
Transforming semi-structured life science diagrams into meaningful domain
ontologies with DiDOn

C. Maria Keet

School of Computer Science, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban, South Africa,
tel: +27 31 260 1035, fax: +27 31 260 7001, email: keet@ ukzn. ac. za

Abstract

Bio-ontology development is a resource-consuming task despite the many open source ontologies available

for reuse. Various strategies and tools for bottom-up ontology development have been proposed from a

computing angle, yet the most obvious one from a domain expert perspective is unexplored: the abundant

diagrams in the sciences. To speed up and simplify bio-ontology development, we propose a detailed, micro-

level, procedure, DiDOn, to formalise such semi-structured biological diagrams availing also of a foundational

ontology for more precise and interoperable subject domain semantics. The approach is illustrated using

Pathway Studio as case study.

Keywords: Ontology Development, OWL, Bio-Ontology, Diagram, Pathway, BFO

1. Introduction

Ontologies can be used as an important mechanism to link and integrate data, databases, and conceptual

data models, thanks to providing a logic-based representation of the domain of interest that is independent of

specific applications. Linking and integrating can be done through annotation of instances across databases

with a domain ontology, such as the widely used Gene Ontology [1] and similar OBO ontologies [2], linking

ontologies to conceptual data models [3, 4] or linking an ontology directly to data in different sources by

means of a mapping layer [5, 6]. Increasingly, an ontology is also seen as an end in itself, whereby it is

deployed as a way to represent the knowledge of a particular subject domain [7, 8] and may be used for

hypothesis elimination by reducing the theoretical options to those that are logically consistent with the

formally represented theory before commencement of laboratory experiments [9, 10], and scientific discov-

ery [11]. Also, with ontologies, one can avoid duplication of costly research and manage the exponentially

growing amount of data to push science forward [1, 12]. However, development of ontologies is a resource-

intensive task where non-ontological resources—‘legacy’ representations of the scientific knowledge—are,

often manually, consulted to ensure adequate coverage and to ease the ontology development process. The

statistical analysis of Simperl et al’s [13] survey of 148 ontology development projects showed that “domain

analysis was shown to have the highest impact on the total effort” of ontology development and the “par-

Preprint submitted to Journal of Biomedical Informatics January 9, 2012

Figure 1: A diagram representing the interactions between the various molecules in a pathway: degradation of the RAR and

RXR by the proteasome.

ticipants shared the view that process guidelines tailored for [specialised domains such as health care, or in

projects relying on end-user contributions] are essential for the success of ontology engineering projects”.

Some efforts have gone into automating this bottom-up development process, ranging from database reverse

engineering [14] to natural language processing (NLP) [15, 16], to ontologising thesauri [17]. The former two

use relatively generic algorithms and heuristics and are therefore noisy so that they require adaptation for

bio-ontology learning to yield useable results [18], whereas the latter is still more manual than automated.

Invariably, the approaches show that the procedure to go from an informal non-ontological resource to a

logic-based ontology is too large to carry out in a single step.

An alternative, and hitherto unexplored, option for bottom-up ontology development is to analyse what

can be done with the many diagrams in biology that contain icons and stylised drawings for biological

entities. This could be especially useful since the life sciences are very diagram-oriented and there are plenty

of scientific drawing tools. It is surprising that such semi-structured diagrams, like the one depicted in

Figure 1, have not been used to find (candidate) classes and relationships for domain ontologies beyond the

initial exploration by [7] for the ISEE drawing tool and the SMBL Harvester tool under development [19]

that is geared toward ontologising SMBL-annotated diagrams for in silico simulations. In addition, if they

are used, they can provide the sought-after intermediate representation that domain experts are familiar with

and computer scientists also can handle [20, 21]. Once formalised in a comprehensive ontology, consistency

of those biological theories can be checked with automated reasoners and the opportunity enhanced for

scientific discovery.

The aim is to fill this hiatus in bottom-up ontology development. This requires two principle components

in order to lay solid foundations: a formalisation step and adequate treatment of the subject domain

semantics. In this paper, we propose a procedure to formalise such semi-structured biological diagrams,

i.e., from Diagram to Domain Ontology, DiDOn, focussing on how to formalize it whilst being faithful to

the subject domain semantics. The formalisation aims at two common usage scenarios: (i) the so-called

2

low-hanging fruit with OBO or SKOS and its use for data annotation and computational linguistics, and (ii)

to capture the necessary details for theory analysis by formalising it in a very expressive (Semantic Web)

ontology language, with OWL 2 DL as a minimum. Both require a micro-level method to represent the

formal and ontological details of the diagram vocabulary in an expressive ontology beyond just classes and

some of their relationships so as to include guidance also for the axioms and ontological quality criteria, which

subsequently functions as a seed ontology to automatically formalise the diagrams themselves by means of

a transformation algorithm. In turn, this can be integrated into macro-level methodologies that provide the

high-level process-oriented information systems perspective for ontology development. The DiDOn micro-

level formalization procedure will be demonstrated using the biochemical pathway modelling tool Pathway

Studio (PS) [22, 23] as use case. Its vocabulary is analysed and then categorised with a foundational ontology

so that the icons are given both a formal semantics and a precise subject domain semantics.

The remainder of the paper is organised as follows. Section 2 considers the choice of a representation

language and modelling choices following the selection of a foundational ontology, which feed into the

DiDOn procedure in Section 2.4. We apply the procedure to the Pathway Studio graphical modelling tool

in Section 3. Section 4 contains a discussion and Section 5 the conclusions.

2. Methods: How to Formalise it?

After a brief assessment of the principal differences in proposed approaches to and methodologies for

bottom-up ontology development, we shall look at the issue of choosing a suitable language and the consid-

eration to use a foundational and/or other ontologies. The outcome is summarised as the DiDOn procedure

in Section 2.4.

2.1. Extant Methods and Methodologies

There are comprehensive methodologies for ontology development, such as Methontology [20], MOKI

[21], the NeON methodology [24], OntoSpec [25], and the “Ontology Development 101” (OD101) [26]. The

former three mention non-ontological resource reuse, but they do not elaborate on how exactly this is to be

carried out, other than an NLP approach and indicating reuse of thesauri. For instance, one such recent

application is NLP for pharmacogenomics ontology development, which requires manual rule construction

and ‘normalization’ of verbs (candidate relationships) into relationships using the PHARE domain ontology

and finally is represented in a semantic network [16]. Although PHARE is an OWL ontology, it uses

only the ALCHIF(D)-fragment, and it does not use any foundational ontology, such as GFO [27], RO

[28], BFO [29], DOLCE [30], or SUMO [31], to enforce precision on the subject domain semantics and

to make it interoperable with other bio-ontologies. Concerning independent methods for reusing ‘legacy’

representations that can be incorporated into the macro-level methodologies, then there is one study similar

3

in spirit to the one proposed here [7], which is, however, with a simple graphical modelling tool containing

only 4 core elements, and therefore still relies on much manual analysis, and it does not provide a structured,

reusable, approach toward formalisation. The OBO Foundry [2] has a set of resources and principles [8],

but a method is yet to be developed that goes beyond manual examination of scientific literature to extract

content that has to be represented in the bio-ontology.

OntoSpec focuses on formalising subject domain knowledge in detail, uses the DOLCE-OS language and

is informed by DOLCE and OntoClean, but it does not include non-ontological resource usage. OD101

predates inclusion of expressive and standardised ontology languages and ontology reuse and interoperation.

Nevertheless, the interesting aspect of these two approaches is that, to the best of our knowledge, they

are the only methodologies with formalisation guidelines detailing how to go from informal to logic-based

representations with instructions how to include the axioms and which ones are better than others, i.e.,

the micro-development compared to the macro-development steps of the other methodologies that revolve

around designing and deploying, say, a waterfall methodology, that includes instructions how to plan for

development of an ontology and maintain it, but not how to formalise it.

The ‘how to formalise it?’ question by itself is not new neither in IT and Computing [32, 33] nor in

logic, be that going from natural language to first order logic or its interaction with the graphical classical

“blocks world” [34]. Regarding formalising it in an ontology as opposed to a mere logical theory, OntoClean

and the so-called “ontological level” can be added [35, 36], which provide reasons why one formalization is

better than another. Their commonalities lie in the considerations for choosing a logic language to formalise

it, the ontological commitments, and the realisation that they do affect the representation of the subject

domain, hence, also any procedure to formalise the diagrams.

2.2. Formalization in Different Languages

We briefly outline which languages typically are, or can be, used for bio-ontology development, which

differ in expressiveness and encoding peculiarities, and introduce informally the first steps of formalizing the

diagrams.

