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ABSTRACT
Parthood is used widely in ontologies across subject domains. Some

modelling guidance can be gleaned from Ontology, yet it offers

multiple mereological theories, and even more when combined

with topology, i.e., mereotopology. To complicate the landscape,

decidable languages put restrictions on the language features, so

that only fragments of the mereo(topo)logical theories can be rep-

resented, yet during modelling, those full features may be needed

to check correctness. We address these issues by specifying a struc-

tured network of theories formulated in multiple logics that are

glued together by the various linking constructs of the Distributed

Ontology Language,DOL. For the KGEMTmereotopological theory

and five sub-theories, together with the DL-based OWL species and

first- and second-order logic, this network in DOL orchestrates 28

ontologies. Further, we propose automated steps toward resolution

of language feature conflicts when combining modules, availing of

the new ‘OWL classifier’ tool that pinpoints profile violations.
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1 INTRODUCTION
Mereology, the theory of parthood, is well-established in Ontology

(philosophy), and is used widely in applied ontology and ontologies

on the Semantic Web and other ontology-driven information sys-

tems. For instance, the medical terminologies openGalen with its 23

part-whole relations [31] and SNOMED CT, the Gene Ontology [11]
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that is in widespread use for instance-level database integration in

the biological sciences, and the Foundational Model of Anatomy

[32] all use variants of mereology. Mereotopology is an extension of

mereology with topological notions so as to be able to distinguish

between interior part and tangential part. It is used in geographic

information systems, annotation of pictures and with it, one can

infer, e.g., whether a country is landlocked; e.g., [13, 21].

Due to the trade-offs between the expressiveness of logic lan-

guages and computational complexity, it has been difficult to rep-

resent mereology and mereotopology in full and such that one

can obtain the desired inferences. Attempts include the SEP triples

workaround [34], the extension of OWL with reflexivity and ir-

reflexivity in SROIQ [17], and trade-off assessments for the OWL

species on consequences for automated reasoning for mereotopol-

ogy [21]. The most expressive Description Logics-based OWL lan-

guage, OWL 2 DL, creates further complications for the modeller

due to expressiveness limitations on object properties as a conse-

quence of computational complexity trade-offs. A concrete example

of such a trade-off is the choice between parthood’s transitivity or

its use with qualified number restrictions. This gives a modeller

three options, using humans with their limbs and feet as example:

1) humans can have as part any number of limbs and infer that if a

foot is part of a limb and a limb part of a human, then that foot is

part of that human; 2) a (canonical) human has as part exactly four

limbs but it cannot be inferred that the foot is part of the human;

and 3) a human has exactly four limbs and we can make the (transi-

tive) inferences about feet at the cost of scant tool support and poor

performance compared to options 1 and 2, due to translating it to

first-order logic (FOL) and calling a corresponding reasoner. If some

OWL ontology O1 uses option 1 and OWL ontology O2 option 2,

then importing or merging the ontologies leads to option 3—an

OWL file outside of OWL 2 DL—and undecidability in general. This

lack of closure under modular combination is a rather unusual as-

pect for a logic-based modelling language (notice that this problem

does not exist in, e.g., FOL), and in the typical situation of ontology

development with Protégé, this leaves the modeller stranded.

In sum, within the OWL context, it is confusing modelling as to

which mereo(topo)logical theory to include, it does not meet the

representation and reasoning requirements of the domain experts,

computationally incompatible modelling choices may not be obvi-

ous, and yet for various scenarios different choices are applicable.

We aim to solve these issues by tying together two components.

First, we will structure the mereological theories, using a two-

pronged approach. There are several recognised sub-theories in

the KGEMT mereotopology and there are established languages

with their language features that can represent various subsets of

those theories. We investigate this intersection and elucidate the

maximum possible sub-theories for each language. They and their

https://doi.org/10.1145/3148011.3148013
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interactions are presented formally in a networked set of theories

represented in the Distributed Ontology Language (DOL), as it was
specifically designed for linking theories represented in different

logics (up to higher order logic). DOL is supported by a tool ecosys-

tem (ontohub.org and Hets, see below) to select the appropriate

reasoners for it, rather than deterministically sticking to one up-

front. This resulted in 28 interconnected micro-ontologies—serving

as basic versions of ontology design patterns—of mereology, topol-

ogy, and mereotopology. A modeller then can choose precisely

which theory to include for which usage scenario of the ontology,

and when to use the linking to a more expressive version when rea-

soning time is not crucial. Because of the interactions of language

features that pushes an ontology into one fragment or another, we

propose steps towards conflict resolution, which pinpoints, auto-

matically, which axioms violate which logic, so that a modeller can

make an informed decision.

