARM remain virtual and thus does not cost

one another column in a database table. Its details are

described in [1,14,18]. This seemingly simple extension

allows for various other constructs beyond primary and

foreign keys, such as declaring disjointness constraints,

explicit inheritance, and path functional dependencies.

In Fig. 2 we show a graphical representation of a con-

ceptual model in ARM, and its textual representation.

ARM generalises RM in two ways: first, there is no

explicit choice in the representation of primary keys for

each relation, one simply may assume it exists; second,

a set of declarative constraints is available to model the

Table 1 Comparison between OBDA and KnowID on the
main distinguishing features of computational cost.

Feature OBDA KnowID

World OWA+CWA CWA
Language for K OWL 2 QL relational, DL
Language for D relational or RDF relational
Query language SPARQL + SQL

(fragment)
SQLP

Automated rea-
soning

yes yes

Reasoning w.r.t.
data

query rewriting data comple-
tion

Mapping layer yes no
Transformations no yes
Entity recasting yes no
Syntactic sugar available possible

domain data. In this sense, ARM is, strictly, concep-

tual model-like. ARM can be formalised in a Descrip-

tion Logic (DL) with n-ary relations (n ≥ 1), e.g., the

PTIME decidable CFDI∀−nc [19] In that case, the prob-

lem of deciding when for some ARM model Σ, con-

straint ϕ (e.g., a disjointness constraint), and relation

Ti (e.g., Academic, in Fig. 2), Σ |= (ϕ ∈ Ti) holds in

that ARM schema can be reduced to reasoning about

logical consequence [1]. It has a complementary query

language, called SQLP [1], which is an extension of full

SQL in order to allow queries over paths, availing over

those virtual identifiers in the background, and has been

shown to improve querying when used with ARM [14].

Automated reasoning is a fundamental gear for this

architecture, in both the knowledge and the data lay-

ers. First, it is needed to classify model elements and

materialize deductions in the third and forth step at

the knowledge and information management layer in

Fig. 3. This involves reasoning in the logic chosen by

the previous formalization step. The optional first step

of transformation of OWL files into EER diagrams may

also involve OWL reasoning. Furthermore, automated

reasoning is used in the data completion process at the

data management level, availing of the formally repre-

sented knowledge and data.

The system described in the next section completes

this approach by providing a bi-directional connection

between the ontology layer and ARM schemata. A com-

parison with OBDA is included in Table 1. From this

follows what would be the best choice when; e.g., for

queries beyond UCQs or evolving schemas, KnowID will

perform better, whereas with rapidly changing data and

static schemas, OBDA may outperform KnowID.
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3 System design and implementation

The system design process overall took an approach of:

(i) specifying a list of requirements; (ii) exploring the

solution space with 21 3rd-year students in seven teams

as their BSc ‘capstone project’; (iii) devising the final

architecture and refining and updating the best compo-

nents of the capstone implementations. The second step

was included, as it would permit a faster exploration of

a range of options. While the transformation rules ob-

viously remain the same, ‘externalities’ to meet the re-

quirements and turn it into a usable tool varied greatly

among the proposed and implemented solutions. Aside

from different programming languages (Java, Python,

React, JavaScript, and combinations thereof), the main

differences in the solutions were regarding interaction

with front ends for the EER and ARM models (text or

diagrams, self-made vs. borrowed from draw.io), more

or less restrictive storage of models (a structured plain

text file vs. JSON or XML with or without XSD and a

tailor-made parser), and the internals of the algorithms

how to achieve the implementation of the rules more or

less efficiently. The system that is presented here, took

the system of one of the teams as starting point1, which

we updated and extended, both regarding some intri-

cate details of the rules and corner cases and by being

informed by the other capstone systems and prospects

for extensibility to other tasks.

Requirements The hard requirements were to imple-

ment the rules as in the KnowID paper [9], both the

EER-to-ARM and ARM-to-EER transformations, to

be able to open and save those models, report on suc-

cess or failure of a transformation, and have some user

interface for these actions and in/output. Ideally, the

prospective tool would also report on those elements or

constraints that could not be transformed, and it would

be helpful if the tool were to report on what happened

with each element (since this will be useful for process-

ing SQLP queries). For our version, the log file and

graphical rendering was deemed a hard requirement.

The students, meanwhile, were free to choose between

a textual or graphical representation of the models, in-

cluding that it was permissible to extend a current open

source EER tool to do this provided it supports the re-

quired language features.