2.2.1. The Language

Regarding formalisation of the icons in the biological diagrams, the first aspect is to choose a suitable

logic-based language. This depends on the scope and purpose of the ontology (if there is one at all) and

the desired reasoning services (if any) [37]. Current usage of bio-ontologies fall broadly into two categories:

annotation of resources, such as data in databases and text in scientific literature with the Gene Ontology [1]

and similar ontologies, and scientific ontologies representing the knowledge of a subject domain, such as the

Foundational Model of (human) Anatomy [38] and the BioPax ontology for biological pathways [39]. The

former group of ontologies require support for navigation, queries to retrieve a simple class in the hierarchy,

4

and scalability at the class-level and at the instance-level; hence, a language with low expressiveness suffices

for querying and is required for scalability, such as the Open Biological and biomedical Ontologies’ obo-

format (a directed acyclic graph), the W3C standardised Simple Knowledge Organisation System (SKOS)

language (essentially RDF) [40], and the W3C standardised OWL 2 EL and OWL 2 QL profiles [41]. A

scientific ontology requires a very expressive language to represent fine distinctions between the entities and

reasoning services such as satisfiability of the ontology, classification of classes in the hierarchy, and complex

class queries. One can choose any language, be it full first order predicate logic (FOL), an extension (e.g.,

temporal), or a standardised decidable fragment of FOL to guarantee termination of the reasoning services

and foster interoperability and reuse with other ontologies. The second option indicates that the most

expressive language OWL 2 DL [42] may be suitable. This information is summarised in Figure 2, which

can be extended with more ontology languages.

Expressiveness of the Representation Language. Of the languages mentioned, only FOL has the expres-

siveness to represent n-ary relations, with n ≥ 3. Reification of an n-ary to n binary relations requires

identification constraints among those n binaries for it to be semantically equivalent to the original n-ary,

but none of the other above-mentioned languages has this language feature, hence, n-aries can only be

approximated. Note though, that not all perceived n-aries are real n-aries; i.e., some can be split into

binaries without losing information, whereas others cannot. This modelling issue is well-known in relational

database theory and conceptual data modelling as assessment of functional dependencies and methods exist

to disentangle it [32, 43]. For instance, the ternary about HIV transmission, ∀x, y, z(transmission(x, y, z)→

HIV subtype(x) ∧Donor(y) ∧ Recipient(z)) (“HIVsubtype transmission from Donor to Recipient”), is not

further decomposable without losing information, whereas the ternary ∀x, y, z(works(x, y, z)→ Doctor(x)∧

Department(y) ∧ Building(z)) (“Doctor works for Department in Building”) can safely be split into two

binary relationships without losing information: ∀x, y(works for(x, y)→ Doctor(x)∧Department(y)) and

∀x, y(works in(x, y)→ Doctor(x) ∧Building(y)).

One can foray into extensions of FOL, Description Logics (DL) and OWL, so that one can represent

temporal, fuzzy, probabilistic, or rough knowledge. For instance, one may insist upfront that one has to

be able represent that, say, Hepatitis normally has fever as symptom [44] and multiple similar cases, which

can be dealt with using probabilistic default knowledge: let (φ, ψ)[l, u] stand for “generally, if an object

belongs to φ, then it belongs to ψ with a probability in [l,u]” in a probabilistic extension of OWL [45],

then (∃hasSymptom.Fever | Hepatitis)[1, 1]. Another common request is to be able to represent ordered

sequences of entities or events, such as the chemical reactions in a metabolic pathway, that may require a

temporal logic to represent and reason adequately over such knowledge. However, these extensions have not

made it to mainstream ontology development yet.

There are more aspects one may want to consider, such as the fine-grainedness of a language (e.g.,

5

Is reasoning
required?

Only data
annotation?

Text
annotation?

Expressivity
is important?

Use OWL (2) DL

Use OWL 2 EL
or OWL 2 QL

Use OBO or
OWL 2 EL

Use SKOS, OBO, or
OWL 2 EL

No

Yes

Decidability is
important?

Use any FOL,
extension thereof, or
higher order logic

Figure 2: Decision diagram to choose a suitable language, indicating current typical usage and suggestions for use.

if one can represent not only relationships, but also the components of a relationship) and its semantics

(e.g., graph-based, model-theoretic), which is interesting from a logic and philosophical perspective, but less

relevant for practical ontology development and therefore not pursued here.

Encoding Peculiarities. Domain ontology developers tend to distinguish between what it is ‘understood

to represent’ and the computational representation. That is, one can take, say, Cell to be a universal,

class, or concept, and represent it as an OWL class Cell in an ontology, but one also can store Cell in

a database table, by which it mathematically has become an instance yet ‘think of it’ and pretend it

to be a universal, class, or concept. This is of particular relevance for SKOS and some OBO ontolo-

gies. For instance, the Gene Ontology is downloadable in OBO or OWL format—i.e., its taxonomy con-

sists of, mathematically, classes—and as a database—i.e., mathematically it is a taxonomy of instances.

This need not concern the subject domain experts, but it does affect how the ontology can be used in

ontology-driven information systems. For SKOS, there is no such choice: each particular SKOS ‘con-

cept’ is serialised as an instance, regardless whether one models it directly into SKOS or transforms an

OWL ontology into SKOS. For instance, if one would have chosen to represent that insuline is a sub-

type of a peptide, then one declares the SKOS ex:peptide rdf:type skos:Concept and ex:insulin

ex:broaderGeneric ex:peptide which are, in the mathematical sense, about instances. Hence, also in an

OWL to SKOS transformation, each OWL class becomes a SKOS instance due to the mapping of skos:

Concept to owl:Class [46]. This is a design decision of SKOS, that, once known, can be handled easily in

the application layer, in a similar way to GO.

A different encoding peculiarity is to exploit OWL 2 punning features to squeeze second-order rules in

a first-order setting to avail of its software infrastructure: convert all class-level classes and expressions

(the TBox) into individual assertions (ABox), encode the second-order rules in the TBox and classify the

classes-converted-into-individuals accordingly. An example of this approach is the application of OntoClean

6

[47].

Hence, one has to be careful with the distinction between the ‘intended meaning’ and the actual encoding.

2.2.2. First Steps Toward Formalization of Biology Diagrams

As some point in the bio-ontology development, one has to choose a representation language. For both

categories of scenarios mentioned in the introduction, the first step of the formalization is to assess the “icon

vocabulary” of the diagram drawing tool for unary ‘object-like’ entities and n-ary (n ≥ 2) ‘relationship-

like’ entities. Among the n-aries, one then distinguishes between generic relationships, such as parthood,

participation, dependence, and constitution, and other recurring relationships, which are the general rela-

tionships specific to the domain, such as development, regulation, and transformation in the life sciences

subject domain. From here onwards, the formalisation steps differ for the chosen languages. The relatively

straight-forward procedure for OBO and SKOS is included in the guidelines in Section 2.4 only.

For OWL 2 DL, one also assess a few sample diagrams to check for cardinality restrictions, i.e., if a

particular (type of) n-ary is linked to more than one unary, and checks for sequences of the same or different

n-aries, which indicate possible transitivity or property chaining. n-aries where n ≥ 3 can be approximated

by reification without the identification constraint, but this makes the overall ontology logically complicated

and difficult to understand for the domain expert, and therefore should be used sparingly even if one were

to use an n-ary ontology design pattern.

For an arbitrary expressive logic language, there are more options to consider, such as spatiality and

temporality, which both feature in many diagrams implicitly. Spatiality is often represented with sections

of different background colour, lipid bi-layers, or the name of the (type of) cell, tissue, or organ, therefore

requiring inclusion of both spatial relations as well as spatial entities at the appropriate level of granularity.

Temporal aspects are normally represented as chains of unaries and n-aries with indicative labels like trans-

ports, transcribes, or flows, though, in general, the temporal dimension has not been investigated widely for

ontologies. For both spatial and temporal extensions, a wide range of theories are available (we will return

to this in Section 4). n-aries where n ≥ 3 can be represented as such.

2.3. Foundational Ontology Modelling Choices

Most real bio-ontologies do not exist in isolation, but are linked to other ontologies, be they other domain

ontologies or foundational ontologies. Using a foundational ontology with its generic categories of entity

types and core relationships across subject domains can facilitate bio-ontology interoperation [2], it speeds

up ontology development, and it has been shown to improve its quality [48]. Some of such ontologies are

DOLCE [30], BFO(+RO) [29, 28], GFO [27], and SUMO [31].