In the remainder of the paper, we first summarise mereotopology

(Section 2) and the logics used for formalisation as well as DOL
as a structuring language (Section 3), and subsequently outline

the DOL techniques for the network formalisation (Section 4). The

contribution to conflict resolution is described in Section 5. We

discuss in Section 6 and conclude in Section 7.

2 PRELIMINARIES: MEREOTOPOLOGY
This summary of mereotopology is based on [36] and [21], which

focuses on going from the basic axioms making up the simplest the-

ories of parthood (M) and location (T) up to the KGEMTmereotopo-

logical theory, as depicted in Fig. 1.

Figure 1: Hasse Diagram of the theories we focus on in this
paper, from weaker (T, M) to stronger (after Varzi (2007)).

On the mereology side, the basic theory is Ground Mereology,

M, that has part of as primitive, which is reflexive, antisymmet-

ric, and transitive (t1, t2, t3 in Table 1). From this, one can define

proper parthood (t20 in Table 2), from which irreflexivity (t25) can

be deduced, and, following from that (antisymmetry of P + irreflex-

ivity of PP), asymmetry (t27); proper part of is also transitive (t26).

Overlap can now also be defined (t21). One can add the notion of

supplementation (among other things) to M, resulting in General

Extensional Mereology, GEM (M + t4, t5).

In the other branch, we begin with Ground Topology (T) with

the connection relation, which is reflexive and symmetric (t6, t7).

This can be extended to Minimal Topology (MT) by adding spatial

enclosure (t8) as defined in t9. MT is then combined with GEM

into GEMT, which consists of MT + GEM + t10 (converse mono-

tonicity), t11 (self-connected), t12 (bridging connection to part),

and t13 (fusion). With the GEMT axioms and definitions, one can

then define interior proper part (t24), and from that, tangential
proper part (t23). The final aspect is then about closure, interior,

and exterior, resulting in KGEMT, i.e., GEMT + t14, t15, t16. The

three extra axioms require their definitions (t17-t19), so they then

also belong to KGEMT.

It is possible to construct a mereotopological theory in a different

way, such as taking proper part of as primitive, or merging part
of and connection into a ternary relation, or adding atomicity or

boundaries (see [36] for details). There are also multiple options to

incorporate more comprehensive topological theories; e.g., starting

from connection to define other relations (including parthood) [30],

focus on containment [4] or convex hulls [14] (see also Table 1

in [15] for possible ontological commitments). Our scope is not

mereotopology per sé, however, but to find a usable way and a

reusable approach to represent at least one such set of intercon-

nected theories computationally and reason over it automatically.

Table 1: Axiomatization of KGEMT core axioms and defini-
tions (based on [21], summarised from [36]). P: part of; PP:
proper part of; O: overlap, C: connection; E: enclosure; EQ: in-
discernible; IPP: interior proper part of; TPP: tangential proper
part of; SC: self-connected; c: closure; i: interior; e: exterior;
+: sum; ∼: complement.

P (x ,x ) (t1)

P (x ,y) ∧ P (y,z) → P (x ,z) (t2)

P (x ,y) ∧ P (y,x ) → x = y (t3)

¬P (y,x ) → ∃z (P (z,y) ∧ ¬O (z,x )) (t4)

∃wϕ (w ) → ∃z∀w (O (w ,z) ↔ ∃v (ϕ (v ) ∧O (w ,v ))) (t5)

C (x ,x ) (t6)

C (x ,y) → C (y,x ) (t7)

P (x ,y) → E (x ,y) (t8)

E (x ,y) =df ∀z (C (z,x ) → C (z,y)) (t9)

E (x ,y) → P (x ,y) (t10)

SC (x ) ↔ ∀y,z (x = y + z → C (y,z)) (t11)

∃z (SC (z) ∧O (z,x ) ∧O (z,y) ∧ ∀w (P (w ,z) →
(O (w ,x ) ∨O (w ,y)))) → C (x ,y) (t12)

z =
∑
xϕx → ∀y (C (y,z) → ∃x (ϕx ∧C (y,x ))) (t13)

P (x ,cx ) (t14)

c (cx ) = cx (t15)

c (x + y) = cx + cy (t16)

cx =df ∼ (ex ) (t17)

ex =df i (∼ x ) (t18)

ix =df
∑
z∀y (C (z,y) → O (x ,y)) (t19)

Finally, note that such a KGEMT theory does not (have to) exist

in isolation. KGEMT with its relations in [21] was extended from

the basic taxonomy of part-whole relations of [20] that uses DOLCE

[26] for domain and range restrictions. DOLCE incorporates GEM

[26], so KGEMT would be compatible with DOLCE, effectively

extending it. Other foundational ontologies rely heavily on theories

of parts, notably GFO [16] and BFO
1
, who are struggling to reconcile

the expressive theories from Ontology with the practicalities of

1
http://ifomis.uni-saarland.de/bfo/
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Table 2: Basic additional axioms, definitions, and theorems
(based on [21], summarised from [36]).