Architecture and implementation Since the link between

the knowledge and data layer is the first implementa-

tion component of KnowID, and considering the vari-

ous possible extensions, the design was made such that

1 The team members kindly permitted us to use and revise
their code (by default they are the copyright holders).

Fig. 3 Architecture to realise the transformations between
the knowledge and data layer.

it is highly modular. The architecture of the system is

shown in Figure 3. It is divided into a front-end for user

interaction and model management and a back-end for

the business logic for the transformations.

The front-end renders diagrammatically the EER

and ARM models in the GUI and stores them as JSON

files. This is realised in JavaScript with React. Three

functions are available to the user: load, transform, and

save a model. The GUI displays the input model and

the generated output side-by-side, with the log file at

the lower part of the screen.

The back-end functionality commences with the Web

Server, which functions as an API to the business logic.

At present, it takes the file received from the front-

end component and passes it through the JSON Parser,

converting it into an object representation in memory.

It then determines whether it is an EER or an ARM

model and feeds it into the applicable transformation

algorithm in the business logic model. The bird’s eye

view of the transformation algorithms are shown in Al-

gorithms 1 and 2, including differences for strong entity

types that have their own identifier and weak ones that

have a partial identifier. The output of the algorithm is

a model of the other type along with a log file. These

are passed through the JSON Parser and the resultant

file returned to the web server, which forwards it to the

front-end to render it, and if the user so wishes, to save

it. The back-end was coded in Python, availing of, in
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particular, the Enum and JSON libraries, and Flask (in

the Web Server module).

Algorithm 1 EER to ARM algorithm at a glance
1: Σ: ARM schema; R: set of relations in Σ; Ω: an ERD;
S: regular or strong entity type; W : weak entity type; P :
set of all pathfd constraints.

Precondition: The input model is valid EER.
2: function GenerateARM( )
3: Group ETs from Ω . strong S and weak W
4: for each s ∈ S do
5: create a relation r ∈ R
6: fire the other relevant transformation rules
7: . add self, pathfd, PK, FK, other attributes
8: end for
9: for each w ∈W do

10: create a relation r ∈ R
11: fire the other relevant transformation rules
12: . add self, pathfd, PK with FK, other attributes
13: end for
14: Set all attributes’ datatype to anyType

15: P ← List all pathfd constraints from each r ∈ R
16: Compute disjointness and covering from P
17: Add disjointness or covering constraints to each r ∈ R
18: return Σ
19: end function

Algorithm 2 ARM to EER algorithm at a glance
1: Σ: ARM schema; R: set of relations in Σ; Ω: an ERD;
S: regular or strong entity type; W : weak entity type; M
m:n relationship; P : set of all pathfd constraints.

Precondition: The input model is valid ARM.
2: function GenerateEER( )
3: Classify each r ∈ R . strong, regular, weak, m:n, isa
4: for each r ∈ R that is strong, regular, isa do
5: create an Entity Type s ∈ S
6: fire the other relevant transformation rules
7: . identifiers, attributes, remove datatypes
8: end for
9: for each r ∈ R that is weak do

10: create an Entity Type w ∈W
11: fire the relevant transformation rules
12: . partial identifier, add relationship, etc.
13: end for
14: for each r ∈ R that is m:n do
15: create a Relationship m ∈M
16: fire the relevant transformation rules
17: end for
18: Create relationships and isa between the entity types
19: Add cardinality constraints
20: return Ω
21: end function

Flexibility, maintainability, and extensibility The busi-

ness logic, i.e., the transformation algorithms, use generic

data structures (arrays) so that it can be independent

of transient technologies. For instance, JSON is gaining

popularity for representing knowledge graphs over se-

rialisations in RDF or XML, noting that it is possible

to convert between JSON and RDF [5,6]. Thanks to

the modular design, another parser could be added for

the input and the output, which will not affect the ac-

tual transformation algorithms. For instance, the array

of objects could be written into XML, passed back to

the Web Server, and then loaded into a preferred mod-

elling tool, such as draw.io, ERwin, NORMA etc. that

serialise in XML.

Further extensions can be added easily to the cur-

rent architecture, such as a separate back-end compo-

nent for the automated reasoning over the conceptual

model before the transformations, and a module for

query formulation with SQLP over either the EER di-

agram or ARM model.

System testing A formal unit test suite was constructed

for the business logic, i.e., the core KnowID transforma-

tion algorithms from EER to ARM and ARM to EER.