The principal modelling choice they introduce, is that it forces one to choose between n-aries as unaries

(classes in OWL) or n-aries as n-aries (object properties in OWL). An intuitive formalization of the n-aries

7

is to keep them as such, so that there is a close correspondence with the original diagram; this easily can

be done also in OWL and any arbitrary FOL language. Foundational ontologies, however, have a separate

branch for ‘processes’ (Perdurant in DOLCE and Occurrent in BFO) and relate this with a new relation to

‘objects’ (Endurant in DOLCE, Continuant in BFO), such that an endurant is a participant in a perdurant. For

instance, the person Mary is a participant in a running instance that, in turn, is part of a marathon, but

not that there is a 1-to-1 formalisation for “Mary runs a marathon” where “runs” is the label for a binary

relation between Mary and the marathon she is running. Thus, a biological diagram icon may be an arrow

denoting regulation, which can be formalised as a binary relationship regulates or regulatedBy, or as an

unary predicate (OWL class) Regulation as subtype of DOLCE’s Process or BFO’s ProcessualEntity. The

former results in a more compact representation, is intuitively closer to the domain expert’s understanding,

and makes it easier to verbalise the ontology, and therefore is likely to be more useful in praxis. The latter

is more generic, and thereby likely to increase reusability of the ontology. At the time of writing, it has not

been determined experimentally which option is better for domain ontologies.

In addition, dependency or inherence has to be addressed, which has the meaning that a depends on b

if and only if, necessarily, b is present whenever a is present. One can represent the role or function, a, an

entity plays as a subtype of its bearer b, such as ∀x(Student(x) → Person(x)), but also—and in founda-

tional ontologies in particular—such that one creates a hierarchy for the roles and one for the bearers and

relate the entities through a dependency relationship. The dependent entities are represented as subclasses

of NonPhysicalEndurant in DOLCE (DependentContinuant in BFO) and their bearers as PhysicalEndurant in

DOLCE (IndependentContinuant in BFO). Clearly, the latter is a more elaborate encoding, but perhaps more

interoperable than the former.

A minor issue is the representation of an attribute—a binary relationship between a class and a data type,

like OWL’s data property—because, from the viewpoints of foundational ontologies and interoperability, they

ought not to be represented as such in an ontology. Put differently, inclusion of a subject domain-specific

data property denotes an application decision, therewith decreasing the ontology’s value to solve application

integration and interoperability problems, and it does not capture ‘what it is’ ontologically. For instance,

both hasColour 7→ Rose × String and hasColour 7→ Rose × Integer refer to the very same property Colour,

not two intrinsically different ‘colour-things’. Instead, the foundational ontologies’ approach is to reify such

attributes to a unary predicate (OWL class, BFO universal etc.) and add them as subtypes of, e.g., BFO’s

Dependent continuant or Quality without the values of the attributes, or, in a similar fashion, to add them as

subtypes of DOLCE’s Quality and use Quale for the value regions (as approximation of data type). In this

way, the semantic agreement between attributes can be asserted through the vocabulary in the ontology.

In a diagram language like Pathway Studio, this modelling choice does not arise, but drawing tools such as

STELLA/ISEE do have icons representing certain amounts of matter or mixture, like Water, in a “stock”

icon that may have some “converter” icon Pollutant concentration [7], which makes it rather inviting to simply

8

add it as a data property in an OWL ontology instead of the DOLCE/BFO approach with qualities as

unaries.

At the time of writing, there are no full mappings between the extant foundational ontologies, so one has

to choose one; how to choose the most appropriate one for the task at hand and why that one, is a separate

task, which is beyond the current scope.

2.4. DiDOn Procedure to Formalise a Diagrammatic Vocabulary

The considerations and decision points described in the previous sections are structured into the Diagram

to Domain Ontology, DiDOn. This has a preliminary step of requirements analysis (item 0; more detail can

be found elsewhere), then the core steps with the analysis of the elements in the graphical language and

how to represent them formally in the ontology (items 1-6), from which the rules to populate the ontology

with entities from the individual diagrams can be constructed (item 7). If desired, steps 1-6 can be enforced

in a software-mediated formalisation workflow and/or incorporated into existing macro-level methodologies

for ontology development. The procedure is as follows.

0. The usual ontology requirements analysis (such as scope, purpose, sample usage, type of queries,

desired reasoning services, etc.), including

(a) Choose a representation language, informed by, among others, Figure 2 and Table 1 in [37];

1. Basic assessment of the icons in the tool’s “legend”:

(a) Divide between unaries, binaries (n = 2), and n-aries where n ≥ 3;

(b) For the n-aries where n ≥ 3: assess the functional dependencies and create new relationships

with lower arity, where possible (use a procedure described in, e.g., [32, 43]);

(c) Divide the binaries and real n-aries by generic relationships (like parthood, participation),

domain-specific relationships, and attributes;

2. Use OBO? If no: go to Item 3; If yes, do:

(a) Represent each unary as an OBO Class (node in the graph);

(b) Add parthood as part-of that is transitive;

(c) Binaries, choose:

i. As relations: Add the domain-specific binaries as user-defined OBO Relation (edge in the

graph), and omit the attributes and n-ary relations (n ≥ 3);

ii. As classes: Represent each binary as an OBO Class (node in the graph);

(d) If the result of item 2a is multiple hierarchies or ontologies and the result of item 2c includes

user-defined relations (e.g., inheres in), then, optionally:

i. Use the BFO-in-obo to clarify the hierarchies;

ii. Use the RO-in-obo for compatibility of the relations with other OBO-ontologies;

9

(e) Add so-called cross-products [49] within or across these and, optionally, other domain ontologies,

where applicable;

(f) Proceed to item 8;

3. SKOS? If no: go to Item 4; If yes, do:

(a) Declare unaries to be a SKOS entity, using

ex:unary name rdf:type skos:Concept,

where ex is shorthand of the declared namespace URI and unary name should be replaced with

the unary;

(b) Extend SKOS with a limited notion of the ‘subsumption’ relation, using

ex:broaderGeneric rdfs:subPropertyOf skos:broader

replacing ex with the appropriate URI;

(c) If parthood exists among the binaries, extend SKOS with

ex:broaderPartitive rdfs:subPropertyOf skos:broader,

replacing ex with the appropriate URI;

(d) Add the other (non-attribute) binaries as skos:related or extend the SKOS RDF Schema ac-

cordingly (analogous to the extensions in items 3b and 3c);

(e) Proceed to item 8;

4. Choose a foundational ontology, or a module thereof.

5. N -aries as classes? If no: go to Item 6; If yes, do:

(a) Declare unaries as unary predicates subsumed by Continuant (or Endurant in DOLCE);

(b) Declare part-of, participates-in, and depends-on (or: inheres-in) as binary relationships, if not

already present from the chosen foundational ontology, and type the relationships:

i. Add part-of and/or has-part and its relational properties (to the extent possible in the

language), and assess if proper parthood is needed as well;

ii. Add participates-in and/or has-participant and declare its domain as, as a minimum,

Continuant and range as Occurrent (or Perdurant in DOLCE);

iii. Add inheres-in (or: depends-on) and declare its domain as DependentContinuant (or

NonPhysicalEndurant) and range as IndependentContinuant (or PhysicalEndurant);

(c) Declare all domain-specific n-aries as classes, suitably positioned as a subtype of Occurrent;

(d) Add the attributes as unaries subsumed by Quality and, if available in the foundational ontology:

i. Add the abstract representation of the data types under Quale, spatial/temporal Region, or

similar;

ii. Add the relationships between the class, Quality and Quale (in DOLCE, they are qt and

ql, respectively);

(e) Consider also sample diagrams;

10

i. An n-ary has relations to > 1 unary? If yes: record that cardinality will have to be included

when processing the diagrams;

(f) Proceed to item 8;

6. N -aries as relationships. Do:

(a) Consider also sample diagrams:

i. An n-ary has relations to > 1 unary? If yes: note cardinality;

ii. Chaining of n-aries? If yes: note concatenation;

iii. Sequences of the same binary? If yes: declare transitivity;

(b) Use OWL 2 DL? If no: go to Item 6c; If yes, do:

i. Declare unaries as subclasses of (a suitable subclass of) Continuant in the class hierarchy;

ii. Include (or ascertain inclusion when using owl:import to import the foundational ontol-

ogy) generic object properties, as described in item 5b, but for the part-of object property

characteristics, declare it only transitive and reflexive;

iii. Declare domain-specific binaries as OWL object properties;

iv. Attributes: choose either

A. Under Quality, like in item 5d; or

B. As OWL data property and declare a suitable domain (an OWL class) and range (XML

data type);

v. n-aries with n > 2? If yes: if used often, drop it, if used sparingly, do the approximation of

reification;

vi. Proceed to item 8;