PP (x ,y) =df P (x ,y) ∧ ¬P (y,x ) (t20)

O (x ,y) =df ∃z (P (z,x ) ∧ P (z,y)) (t21)

EQ (x ,y) =df P (x ,y) ∧ P (y,x ) (t22)

TPP (x ,y) =df PP (x ,y) ∧ ¬IPP (x ,y) (t23)

IPP (x ,y) =df PP (x ,y) ∧ ∀z (C (z,x ) → O (z,y)) (t24)

¬PP (x ,x ) (t25)

PP (x ,y) ∧ PP (y,z) → PP (x ,z) (t26)

PP (x ,y) → ¬PP (y,x ) (t27)

OWL and OBO; e.g., the first order logic version of BFO includes

a universal parthood theory that includes a partonomic inclusion

theory
2
yet this is absent from its OWL and OBO version. Finally, it

could serve the many attempts in domain ontology development in

subject domains such as medicine and environmental data [9, 13].

3 PRELIMINARIES: LOGICS
While many logics could be considered, we zoom into those with

a considerable uptake and some tool support: the OWL family

of languages [7, 18], FOL [19], and the newly standardised DOL
metalanguage [24, 28].

3.1 Mereotopology and OWL
The latest standardised language in the OWL family is OWL 2

[29], of which most ‘species’ in the family are based on Description

Logics (DLs) [2]. DLs are decidable fragments of FOL, aiming to

find ‘sweet spots’ of the trade-offs between expressiveness and

decidability; e.g., with respect to full FOL, it could prohibit the

use of negation or the use of number restrictions greater than one

so as to obtain a language that is computationally better behaved.

In general, most DLs do not have extensive support for relational

properties. In fact, it is already problematic to represent even just

Ground Mereology fully, as shown in Table 3 for the DL-based

OWL species. The “+”’s in the OWL 2 DL column are deceptive:

a transitive property is not ‘simple’ anymore—simple properties

are those that are not transitive or defined by property chains—

so cannot be used jointly with properties that involve negation

(i.e., irreflexivity and asymmetry) or appear in qualified cardinality

restriction. This causes an increase of subtheories, as we shall see

further below (e.g.: theory 15 vs. 16 in Table 4).

3.2 Relevant DOL features
In a situation where two independently developed ontologies are

supposed to be reused as modules in a larger ontology, the differ-

ences between these ontologies will typically prevent them from

working together properly. Solving the interoperability issues in-

volves the identification of synonyms, homonyms, and the develop-

ment of bridge axioms to link the ontologies appropriately [5, 10].

Addressing these challenges, there is a diversity of notions provid-

ing design patterns for, and interrelations among, ontologies. The

Distributed Ontology, Model and Specification Language (DOL)

2
http://www.acsu.buffalo.edu/~bittner3/Theories/BFO/

Table 3: Properties of parthood (.P ) and proper parthood
(.PP ) in Ground Mereology, and connection (.C ) in Ground
Topology and their inclusion in the OWL family and FOL.

Language⇒ DL-based OWL species FOL

Feature ⇓ DL Lite 2DL 2QL 2RL 2EL

Symmetry
C

+ + + + + – +

Reflexivity
P,C

– – + + – + +

Antisymmetry
P

– – – – – – +

Transitivity
P,PP

+ + + – + + +

Asymmetry
PP

– – + + + – +

Irreflexivity
PP

– – + + + – +

aims at providing a unified metalanguage for handling this diver-

sity. The general theoretical background for DOL is presented in

[24] and a detailed description of the language can be found in [28].

It was approved as a standard of the Object Management Group

(OMG) in 2016
3
. DOL enjoys the following distinctive features: (1)

structuring constructs for building ontologies from existing ontolo-

gies, like imports, union, forgetting, interpolation, filtering, and

open-world versus closed-world semantics; (2) module extraction;

(3) mappings between ontologies, like interpretation of theories,

conservative/definitorial extensions, alignments, etc.; and (4) net-

works of ontologies, and their combination.