This was used in two stages: the first stage concerned

robustness testing to verify all components worked and

the second stage included tests with plausible models

that had actual names for entities. Each test case com-

prises a pair of JSON files encoding an EER (or ARM)

input model and a expected ARM (or EER) output

model. They covered each rule, corner case, and in-

tended failure amounting to 83 tests. This started with

the base case of a single entity type, progressing to two

entity types and a binary relationship first with the

base cases of cardinality constraints (1:n, 1:1, n:1, m:n)

and mandatory or optional participation (i.e., universal

or existential quantification, when formalised), to sub-

sequently start adding attributes with correct handling

of datatypes, testing n-aries, weak entity types with

partial identifiers, and subsumption followed by dis-

jointness and completeness on subsumption. This then

moved to the more involved aspects, such as multiple

or conflicting pathdf constraints to self, cardinality

constraints unsupported in ARM, recursive relations,

and composite attributes. The outputted diagrams and

the log files were inspected manually; when a transfor-

mation was incorrect or a log entry incomplete, revi-

sions were made to the code and the model transfor-

mation tested again. All user test cases are available

in the online supplementary material, which contains

a notes.txt in both EER-to-ARM and the ARM-to-

EER folders that describe for each test case what it is

testing, a corresponding Test.py file for automating

test execution, the respective JSON files of the input

models, and the output as screenshots, so that it also

can be verified without installing the tool.
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4 Example

We present the transformation tool’s working by demon-

strating the generation of an ARM model from an EER

Diagram, where the end state of the transformation is

shown in Fig. 4.

Let us assume a small application ontology or con-

ceptual data model about academics working for a de-

partment that offers modules that are taught by those

academics. This may be stored in OWL, serialised in

XML, or a similar notation, and that can be converted

into JSON. For instance, there may be declarations such

as (in Description Logics notation):

School v ∃employs.Academic
Academic v= 1 worksFor.School
Module v= 1 offeredBy.School
...

This is stored eventually in the corresponding JSON

file. For instance, the entity type Person is stored as

follows (we have removed whitespace to save layout):

{ "entityTypes":

[ { "name": "Person",

"attributes": [ {"name": "name"},

{"name": "ZA_ID"} ],

"identity": { "attributes": [

"ZA_ID" ],

"type": "complete" } },

... ] ... }

In the tool’s interface, one clicks Load to load that

JSON file, which is rendered graphically in a simple

ERD notation, shown in the left pane in Fig. 4. Upon

clicking Transform, it will transform the model into

ARM, which generates a log file that can be saved

(bottom pane in Fig. 4) to a JSON file and it gen-

erates a text-based ARM model with relation speci-

fications as shown in compact mode in Fig. 2 (saved

in JSON format), which is then rendered graphically

in the right-hand pane of the interface (see Fig. 4).

The choice of ARM graphical elements was chosen here

to be relational model-like. As can be seen, default

datatypes (anytype) are added, since they are not part

of an ERD but are part of the ARM specification, and

there are auto-generated names for ARM relations cre-

ated from m : n relationships, such as joinRelation

[Academic-Module], and the arrows point to the source

relation of the foreign key as usual.

The ARM file thus generated lies now in the data

layer of the KnowID architecture (Fig. 1). With this

file it is now possible not only to start the relational

database design if necessary, but also to realise the

data completion step that materialises the conceptual

model’s implicit knowledge. Physical data characteris-

tics such as DBMS specific definitions, referential in-

Fig. 4 Screenshots of the tool with the example, in the state
after having transformed the ERD input into an ARM model.

tegrity, and performance optimisation may now be in-

tegrated in the full process of knowledge management.

5 Discussion and conclusions

This system description paper presented the novel im-

plementation to connect the knowledge layer with the

data layer using transformations, as an alternative op-

tion to the currently common intermediate mapping

layer. Its design is highly modular in order to facilitate

easy addition of other modules with additional func-

tionalities and to be compatible with a number of Web

technologies for the representation of the models and

for reasoning over them.

The next phase in the implementation will be ex-

tending the use of SQLP from ARM to EER so as to re-



Connecting knowledge to data through transformations in KnowID: system description 7

alise the application ontology-based conceptual queries,

which is at least theoretically feasible thanks to the

transformations. Also, it may be linked to, e.g., crowd

[2] for online editing of the conceptual models and au-

tomated reasoning over them (roughly: steps 1-3 in Fig-

ure 1), which has its UML models stored in JSON for-

mat, which would practically facilitate the theoretical

sufficient interchangeability [7,8].
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