(c) Full FOL or more. Do:

i. Examine at least the spatial and temporal dimension;

A. If spatial relations, then consider inclusion of an RCC or mereotopological theory;

B. If temporal relations, then consider inclusion of the Allen temporal relations and consider

formalisation in a temporal logic;

ii. Are there any “system” icons? If yes: consider granularity;

iii. Declare binaries and n-aries;

iv. Declare same as in items 5a, 5b, 5d, and 6a;

v. Proceed to item 8;

7. Consider the contents of relevant domain ontologies, if any, and assess their commitments regarding

the choices made, i.e., item 5 vs. item 6, item 6b vs. item 6c, and item 6(b)iv, then do either:

(a) If the same choices have been made:

i. import the ontology in whole or in part, as appropriate;

ii. declare equivalences between the classes and relations of the imported ontology and the

11

formalised diagram vocabulary;

(b) If different choices have been made: remodel the knowledge in whole or in part to match the

choices and include it, as appropriate;

8. Ontology population by processing the diagrams: see below;

≥ 9. Ontology maintenance (verification of represented knowledge, update in the light of recent advances

in science, etc.) and deployment.

Item 8 consists of writing an algorithm to process each icon in an individual diagram to the appropriate

class, relationships, or axiom(s) in the seed ontology, based on the formalisation pattern obtained in steps

1-6, and, in case another other domain ontology has been imported into the ontology under development,

then one should include a subroutine to check if the class, relationship, or axiom is already present. More

precise suggestions can be made upfront, especially with respect to OBO and SKOS, but less so for the

more expressive formalisations, because they depend to a larger extent on the choices made in steps 4, 5, or

6. The basic idea for generating the rules is similar for each option (with variations in notation), except for

the distinction between handling n-aries as classes or as relatioships:

A. SKOS:

(a) Each label of the icon in a diagram, A, generates an assertion

ex:A rdf:type skos:Concept

and

ex:A skos:broaderGeneric ex:unary name

where ex is shorthand for the URI, unary name an unary declared previously in item 3a, and A

the label of the icon in the particular diagram that has the same icon as unary name has.

(b) Add the ex:broaderPartitive and skos:related assertions between the newly added entities,

following the choices made in item 3d;

(c) Proceed to item D;

B. N-aries as classes:

(a) OBO:

i. Each label of the matching icon in a diagram generates a new ID and name in the ontology

and is a new child of (i.e., is a:) the respective main class added in items 2a and 2c;

ii. Perform post-processing with the added entities, depending on the choices made in item 2d;

iii. Proceed to item D;

(b) OWL:

i. Each label of the matching icon in a diagram, A, generates a new OWL class and a

SubClassOf(A unary name)

assertion for the corresponding class added in item 5a, 5c, and 5d;

ii. For each unary name added in item 5c, add has-participant assertions, such that all its

12

players (Ci, i ≥ 2, subsumed by Continu-ant) in the original n-ary appear in

ObjectPropertyDomain(has-participant unary name)

ObjectPropertyRange(has-participant Ci)

and, depending on the recorded cardinality (item 5(e)i), add the appropriate OWL assertions;

iii. For each unary name added in item 5d, add the respective object property assertions for the

quales, if applicable;

iv. Proceed to item D;

(c) Full FOL or more: Depends on the language chosen, and the choices made particularly in

items 6(c)i, 6(c)ii, and 6(c)iv;

C. N-aries as relationships:

(a) OBO:

i. Each label of the icon in a diagram generates a new ID and name in the ontology and is a

new child of (i.e., is a:) the respective main class added in item 2a;

ii. Use relationship:part of with part-whole assertions, and

relationship:[user-defined-relation-in-item-2c]

for the other relations;

iii. Perform post-processing with the added entities, depending on the choices made in item 2d;

iv. Proceed to item D;

(b) OWL:

i. As in item B(b)i, but applied to the outcome of item 6(b)i;

ii. For each binary in a diagram, with corresponding object property name added in item 6(b)iii,

add ObjectPropertyDomain and ObjectPropertyRange restrictions, and, where applicable,

the cardinality restrictions;

iii. Process the attributes in the diagrams according to the choice made in item 6(b)iv;

iv. Proceed to item D;

(c) Full FOL or more: Depends on the language chosen, and the choices made particularly in

items 6(c)i, 6(c)ii, and 6(c)iv;

D. Substitute any abbreviation used in the diagrams with its full name.

E. If a unary from formalisation steps 1-6 denotes an individual, then either convert its subclasses into

individuals or use a layered architecture for the ontology with a branch for particulars and one for

categories.

We shall see an application of a more detailed ontology population algorithm for OWL with n-aries as

relationships in the case study.

13

3. Case Study: Analysis of the Pathway Studio Graphical Vocabulary

The purpose of the case study is to demonstrate the usability and detailed workings of the procedure (as

opposed to hiding that in an application). To this end, a graphically fairly comprehensive modelling tool,

Pathway Studio (PS) [23], was chosen out of one of many graphical pathway tools [50]. PS lets the user build

pathways and analyse them on the relationships between genes, proteins, cell processes and diseases. It is

useful for illustrative purpose, because of the expressiveness of its vocabulary and the generation of its source

data. The source data for the PS diagrams that come with the installation originate from a combination

of NLP of scientific literature and manual examination, correction, and curation. Given the difficulty of

ontology learning through NLP tools, one can envision a two-step process from manual examination and

NLP of scientific articles to PS, and from PS to expressive ontology, which, in turn, can be used to improve

NLP. To give an idea of its usage, and thereby providing hints toward desired reasoning scenarios, hence,

contributing to choosing a representation language, several specific user requirements were abstracted from

the biological examples: Compound X (e.g., a potential drug) binds and activates Y , which is a main switch

in pathway Z that should be interrupted to cure the disease. Sample queries are:

Q1: Is Y involved in some other pathway?

Q2: What are the characteristics of the other pathways that Y is involved in? E.g., are they spatially

separated (e.g., in different tissues), is there an analogue in another species?

Q3: Given that one binds and activates Y with X, is there an activation of some Y ′ by X that is also a

signaling molecule in pathway Z ′?

Q4: Is it known that there is some endogenous X ′ similar to X that also binds and activates Y ?

Q5: Which As and Bs are affected by Y ’s X and X ′ in location C? (abstracted from [51]1)

Q1 can be a simple class-query, but the others show that OBO and SKOS are insufficient to meet the desired

inferences, hence OWL or arbitrary FOL should be chosen to formalise the Pathway Studio Vocabulary

(PSV). To foster interoperability with other ontologies, OWL 2 DL is chosen. Note that this still permits

simplification to an NLP ontology for text mining to find data for the diagrams or for data annotation, as

well as an extension to a more expressive language, which will be discussed in Section 4.

3.1. Pathway Studio Vocabulary Inventory

Let us now start with the first step in the DiDOn procedure: the basic analysis of the PSV. The following

high-level informal descriptions are intended to give a non-biochemist an indication of the kind of things in

the PSV depicted in Figure 3. Subject domain semantics especially useful in the formalization is italicized

when they first appear.

1“identify proteins and cell processes mediated through androgen receptor signaling using an androgen receptor agonist

(17β-trenbolone) and antagonist (flutamide) in the liver.”

14

Figure 3: Pathway Studio’s icons.

• Protein: biopolymer consisting of many linked α-ami-no acids. Shapes denote subclasses:

– Kinases are enzymes, i.e., proteins with a function/role to catalyse the addition of a phosphate

to a molecule (opposite of phosphatases).

– Phosphatases are also enzymes, catalysing the removal of a phosphate from a molecule.

– Ligand is a molecule that binds to a receptor, sometimes also referred to as substrate;

– Transcription factor is a molecule that binds to a transcription factor binding site and thereby

regulates expression of a gene that is located relatively nearby the site where that molecule binds.

– Receptor: the receiving molecule in a receptor-ligand binding, i.e., a molecule with a role; depend-

ing on the location, it can be a protein when [in/on] a membrane or a Nuclear receptor (purple

oval) bound to DNA, hence, a receptor is generally the less-mobile one of the receptor-ligand

binding (the ligand ‘arrives at’ the receptor).

15

• Small Molecule is a pervasive notion that appeals to intuition for its informal description : refers to,

e.g., glucose, nitric oxide, (not ‘macromolecule’, such as protein, starch); there is no strict cut-off point

for the physical size of the molecule.