DOL and its structuring language are designed as a multi-logic

meta-language, already supporting all of the mainstream ontology

languages in use today, as depicted in Fig. 2. The graph is organised

along two dimensions: 1) ‘quality of logic translation’ and 2) expres-

sivity of the logic. The expressivity ranges from RDF to OWL to

variants of first- and second-order logic, exhaustively covering the

modelling requirements of diverse communities. The framework

is based on the theory of ‘institutions’, abstracting from the pecu-

liarities of syntax and semantics of particular logics, see [12, 24]

for technical details. The ‘quality of translation’ is related to how

directly proof support can be guaranteed along the translation; e.g.,

a ‘subinstitution’ corresponds intuitively directly to a sub-logic of

the target and a ‘theoroidal subinstitution’ requires one to encode

some of the semantics of the source into extra axioms expressed

in the target logic, for instance when encoding many-sorted logic

back into single sorted logic.

4 TYING IT TOGETHERWITH DOL
Having outlined the mereo(topo)logical theories and the various

logics, then in combining the two, one can construct 28 theories,

which are listed in Table 4. The 28 came about by, one by one, tak-

ing a theory listed in Fig. 1 with the axioms that make it up (see

Sect. 2) and assess which of those can be represented in each of the

selected languages. Note that there are not 2
27

theories, because not

every combination of the 27 axioms in Tables 1 and 2 makes sense

ontologically: e.g., one would not want a theory consisting of, say,

t1 (reflexivity of parthood) and t16 (exterior), because that combina-

tion is not meaningful. The converse—just the six named theories in

Fig. 1—does not apply either, because even ground mereology can-

not be represented fully in OWL 2DL (recall Table 3); hence, it is also

3
http://www.omg.org/spec/DOL/

http://www.acsu.buffalo.edu/~bittner3/Theories/BFO/
http://www.omg.org/spec/DOL/
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CL-

Schema.org
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Figure 2: A sub-graph of logics currently supported by DOL/Ontohub, linked with a variety of logic translations.

not simply a “6 (mereo(topo)logical theories) × (6 (DL-based OWL

species)+FOL+HOL) = 48” due to overlaps and exclusions in fea-

tures among the languages, as discussed in Section 3.1. Finally, one

cannot assert property definitions like t20 in OWL, whereas one can

in FOL and HOL, and therefore they were added as primitives to the

OWL-formalised theories. Theories 1–19 are already available on

OntoHub at https://ontohub.org/repositories/mereotopology, and

the repository is currently being extended with first- and second-

order modelling and full structuring.
4

For presentation purposes and anticipated usage, we present the

structuring of the network of theories using DOL by focusing on

the OWL species and extensions to OWL + FOL. From the DOL
structuring point of view, second-order axioms can be dealt with

in just the same way, including SOL (a second-order sublogic of

CASL), HasCASL (the higher-order extension of CASL), Common

Logic, Isabelle/HOL and HOL-light, as well as THF, see e.g., [27].

4.1 Organising micro-ontologies in DOL
The basic structuring operations for logical theories are already

available on the logic-specific level. For instance, when working

purely in OWL, we can employ the purely homogeneous DL-based

OWL fragment of DOL, called DOWL [25]. The most basic mecha-

nisms relevant for the present paper that we gain on top of OWL

are the following:

(1) control over signatures via renaming symbols along imports,

(2) extending existing theories with new axioms (theory exten-

sions),

(3) unions of theories,

(4) theory interpretation,

4
An ontology repository for FOL theories is COLORE, see http://stl.mie.utoronto.ca/

colore/. It includes RCC and Asher and Vieu’s system [1] and mereology, and relates

them via theory extensions and interpretations, however not using explicit DOL
structuring for this and not covering the OWL-based systems.

(5) syntactic extraction of modules using specified symbols, and

(6) lemma book-keeping and counterexample specification.

Features 1-5 will be illustrated in this section; the two more ad-

vanced DOL features (item 6) will be discussed in Section 4.2. We

begin by illustrating the idea of extending a theory by new axioms

(feature 2). We use the simplest possible examples on purpose, to

illustrate the underlying ideas as clearly as possible.

Extensions. We extend theory8 (OWL 2 EL/QL) into theory4

(OWL 2 QL) by adding symmetry (t7). This is written as follows:

logic OWL2.QL

ontology theory4 =

theory8

then
ObjectProperty: C Characteristics: Symmetric %(t7)

We now simultaneously illustrate unions of theories (feature 4)

with control over signatures (feature 1):

Unions. The union of theory7 (OWL 2 EL) and theory11 (OWL 2

RL) results in theory2, expressed in OWL 2 QL. To simultaneously

illustrate howwe can directly manage signatures, the given theories

use diverging vocabulary for talking about connection, which is a

very common phenomenon in practice.