• Treatment represents a system, here: a cascade of processes in which molecules participate;

• Cell Object represents a combination of a structural entity at a certain location in the cell, includes

organelles;

• Cell Process represents a (combination of) process(es) located in the cell;

• Functional Class: molecule with a particular function;

• Complex consists of at least one protein and at least one other molecule (that also can be a protein)

that may be bound to it.

• The arrows are binary relations, with Mol an abbreviation of molecule, and Prot of protein modification.

A “⊕” in the arrow means positive effect and a line negative effect of the type of interaction indicated

by the arrow’s colour.

Hence, there are unaries and binaries only, no attributes, and no typical generic relationships in the PSV.

3.2. Foundational Ontology Choice

From the available foundational ontologies, using BFO [29] (see also Figure 4) is a strategic option,

because many bio-ontologies align themselves with it, even though all other extant foundational ontologies

are more comprehensive.

The main issue to decide is to formalise PS’s binaries as classes or as object properties. The limited

set of arrows (Figure 3, bottom) suggests formalising them as OWL object properties, and it concurs with

the relations of the Relation Ontology (RO) [28] that is integrated with BFO and its extensions under

consideration. The dependency relationship in BFO terminology is inheres in and holds between dependent

and independent continuants.

Domain ontologies may be useful for the individual diagrams. Given the named categories (Figure 3, top

section), BioPax [39] will be useful to consult, which covers metabolic pathways and molecular interactions,

as well as the OWLized Gene Ontology, Cell Cycle Ontology, and Protein Ontology [52]. The standardised

categorisations, such as nomenclatures for enzymes [53] and nuclear receptors [54] are yet to be OWLized.

3.3. The Formalisation of the PSV

Having committed to OWL 2 DL, BFO+RO, and n-aries as relationships, we need to assess sample

diagrams; a small one is depicted in Figure 1 and many larger ones can be consulted online [22]. This

reveals that regulation is transitive, each pathway has at least three molecules, and nuclear receptors are

bound to exactly one DNA molecule.

16

Figure 4: Graphical rendering of a section of the BFO v1.1 taxonomy.

We can now proceed to the formalization in OWL 2 DL. The relevant basics of OWL 2 DL, hence, the

formal semantics, and its more compact DL notation are included in Appendix A. Together with BFO

for the subject domain semantics, we can proceed to the actual formalisation of the icons. Due to space

limitations as well as the principle of minimum necessary commitment, only the conservative axioms will be

described here. Let BFO be shorthand denoting all its 39 classes {Entity, Continuant, Occurrent, . . .}

(see also Figure 4), hence in its OWLized format BFO ∈ VC . Let RO be shorthand notation to denote all 12

relationships {has participant, has part, has agent, . . .} in the Relation Ontology, hence in its OWL-

ized format RO ∈ VOP . BFO and RO classes and object properties are henceforth indicated with italic

courier font to distinguish them from the classes and object properties generated from the formalisation

of the PSV. Combining this with the basic analysis of the PSV, we obtain the following set of basic assertions.

Protein v Molecule,

SmallMolecule v Molecule,

ProteinComplex v Molecule,

Molecule v Object,

TranscriptionFactor v ∃inheres in.Protein,

Ligand v ∃inheres in.Protein,

17

Receptor v ∃inheres in.Protein,

Enzyme v ∃inheres in.Protein,

FunctionalClass v Function,

FunctionalClass v ∃inheres in.Molecule,

Kinase v Enzyme, Phosphatase v Enzyme,

Kinase v ¬Phosphatase,

CellProcess
.
= Process u ∃located in.Cell,

CellObject
.
= Object u ∃contained in.Cell,

ExtracellularProtein
.
= Protein u

∃located in.¬Cell,

NuclearReceptor
.
= Receptor u =1 binds−.DNA,

ProteinComplex
.
= Complex u

∃has part.Protein u ∃has part.Molecule u

∀has part.(Protein t Molecule),

∃binds.TranscriptionFactorBindingSite v

TranscriptionFactor,

Pathway v System u ≥3 has part.Molecule u

∀has part.Molecule,

Treatment v ∃has participant.Molecule,

System v GenericallyDependentContinuant,

binds promoter v binds,

binds v reacts chemically,

up regulates v regulates,

regulates directly v regulates,

modifies v reacts chemically,

modifies protein v modifies,

∃modifies protein− v Protein,

synthesis v reacts chemically,

molecular synthesis v synthesis,

molecular transport v transports,

∃molecular transport− v Molecule.

The declared subclasses of Molecule are disjoint.

Receptor, TranscriptionFactor, Enzyme, and Ligand are disjoint and subclasses of Role.

regulates, expresses, transports, and reacts chemically are sub-properties of topObjectProperty.

18

Practically, both BFO and RO were imported into the new seed ontology with an owl:import state-

ment and the above-listed statements were added to create the combined ontology OWLPathS.owl, which

is available online at http://www.meteck.org/files/ontologies/OWLPathS.owl. Although BFO can be

represented in the simple ALC DL language, the DL characterisation of OWLPathS is SHIQ, i.e., indeed

requiring OWL 2 DL expressivity.

Finally, we have to assess the seed ontology obtained so far with related domain ontologies. BioPax has

chosen to use n-aries as classes, not relations, hence, aside from the straightforward class equivalences such as

pathway, complex, protein, and small molecule, it will require remodelling efforts, such as matching BioPax’

class BiochemicalReaction with the owlpaths:reacts chemically object property and handle the con-

version between participates in and domain and range axiom. The Protein Ontology already fits exactly

with the choices made here. Equivalences have to be asserted between, among others, owlpaths:Protein

and PR:000000001 (PRO’s protein) and PRO’s protein complex (in turn, an imported GO:0043234) and

owlpaths:ProteinComplex.

3.4. Ontology Population with the Diagrams

Given this core formalization of the PSV, a set of rules has to be be devised to automate the ontology

learning process. Partial algorithms for the polygons and arrows are included in Algorithm 1 and 2, respec-

tively. To illustrate its design and workings, let us consider Figure 1 again: the label ubiquitin is associated

with a FunctionalClass-icon, hence an assertion

Ubiquitin v FunctionalClass

should be added to the ontology. Ubiquitin is a (specifically) dependent continuant (because FunctionalClass

is), so it has to inhere in some molecule; in this case, this is Protein, motivating the addition of

Ubiquitin v ∃inheres in.Protein

to the ontology. The purple protein-shape has a label RARA, which is an abbreviation of Retinoic Acid Re-

ceptor Alpha, i.e., it is a nuclear receptor, thus one can add

RetinoicAcidReceptorAlpha v NuclearReceptor

and it also inheres in a protein, and so forth for the other elements. This second step with inheres in

applies only when the protein shape is not a red oval.

For cell processes, like the yellow rectangle labeled protein degradation, one first adds

ProteinDegradation v CellProcess

so that it inherits from CellProcess that it is located in the Cell, and, optionally, refines the range either

to a subclass or a part of Cell later on. The process is similar for all polygons, such that the class is added

under one of the main categories described in the previous section. In addition, it checks for any equivalences

with PRO to avoid duplication. The algorithm is also extended with the BFO+RO-based BioTop [55], to

avoid duplication and enhance the precision of the axioms; e.g., while Ubiquitin is not yet in BioTop and thus

19

can be added, multiple cell parts are included already, so that one can retrieve that partonomy and select

the appropriate location (e.g., Cytoplasm).

The algorithm for the relationships is determined by the colour, adornments, and direction of the arrow,

and that the assertion for the direction has to be added in the inverse. The reason for the latter is that while

retinoic acid expresses RARA (see Figure 1), this is not the case for all retinoic acid molecules; conversely, it

does hold that RARA is expressed by some retinoic acid molecule, hence

RARA v ∃expressed by.RetinoicAcid

is the appropriate axiom to add to the ontology. This works analogously with the other relationships.

A partial design-level algorithm for the arrows is described in Algorithm 2, which can be executed after

Algorithm 1.

This completes one execution path through the DiDOn procedure.