logic OWL2.QL

ontology theory2 =

theory7 with Con |- > C

and
theory11 with Co |- > C

The result is a theory that combines the axioms of theories 7 and

11, with a unified signature for connection, using the symbol C .
Note that regarding unions of OWL theories more generally,

in the DOL framework, an OWL ontology that breaks the syntac-

tic restrictions imposed by OWL 2 DL can still be equipped with

sound and complete reasoning by translating it to FOL and calling

a corresponding reasoner, see also [33].

https://ontohub.org/repositories/mereotopology
http://stl.mie.utoronto.ca/colore/
http://stl.mie.utoronto.ca/colore/
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Table 4: Subsets of KGEMT that can be represented in HOL, FOL, and the OWL species. For the OWL species, t9, t20, t21, t22,
t23, t24 were simplified and added as primitives (axiom number of Tables 1 and 2 are appended with a “p”). For readability,
FOL and HOL are not listed where OWL species are listed, and OWL 2 DL is not listed if it lists an OWL 2 DL fragment.

N Language Subsets of KGEMT axioms Comments
1 OWL 2 QL t1, t21p, t22p M, with p, partially

2 OWL 2 QL t6, t7 T, c

3 OWL 2 QL t20p, t21p, t22p, t25, t27 M, pp

4 OWL 2 QL t6, t7, t8, t9p MT

5 OWL 2 QL t1, t6, t7, t8, t9p , t10, t20p, t21p, t22p, t23p, t24p, t25, t27 GEMT, partial

6 OWL 2 EL, 2 QL t1, t2, t21p, t22p M, with p, partially

7 OWL 2 EL t6 T, c, partial

8 OWL 2 EL, 2QL t6, t8, t9p MT, partially

9 OWL 2 EL t1, t2, t6, t8, t9p, t10, t26, t20p, t21p, t22p, t23p, t24p GEMT, partial

10 OWL 2 RL, OWL Lite, DL t2, t21p, t22p M, p, partial

11 OWL 2 RL, 2QL, OWL Lite, DL t7 T c, partial

12 OWL 2 RL, EL, DL, OWL Lite, DL t2, t26, t20p, t21p, t22p M, with p and pp both partially

13 OWL 2 RL, OWL Lite, DL t7,t8, t9p MT partial

14 OWL 2 RL, OWL Lite, DL t2, t7, t8, t9p, t10, t26, t20p, t21p, t22p, t23p, t24p GEMT, partial

15 OWL 2 DL t1, t2, t6, t7, t8, t9p, t10, t25, t27, t20p, t21p, t22p, t23p, t24p GEMT, partial

16 OWL 2 DL t1, t2, t6, t7, t8, t9p, t10, t26, t20p, t21p, t22p, t23p, t24p GEMT, partial

17 OWL 2 RL t2, t20p, t21p, t22p, t25, t27 M with p and pp, both partial

18 OWL 2 DL t1, t2, t25, t27, t20p, t21p, t22p M with p and pp, both partial

19 OWL 2 EL t1, t2, t26, t20p, t21p, t22p M with p and pp, partial

20 FOL, HOL t1, t2, t3, t21, t22, t4 M, with p

21 FOL, HOL t1, t2, t3, t20, t21, t22, t25, t26, t27 M, with p and pp

22 FOL t1-t4, t20, t21, t22, t25, t26, t27 GEM, partial

23 FOL, HOL t6, t7, t8, t9 MT

24 FOL t1-t4, t6-t12, t20-t27 GEMT, partial

25 FOL t1-t4, t6-t12, t14-t27 KGEMT, partial

26 HOL t1-t5, t20, t21, t22, t25, t26, t27 GEM

27 HOL t1-t13, t20-t27 GEMT

28 HOL t1-t27 KGEMT

Theory Interpretation. To continue the previous example, clearly,

theory7 (or theory11) can be interpreted into theory2 in the sense

that theory2 can prove all the consequences of theory7. This is

written as follows:

interpretation theory7_into_theory2 :

theory7 to theory2 =

Con 7→ C

The semantics is that under the translation of taking Con to C ,
theory2 can prove all the consequences of theory7.

Heterogeneous DOL: Logic translation. The heterogeneous case,
i.e., when moving from a weaker logic (say, OWL DL) to a more

expressive one (say, full FOL) is a specific strength of DOL. We

illustrate this by extending theory6 (in OWL 2 EL) with antisymme-

try and weak supplementation (this is ‘almost’ theory20 (in FOL),

however still lacking the definitions of O and EQ), as follows:

logic CASL.FOL

ontology theory6_plus_antisym_and_WS =

theory6 with translation OWL22CASL

then
forall x,y:Thing . P(x,y) /\ P(y,x) => x =y %%(t3)

forall x,y:Thing . not P(y,x) =>

exists z:Thing . P(z,y) /\ not O(z,x) %%(t4)

Definitional Extensions. Definitional extensions are one of the
most basic tools in ontology design (cf., e.g., DOLCE) and can be

specified explicitly in DOL. Indeed, they are one of the basic struc-

turing means to organise mereotopological theories: e.g., proper
part of (PP) and overlap (O) can be defined in terms of part of
(P), and tangential proper part of (TPP) in terms of part of and
connection (see Table 2).