4. Discussion

As the PS case study demonstrates, one clearly can obtain a lot of information from the diagrams for

an expressive bio-ontology. The DiDOn procedure in Section 2.4 aids in this process. One may ask why

a formalisation procedure and why specifically the DiDOn procedure is any good. Concerning the former,

a procedure brings the formalization decisions to the fore, requires the developer to make the modelling

decisions explicit, and be able to coherently communicate and document that so that within as well as

across ontology development projects this can be harmonised, or at least made clear. Concerning the

latter, first, it has to be noted that there are no extant AI techniques that transform the bio-diagrams

into bio-ontologies in a structured way, although the SMBL to OWL transformation under way with SMBL

Harvester may have a promising intersection with the work presented here. Second, it goes beyond one-

off community of practice by expounding a method of formalization of the informal ‘legacy’ resources to

standardised knowledge representation languages that is sufficiently generic to work with any graphical

language of bio-diagrams, yet not too generic to render it of little use for biological resources. Moreover,

third, it incorporates foundational ontology use to also handle subject domain semantics as opposed to a

mere formalization into an arbitrary logical theory. Consequences of this aspect are the inclusion of the

hitherto neglected representation decision to represent n-aries as classes vs n-aries as relationships, and the

reuse of classes and relationships that are also used in other bio-ontologies and adjusting the representation

of attributes so as to foster interoperability upfront, which improve the quality of the ontology as has been

demonstrated in, e.g., [48]. Fourth, it acknowledges that different migration paths may be viable, and how,

ensuring all essential tasks are carried out in a consistent manner and therewith making repeatability of the

20

process possible and opening up the way for structured transformations2 and linking of ontologies that took

a different formalisation route and therewith facilitating ontology interoperability. The OWLPathS seed

ontology with its formalisation in OWL 2 DL, import of BFO+RO foundational ontologies and link with

BioTop and PRO meets all these quality features. Given the relative comprehensiveness of the procedure,

DiDOn may contribute to standardising decisions made for and during the formalisation within and across

domain ontology development projects or even be incorporated in the drawing tools.

The procedure, however, does not help with the transformation of some of the implicit information

that requires subject domain knowledge, such as knowing that a kinase is an enzyme. Other bottom-up

approaches face this hurdle to an even greater extent: NLP for science has to use both general NLP rules

and bio-adjusted heuristics [15], (e.g., the suffix “-ase” denotes the name of an enzyme).

4.1. OBO and SKOS

Having demonstrated DiDOn with OWL+BFO+relationships leaves room for remarks on transforma-

tions to OBO and SKOS. It is useful to note that if one already has one formalisation, then the others can

be obtained at least semi-automatically. There are online scripts that transform an OWL file into OBO or

SKOS; an example of OWLPathS converted to SKOSPathS with Manchester’s OWLtoSKOS converter [56] is

available online at http://www.meteck.org/files/ontologies/SKSOPathS. As described in Section 2.2.1,

classes become instances in SKOS and each usage of a unary in the actual diagrams is skos:broaderGeneric

its respective core entity.

In the direction from SKOS to OWL, and provided one wants a real ontology and not some arbitrary

OWL file, then once again one has to choose a foundational ontology, decide to represent n-aries as relations

or as classes, and choose a suitable expressive language, i.e., following steps 4-7 in DiDOn. Some work to

at least partially automate this idea has been carried out [57].

Concerning item 4 of the procedure—the use of a foundational ontology—one may question why it was

not placed before OBO and SKOS. No foundational ontology is available in SKOS or OBO, other than

an OBO version of BFO. Aside from BFO-in-obo, one also could choose to develop a BFO-in-SKOS and

add that to step 3, and/or extend the SKOS vocabulary with the Relation Ontology relations. All other

extant foundational ontologies require a much more expressive language to enable representation of the

intended semantics (BFO too, in fact, as we will discuss in Section 4.2). Nevertheless, one could argue,

even an ‘ultra-ultra-light’ version may be useful. However, this also makes it easier to introduce errors in

the transformation due to the lower precision and accuracy that later on has to be re-analysed to represent

it correctly anyway. A hitherto unexplored alternative option might be to use the expressive ontology for

2For instance, between n-ary-as-class and n-ary-as-relationship: switch between a predurant and its two participates in

axioms and an object property with its domain and a range axiom.

21

modelling only and to remove axioms as required by the application scenario, instead of removing them

upfront.

4.2. Extensions

Given that OWL 2 DL was chosen as ontology language and not an arbitrary FOL language, time and

location have not been addressed in the formalization, because they are even more deeply embedded in the

diagrams and, at the time of writing, no practically usable technological solution for temporal ontologies exist

yet that lets one use it with automated reasoning. Time is implicit with the very notion of pathway—i.e.,

some specific sequence of interactions—that is approximated with the arrows. Efforts to try to capture this

with just “precedes” and “immediately precedes” relationships in an a-temporal ontology language bears

no formal semantics, hence cannot be used in automated reasoning. Neither OBO nor OWL is expressive

enough to assert that “a immediately precedes b” means that we have not only (a, t) and (b, t′) but also

that it must hold for the time points that ¬∃t′′.t < t′′ < t′. This has as consequence that the automated

reasoner cannot infer anything about those assertions and cannot detect inconsistencies among assertions

about time. In addition, it pulls the lid off the temporal knowledge representation and reasoning box, which

also contains the Allen temporal relations (such as during, overlap, and disjoint) and the Time Ontology

[58], among others. The Time Ontology, as well as ‘precedes’ labels, do provide a-temporal OWL object

properties that can suffice when one only wants to annotate resources with a time component. Few temporal

DLs exist, of which DLRUS [59] is very expressive and could be used for ontology-as-scientific-theory to

represent the knowledge and TDL-Lite [60] is so-called computationally well-behaved, but seriously limited

in expressiveness.

Regarding location, consider Figure 1’s two thick lines representing membranes: because there are two

and the bottom part of the figure shows a DNA helix, one can infer that the second line represents the mem-

brane of the nucleus (hence, an eukaryotic cell) and the first one the cell membrane. Generally, compart-

mentalization is represented with such lines, different shaded areas, or both; examples from other diagram

software can be examined for, e.g., IUBMB’s intracellular pathways [61]. Inferring the implicit location is

not easy due to both how it is represented in the diagrams—geometrical shapes but also, say, a stylised ri-

bosome or heart—and (mereo)topological representation and reasoning is not solved for decidable languages

and scalability of terminological and instance reasoning [62, 63]. In addition, recollect sample question Q2

in Section 3, which in natural language text moves easily between the molecule-level of the pathway in a

cell and its nucleus to its location in some tissue, thus indicating the need to take into account granularity

of representation and cater for cross-granular queries, which does not have a clear counterpart in the dia-

grams. What may be feasible to handle are the Cell Process icons, such as Protein Degradation (Figure 1) that

involves several reactions, hence is a common ‘folding’ operation [64]. One also may want to modularize

the knowledge along those lines, using an arbitrary-logic or OWL-based technique [65, 66], or use OWL

22

owl:import statements to link the pathways.

All these topics are active fields of research.

Nevertheless these potentially missing aspects of the diagrams—potentially, because they are not nec-

essary for all ontologies and ontology-driven information systems and do not occur in all diagrammatic

languages—the basic formalization of the icon vocabulary already provides a solid basis to simplify and

speed up ontology development compared to manual efforts or NLP. In addition, using a more expressive

language invites the domain expert to be more precise so as to resolve ambiguities, a benefit which was

already observed in [7] for eco-ontologies. Only then can it be checked computationally if the many dia-

grammatic pathways are consistent together and gaps can be found easily, which motivates further modelling

in case the missing knowledge was known or can serve as impetus for laboratory experimentation. Added

benefits of the approach are that such diagrams also can be deployed as intermediate representation of the

knowledge so as to facilitate understanding and communication between logicians and the content providers.

Also, it can bring the information modelled in such diagrams—often hidden or locked in, e.g., expensive

hardcopy textbooks—into the open access domain for free use and reuse.

We are in the process of taking DiDOn to the implementation-level. This comprises, on the one hand,

zooming in on converting diagrams to an ontology in the subject domain of microbiology and health with,

initially, opportunistic infectious diseases, and, on the other hand, developing full software-support for

DiDOn (a proof-of-concept tool for Step 4 of DiDOn is already available [67]).

5. Conclusions

To speed up and simplify bio-ontology development, we proposed the DiDOn procedure to formalise semi-

structured life science diagrams, which operates at the micro-level of ontology development by providing

a structured approach to representing different pieces of information in the ontology. DiDOn is aimed at

extracting explicit and implicit knowledge from diagram-based ‘legacy’ resources in such a way so that

also the subject domain semantics can be preserved and that it can be carried out in a clear, traceable,

and reproducible way. Four trajectories for formalization were identified—OBO, SKOS, OWL 2 DL, and

arbitrary FOL—with the option to integrate it with a foundational ontology so that both a formal and

precise subject domain semantics is generated when populating the ontology. This was demonstrated with

the extensive icon vocabulary of Pathway Studio and OWL 2 DL, BFO, and n-aries as binary relations.

Acknowledgment

The author gratefully acknowledges Kristina Hettne for providing several models of NHR pathways and

sample queries.

23

Appendix A. The OWL 2 DL Ontology Language

The OWL 2 DL direct semantics (a model-theoretic semantics) can be consulted online [42] and the

essentials of DLs are described in [68]. Here we summarise the OWL 2 DL syntax and semantics only

insofar as is necessary to have a self-contained paper; the interested reader is referred to [42] for further

details. By standard OWL notation, OP denotes an object property, OPE denotes an object property

expression, C denotes a class, and CE a class expression.

Definition 1 (OWL 2 DL Ontology Syntax (abbreviated)). A vocabulary V = (VC , VOP , VI) over a datatype

map D (as formalised in [42]) is a 3-tuple consisting of the following elements:

- VC is a set of classes;

- VOP is a set of object properties;

- VI is a set of individuals;

Definition 2 (OWL 2 DL Ontology Semantics (abbreviated)). Given a datatype map D and a vocabulary

V over D, an interpretation I = (∆I , ·C , ·OP , ·I) for D and V is a 4-tuple with the following structure:

- ∆I is a nonempty set called the object domain;

- ·C is the class interpretation function that assigns to each class C ∈ VC a subset (C)C ⊆ ∆I ;

·C is extended to class expressions as follows

- ObjectAllValuesFrom(OPE CE), {x | ∀y : (x, y) ∈ (OPE)OP implies y ∈ (CE)C};

- ObjectSomeValuesFrom(OPE CE), {x | ∃y : (x, y) ∈ (OPE)OP and y ∈ (CE)C};

- ObjectMinCardinality(n OPE CE), {x |]{y | (x, y) ∈ (OPE)OP and y ∈ (CE)C} ≥ n};

- ObjectExactCardinality(n OPE CE), {x |]{y | (x, y) ∈ (OPE)OP and y ∈ (CE)C} = n};

- ObjectComplementOf(CE), ∆I \ (CE)C ;

- ·OP is the object property interpretation function that assigns to each object property OP ∈ VOP

a subset (OP)OP ⊆ ∆I × ∆I and such that ·OP is extended to Inv(OP) with the meaning {(x, y) |

(y, x) ∈ (OP)OP };

- ·I is the individual interpretation function that assigns to each individual a ∈ VI an element (a)I ∈ ∆I .

Further, with respect to satisfaction of OWL 2 DL class expression axioms in interpretation I w.r.t.

ontology O, the class axioms SubClassOf(CE1 CE2) holds if (CE1)C ⊆ (CE2)C , EquivalentClasses(CE1

...CEn) if (CEj)
C = (CEk)C for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n, DisjointClasses(CE1 ...CEn)

if (CEj)
C ∩ (CEk)C = ∅ for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n such that j 6= k. Regarding prop-

erty axioms, SubObjectPropertyOf(OPE1 OPE2) if (OPE1)OP ⊆ (OPE1)OP , and for the relevant object

property characteristics only transitivity: Trans(OPE), ∀x, y, z : (x, y) ∈ (OPE)OP and (y, z) ∈ (OPE)OP

implies (x, z) ∈ (OPE)OP (parthood is reflexive, antisymmetric, and transitive, but antisymmetry cannot

be expressed in OWL 2 DL and reflexivity only on simple object properties).

24

Given that OWL 2 DL is based on Description Logics (DL), we shall use the more concise DL notation.

For instance, the DL statement

Protein v Molecule

i.e., all individuals that are proteins are also molecules, can be represented equivalently in FOL as

∀x(Protein(x)→Molecule(x))

and in OWL 2 DL functional syntax as

SubClassOf(Protein Molecule).

The ObjectSomeValuesFrom in Definition 2 is the serialised rendering of the existential quantification

(∃), an Inv(OP) is denoted as OP−, ObjectComplementOf(C) as ¬C, and EquivalentClasses(CE1 CE2)

as CE1
.
= CE2.

References

[1] Gene Ontology Consortium . Gene Ontology: tool for the unification of biology. Nature Genetics 2000;25:25–9.

[2] Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO Foundry: Coordinated evolution of

ontologies to support biomedical data integration. Nature Biotechnology 2007;25(11):1251–5.

[3] El-Ghalayini H, Odeh M, McClatchey R, Arnold D. Deriving conceptual data models from domain ontologies for bioin-

formatics. In: 2nd Conference on Information and Communication Technologies (ICTTA’06). IEEE Computer Society;

2006, p. 3562 –7.

[4] Sugumaran V, Storey VC. The role of domain ontologies in database design: An ontology management and conceptual

modeling environment. ACM Transactions on Database Systems 2006;31(3):1064–94.

[5] Calvanese D, Keet CM, Nutt W, Rodŕıguez-Muro M, Stefanoni G. Web-based graphical querying of databases through

an ontology: the WONDER system. In: Proceedings of ACM Symposium on Applied Computing (ACM SAC’10). ACM;

2010, p. 1389–96. March 22-26 2010, Sierre, Switzerland.

[6] Poggi A, Lembo D, Calvanese D, De Giacomo G, Lenzerini M, Rosati R. Linking data to ontologies. J on Data Semantics

2008;X:133–73.

[7] Keet CM. Factors affecting ontology development in ecology. In: Ludäscher B, Raschid L, editors. Data Integration in

the Life Sciences 2005 (DILS2005); vol. 3615 of LNBI. Springer Verlag; 2005, p. 46–62. San Diego, USA, 20-22 July 2005.

[8] Smith B, Ceusters W. Ontological realism: A methodology for coordinated evolution of scientific ontologies. Applied

Ontology 2010;5:79–108.

[9] Bandini S, Mosca A. Mereological knowledge representation for the chemical formulation. In: 2nd Workshop on Formal

Ontologies Meets Industry 2006 (FOMI2006). Trento, Italy; 2006, p. 55–69.

[10] Keet CM, Roos M, Marshall MS. A survey of requirements for automated reasoning services for bio-ontologies in OWL. In:

Proceedings of the 3rd Workshop on OWL: Experiences and Directions (OWLED 2007); vol. 258 of CEUR-WS. 2007,6-7

June 2007, Innsbruck, Austria.

[11] Wolstencroft K, Stevens R, Haarslev V. Applying OWL reasoning to genomic data. In: Baker C, Cheung H, editors.

Semantic Web: revolutionizing knowledge discovery in the life sciences. Springer: New York; 2007, p. 225–48.

[12] Madin JS, Bowers S, Schildhauer MP, Jones MB. Advancing ecological research with ontologies. Trends in Ecology &

Evolution 2008;23(3):159–68.

[13] Simperl E, Mochol M, Bürger T. Achieving maturity: the state of practice in ontology engineering in 2009. International

Journal of Computer Science and Applications 2010;7(1):45–65.

25

[14] Lubyte L, Tessaris S. Automated extraction of ontologies wrapping relational data sources. In: Proc. of DEXA’09. 2009,.

[15] Alexopoulou D, Wächter T, Pickersgill L, Eyre C, Schroeder M. Terminologies for text-mining; an experiment in the

lipoprotein metabolism domain. BMC Bioinformatics 2008;9(Suppl 4).

[16] Coulet A, Shah NH, Garten Y, Musen M, Altman RB. Using text to build semantic networks for pharmacogenomics.

Journal of Biomedical Informatics 2010;43(6):1009–19.

[17] Soergel D, Lauser B, Liang A, Fisseha F, Keizer J, Katz S. Reengineering thesauri for new applications: the AGROVOC

example. Journal of Digital Information 2004;4(4). URL http://journals.tdl.org/jodi/article/view/jodi-126/111.

[18] Liu K, Hogan WR, Crowley RS. Natural language processing methods and systems for biomedical ontology learning.

Journal of Biomedical Informatics 2011;44(1):163–79.

[19] SMBL harvester. Online; 2011 (last accessed: July 2011). URL http://code.google.com/p/sbmlharvester/.

[20] Fernandez M, Gomez-Perez A, Pazos A, Pazos J. Building a chemical ontology using METHONTOLOGY and the ontology

design environment. IEEE Expert: Special Issue on Uses of Ontologies 1999;January/February:37–46.

[21] Ghidini C, Kump B, Lindstaedt S, Mabhub N, Pammer V, Rospocher M, et al. Moki: The enterprise modelling wiki. In:

Proceedings of the 6th Annual European Semantic Web Conference (ESWC2009). 2009,Heraklion, Greece, 2009 (demo).