Technically, a definitional extension with a definition of, e.g.,

overlap (O) consists of a signature extension with the binary predi-

cate symbolO (x ,y), together with the basic definition of O in terms

of P. More formally, a theory T2 in signature σ ′ is a definitional
extension of theory T1 in signature σ , if any T1-model has a unique

expansion to a T2-model.
5
Intuitively, T2 adds neither additional

constraints nor additional freedom of interpretation toT1, but rather
the new symbols inT2 are uniquely defined in terms of the symbols

in T1 [24]. Note that it is a slightly different situation when previ-

ously introduced symbols, even if unaxiomatised, are augmented
with definitions (which is in general neither definitional nor conser-

vative). We say thatT2 is a weakly definitional theory extension ofT1
5
Note that this means that model reduct is a bijection between T1-models and T2-
models.
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if each realisation of T1 can be expanded to at most one realisation
ofT2. All these requirements can be expressed in DOL (definitional
extensions are annotated with %def, weak definitional extensions

with %wdef). We complete the previous incomplete definition of

theory20 as follows:

logic CASL.FOL

ontology theory20 =

theory6_plus_antisym_and_WS

then %wdef

. forall x,y:Thing . O(x,y) <=> exists z:Thing (P(z,x)

/\ P(z,y)) %(t21)

. forall x,y:Thing . EQ(x,y) <=> P(x,y) /\ P(y,x) %(t22)

The result is a complete specification of theory20, where the pre-

viously undefined symbols O and EQ have been augmented with

their formal definitions.

DOL network and colimits. The entire network of 28 theories can
be formally represented as a DOL network, written as follows:

network KGEMT_network = theory1 ,..., theory28 ,M1 ,...,Mp

Here, the theories theory1–theory28 are listed, followed by the

defined theory interpretationsMi connecting the various ontology

nodes.

Since the network explores the subtheories of KGEMT along the

dimensions of language expressivity and ontological soundness,

there are no conflicting logical statement among the 27 axioms. In

fact, DOL’s combination technique (based on computing colimits

of the network) can compute the colimit of the network of theory1–

theory28 resulting in the full KGEMT.

ontology KGEMT = combine KGEMT_network

Moreover, the network construct allows us to exclude certain

mappings and ontology nodes. Therefore, we can select a language

species, and compute the maximal combination of subtheories that

live in that species. Note, as discussed earlier, that this might lead

outside of the logic species for some logics, such as OWL 2 DL, but

this will not occur for OWL 2 EL or FOL sub-networks.

4.2 Lemmas, Consistency, and Countermodels
To understand the essential features of our network of 28mereotopo-

logical theories, it is important to (a) keep track of the desired con-

sequences of the theories, and (b) to record counterexamples of

properties that do not follow from the current theory. Both features

are supported by DOL, as discussed next.

Keeping track of consequences. Keeping track of desired conse-

quences is easy in DOL. We continue the example from above. If

proper part of is introduced definitorially, rather than axiomatised

directly, then we expect its typical properties to be entailed by the

definition. This, of course, depends on how precise we axiomatised

the defining property of part of. We can augment any given theory

with a definition of PP , and record the consequences, as follows:

logic CASL.FOL

ontology theory20_with_PP_lemmas =

theory20

then %wdef

. forall x,y: Thing . PP(x,y) <=> P(x,y) /\ not P(y,x)

then %implies

.forall x,y: Thing . not PP(x,x) %(t25)

.forall x,y,z: Thing . PP(x,y) /\ P(y,z) => PP(x,z) %(t26)

.forall x,y,z: Thing . PP(x,y) => not PP(y,z) %(t27)

The semantics is that, assuming the stated theory, the declared

lemmas (sentences in the present logic), namely, the three axioms

listed after the annotation %implies are logical consequences of the
theory. This ontology specification therefore introduces so-called

proof obligations, i.e., forces a connected automated reasoner (in

this case SPASS or Vampire, etc.) to prove the axioms (t25)–(t27)

from the theory specified before.

Relative consistency and countermodels. Proving consistency of

the theories is easy for the OWL-based ones, for one simply can use

one of the DL-based OWL 2 automated reasoners. Theories 1-19

have been checked as such, and are consistent according to those

reasoners.

However, as soon as we move away from OWL to FOL, estab-

lishing consistency can be extremely difficult or in fact hopeless

with current automatic reasoning capabilities. As reported in [23],

even establishing the consistency of classical extensional parthood

breaks (then) current automatic reasoning support unless model

finders are strongly assisted by humans, e.g., as an oracle to pre-

scribe the exact size of a model to look for.

We here outline how we can, within DOL, specify declaratively,

and verify automatically, the consistency of adding an (or several)

axiom to an existing theory, and related, how to prove that a the-

ory admits unintended models, i.e., counterexamples for specific

principles. The core tools to do this are a) theory interpretation,

and b) formal specification of models. A model can be declaratively

specified as a logical theory with exactly one model up to isomor-

phism. This is easy in propositional logic (fix the truth value of all

propositions); in OWL we can specify partial models with the help

of ABoxes; in FOL there are standard methods to describe finite

models; and CASL can describe also infinite models via its free sort

generation feature. For instance, to prove that theory23 is consis-

tent, one specifies a finite model in a specification M which we

assume uses symbols co,e,P and write the following interpretation:

logic CASL.FOL

interpretation Cons : theory23 to M = C |-> co, E |-> e

Notice that only the non-identical symbols need to be mapped

explicitly. By definition of theory interpretation, ‘Cons’ is correct if

and only if every model ofM reduced along the morphism defined

in Cons is a model of theory23. NowM specifies a fixed model and

thus proving the interpretaton correct (the axioms of theory23 hold

onM) establishes consistency.
6

Notice that the same technique can be used to show that a the-

ory T is both consistent and admits counterexamples to specific

principles, by interpreting T into a modelM that violates principle

ϕ. Note that the heterogeneous features of DOL here become a

powerful tool, since the countermodel can be specified in a more

expressive logic (e.g., FOL) than the theory that we interpret (e.g.,

OWL EL). A very simple example: An OWL mereology leaving out

antisymmetry (t3), say theory15, clearly has unintended models.

We can specify in FOL a non-well-founded model for part of, and

6
The solution to the problem of establishing consistency of ‘too large’ first-order

theories proposed in [23] is to break down the global problem into a series of rela-

tive consistency proofs using the idea of CASL architectural specification [3] which

prescribes how ‘global models’ can be put together from ‘smaller models’. Then the

small steps in this global consistency proof consist of constructions as the one just

described.
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by interpreting theory15 into this model, using the above tech-

nique, give formal proof that theory15 admits such models (but

see [6] for philosophical arguments why one would like to drop

antisymmetry).

5 TOWARD RESOLVING CONFLICTS
BETWEEN LANGUAGES AND THEORIES

Trade-offs between representational expressivity, and therewith

the possible inferences and reasoning efficiency, are shown clearly

in Table 4, ranging from the OWL 2 profiles that have complex-

ity for the satisfiability problem in polynomial time to the highly

undecidable HOL. When a particular fragment is chosen for an

ontology, it can be sent to the appropriate automated reasoners,

such as CEL or ELK for OWL 2 EL, HOL reasoners such as Leo,

Satallax, Isabelle (interfaced through Hets), and so on. This is an

engineering task now that the options are known, and therefore

not pursued here. It does move the goalpost to a form of conflict

resolution to decide about what to do with conflicting language
features of the languages used to represent the ontologies. For in-

stance, one wants to methodically create an ontology network [35]

by linking several ontologies, where OWL ontology O1 uses the-

ory18 and ontology O2 uses theory19. However, combining them

violates the OWL 2 DL RBox restrictions [29] and thus will lead to

an undecidable language (FOL). This is a conflict if the requirement

is to remain within OWL 2 DL expressiveness and a modeller has

to know about it, why or what is causing it, and then decide how

to resolve it, and likewise for an algorithm to determine to which

optimised automated reasoner to send the ontology.

The main steps in the conflict resolution are: 1) (automatically)

detecting language violations; 2) reporting which axioms use what

feature that is beyond a particular language; 3) assist with describ-

ing the consequences of the options one has at disposal. Here, we

focus on solving the first two steps, and scoping its feasibility in par-

ticular. To make the proof-of-concept manageable, an OWL species

classifier was developed
7
, which analyses the OWL file, lists in

which OWL species it is and why it violates the others. The OWL

classifier uses version 1.4.3 of the OWL API for OWL 1 in order to

be able to categorise it in an OWL 1 species and OWL API v4.2.3

for all OWL 2 species, and it extends the DLExpressivityChecker

class in the OWL API to keep track of axioms w.r.t. construct letters

and to create a justification of the reported expressivity, therewith

providing features not available in currently popular ontology ed-

itors. For instance, merging an ontology O with theory8 into O ′

that has theory13 results in an ontology in, at least, OWL 2 QL,

2 DL or Full (see Fig. 3), thus neither in the 2 EL or 2 RL profiles

that the original ones were, respectively. The “Profile violations”

section (see Fig. 3) can be used for resolving feature/computational

complexity conflicts, showing which axiom(s) one would have to

delete in order to stay within a particular profile, or, as in combining

theory18 with theory19, which one(s) cause it to go beyond OWL

2 DL.

Regarding step 3 of the conflict resolution (‘what to do’?), it is

not possible to perform this task automatically, for it depends on

what the modeller wants. At best, one can describe the options and

7
https://github.com/muhummadPatel/OWL_Classifier

their consequences. For the afore-mentioned example with theory

no. 18 and 19, that would be:

(1) Choosing O1’s axioms with irreflexivity and asymmetry on

proper part of will make the ontology interoperable with

other ontologies represented in OWL 2 DL, FOL or HOL.

(2) ChoosingO2’s axioms, with transitivity on part of and proper
part of, will facilitate linking to ontologies in OWL 2 RL, 2

EL, 2 DL, FOL, and HOL.

(3) Choosing to keep, and combine, both sets will result in an

OWL 2 Full ontology that is undecidable, and is compatible

with FOL and HOL ontologies.

Such options with their consequences can be distilled from the set of

KGEMT subtheories for the languages considered, and their formal

specifications. Computing these options and from those results

generating some natural language sentences may be in the realm

of the feasible. However, a complicating factor is that this does not

yet consider the other knowledge represented in the ontology that

may interfere with this seemingly clean scenario, but would have

to be taken into account. This is left for future work.

6 DISCUSSION
The many identifiable theories with just a few logics suffices to

demonstrate both the (perhaps untenable) ‘blow up’ ofmini-theories

and why it has become confusing for modellers, yet also a way for

catering for it withinDOL. It is, of course, possible to further extend
the set of mini-theories by considering also other DLs and other in-

termediate mereological theories (e.g., Extensional Mereology, EM),

extending it with boundaries, and so on. It thus also provides the

mechanism to verify computationally further extensions to KGEMT,

such as KGEMTS [14]. While it may not be trivial at this stage to

represent all this in DOL, the previous section demonstrates that it

is feasible to do. The chance that modellers of any two ontologies

have made the same choice as to which subset of axioms to include

is small, and thus importing one into the other easily will lead to

going beyond the target language, as illustrated. This overview

presented here clearly demonstrates the options at one’s disposal,

and a way to deal with them within one framework.

This fine-grainedness and ‘feature negotiation’ is an improve-

ment over plain owl:import that requires one to simply import a

whole ontology and be stuck with the consequences. It also com-

pares favourably with respect to a related framework for theory

combination, ε-connections [22], that enjoyed an implementation

with OWL as “link properties” [8], because there one can link vocab-

ulary elements across ontologies only, whilst here we are looking

at combining theories also on object property characteristics.

Although the OWL species classifier covers only all OWL species

and not also FOL/HOL negotiation, we expect this is the most useful

nonetheless. The OWL species classifier is a proof-of-concept tool

assisting with conflict resolution, rather than end-user level, but it

is the first tool that clearly organises the necessary information to

be able to do so.

7 CONCLUSION
We have presented a network of 28 modular ontologies in DOL,
relating various fragments of the KGEMT mereotopological theory

and its five sub-theories, which was driven by the expressiveness

https://github.com/muhummadPatel/OWL_Classifier
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Axioms that cause the 
DL expressivity letter
(here: reflexivity is one 
of the language 
features resulting in the 
“R” of SROIQ [OWL 2 
DL])

Computed OWL species of 
the ontology (here: of the 
merger of theory8 and 
theory13)

Offending axiom(s) in the 
ontology that cause the 
ontology to go beyond the 
species (here: OWL 2 EL)

Brief explanation of the 
underlying Description 
Logic that the ontology 
is represented in
(here: ALRI)

Figure 3: Annotated screenshot of the OWL species classifier output of the merger between theory8 and theory13.

of the six DL-based OWL species and first and second order logic.

A core step toward resolution of feature conflicts among the OWL

species was introduced with the OWL classifier, informing a mod-

eller about language violations in order to make informed decisions.

Future work includes extending this network with incompatible

extensions, such as removing antisymmetry and adding atomicity,

as well as a detailed specification of countermodels, formal consis-

tency proofs, and the exploration of logic-specific sub-networks.
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