[22] Ariadne Genomics . Pathway studio. Online; Last accessed: Aug 30, 2011. URL http://www.ariadnegenomics.com/

products/pathway-studio/.

[23] Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio–the analysis and navigation of molecular networks. Bioinfor-

matics 2003;19(16):2155–7.

[24] Suarez-Figueroa MC, de Cea GA, Buil C, Dellschaft K, Fernandez-Lopez M, Garcia A, et al. NeOn methodology for

building contextualized ontology networks. NeOn Deliverable D5.4.1; NeOn Project; 2008.

[25] Kassel G. Integration of the DOLCE top-level ontology into the OntoSpec methodology. Technical Report HAL : hal-

00012203/arXiv : cs.AI/0510050; Laboratoire de Recherche en Informatique d’Amiens (LaRIA); 2005. Http://hal.archives-

ouvertes.fr/ccsd-00012203.

[26] Noy N, McGuinness D. Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-05,

and Stanford Medical Informatics Technical Report SMI-2001-0880; Stanford Knowledge Systems Laboratory; 2001.

[27] Herre H, Heller B. Semantic foundations of medical information systems based on top-level ontologies. Knowledge-Based

Systems 2006;19:107–15.

[28] Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, et al. Relations in biomedical ontologies. Genome Biology

2005;6.

[29] BFO . Basic Formal Ontology. (last accessed August 2011). URL http://www.ifomis.org/bfo.

[30] Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A. Ontology library. WonderWeb Deliverable D18 (ver. 1.0,

31-12-2003).; 2003. Http://wonderweb.semanticweb.org.

[31] Niles I, Pease A. Towards a standard upper ontology. In: Welty C, Smith B, editors. Proceedings of the 2nd International

Conference on Formal Ontology in Information Systems (FOIS-2001). 2001,Ogunquit, Maine, October 17-19, 2001.

[32] Halpin T. Information Modeling and Relational Databases. San Francisco: Morgan Kaufmann Publishers; 2001.

[33] ter Hofstede AHM, Proper HA. How to formalize it? formalization principles for information systems development

methods. Information and Software Technology 1998;40(10):519–40.

[34] Barwise J, Etchemendy J. The language of first-order logic. Stanford, USA: CSLI Lecture Notes; 3rd ed.; 1993.

[35] Guarino N, Welty C. An overview of OntoClean. In: Staab S, Studer R, editors. Handbook on ontologies. Springer Verlag;

2004, p. 151–9.

[36] Guarino N. The ontological level: Revisiting 30 years of knowledge representation. In: Borgida A, et al., editors.

Mylopoulos Festschrift; vol. 5600 of LNCS. Springer; 2009, p. 52–67.

[37] Keet CM. Dependencies between ontology design parameters. International Journal of Metadata, Semantics and Ontologies

26

2010;5(4):265–84.

[38] Rosse C, Mejino Jr JLV. A reference ontology for biomedical informatics: the foundational model of anatomy. J of

Biomedical Informatics 2003;36(6):478–500.

[39] Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, et al. The BioPAX community standard for pathway data

sharing. Nature Biotechnology 2010;28(9):935–42.

[40] Miles A, Bechhofer S. SKOS Simple Knowledge Organization System Reference. W3C Recommendation; World Wide

Web Consortium (W3C); 2009. URL http://www.w3.org/TR/skos-reference/.

[41] Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C. OWL 2 Web Ontology Language Profiles. W3C Recommendation;

W3C; 2009. URL http://www.w3.org/TR/owl2-profiles/.

[42] Motik B, Patel-Schneider PF, Grau BC. OWL 2 web ontology language: Direct semantics. W3C Recommendation; W3C;

2009. URL http://www.w3.org/TR/owl2-direct-semantics/.

[43] Abiteboul S, Hull R, Vianu V. Foundations of databases. Addison Wesley, USA; 1995.

[44] Schulz S, Stenzhorn H, Boekers M, Smith B. Strengths and limitations of formal ontologies in the biomedical domain.

Electronic Journal of Communication, Information and Innovation in Health (Special Issue on Ontologies, Semantic Web

and Health) 2009;3(1):31–45.

[45] Lukasiewicz T, Straccia U. Managing uncertainty and vagueness in description logics for the semantic web. Journal of

Web Semantics 2008;6(4):291–308.

[46] Isaac A, Summers E. SKOS Simple Knowledge Organization System Primer. W3C Standard; World Wide Web Consortium;

2009. Http://www.w3.org/TR/skos-primer.

[47] Glimm B, Rudolph S, Völker J. Integrated metamodeling and diagnosis in OWL 2. In: Patel-Schneider PF, Pan Y, Hitzler

P, Mika P, Zhang L, Pan JZ, et al., editors. Proceedings of the 9th International Semantic Web Conference; vol. 6496 of

LNCS. Springer; 2010, p. 257–72.

[48] Keet CM. The use of foundational ontologies in ontology development: an empirical assessment. In: Antoniou G, et al.,

editors. 8th Extended Semantic Web Conference (ESWC’11); vol. 6643 of LNCS. Springer; 2011, p. 321–35. Heraklion,

Crete, Greece, 29 May-2 June, 2011.

[49] Mungall CJ, Bada M, Berardini TZ, Deegan J, Ireland A, Harris MA, et al. Cross-product extensions of the Gene Ontology.

Journal of Biomedical Informatics 2010;44(1):80–6.

[50] Suderman M, Hallett M. Tools for visually exploring biological networks. Bioinformatics 2007;23(20):2651–9.

[51] Martyniuk CJ, Alvarez S, McClung S, Villeneuve DL, Ankley GT, Denslow ND. Quantitative proteomic profiles of androgen

receptor signaling in the liver of fathead minnows (pimephales promelas). Journal of Proteome Research 2009;8(5):2186–

200.

[52] Natale DA, et al. The Protein Ontology: a structured representation of protein forms and complexes. Nucleic Acids

Research 2011;39(Database issue):D539–45.

[53] Enzyme Nomenclature. 1992. URL http://www.chem.qmul.ac.uk/iubmb/enzyme/.

[54] Nuclear Receptors Committee . A unified nomenclature system for the nuclear receptor subfamily. Cell 1999;97:1–20.

[55] Beisswanger E, Schulz S, Stenzhorn H, Hahn U. BioTop: An upper domain ontology for the life sciences - a description

of its current structure, contents, and interfaces to OBO ontologies. Applied Ontology 2008;3(4):205–12.

[56] OWLtoSKOS converter. Last accessed: April 2011. URL http://owl.cs.manchester.ac.uk/owltoskos/.

[57] Hepp M. SKOS to OWL. Online; Last accessed: Aug 30, 2011. URL http://www.heppnetz.de/projects/skos2owl/.

[58] Hobbs JR, Pan F. An ontology of time for the semantic web. ACM Transactions on Asian Language Processing (TALIP):

Special issue on Temporal Information Processing 2004;3(1):66–85.

[59] Artale A, Franconi E, Wolter F, Zakharyaschev M. A temporal description logic for reasoning about conceptual schemas

and queries. In: Flesca S, Greco S, Leone N, Ianni G, editors. Proceedings of the 8th Joint European Conference on Logics

27

in Artificial Intelligence (JELIA-02); vol. 2424 of LNAI. Springer Verlag; 2002, p. 98–110.

[60] Artale A, Kontchakov R, Lutz C, Wolter F, Zakharyaschev M. Temporalising tractable description logic. In: Proc. of the

14th International Symposium on Temporal Representation and Reasoning (TIME-07). 2007,Alicante, June 2007.

[61] Sigma-Aldrich metabolic Pathways Map. Online; Last accessed: August 31, 2011. URL http://www.sigmaaldrich.com/

life-science/metabolomics/learning-center/metabolic-pathways.html.

[62] Wessel M. Obstacles on the way to qualitative spatial reasoning with description logics: some undecidability results.

In: Goble CA, McGuinness DL, Möller R, Patel-Schneider PF, editors. Proceedings of the International Workshop in

Description Logics (DL’01); vol. 49 of CEUR WS. 2001,Stanford, CA, USA, August 1-3, 2001.

[63] Aiello M, Pratt-Hartmann I, van Benthem J, editors. Handbook of Spatial Logics. Springer; 2007.

[64] Keet CM. A formal theory of granularity. Phd thesis; KRDB Research Centre, Faculty of Computer Science, Free

University of Bozen-Bolzano, Italy; 2008.

[65] Kutz O, Lutz C, Wolter F, Zakharyaschev M. E-connections of abstract description systems. Artificial Intelligence

2004;156(1):1–73.

[66] Cuenca Grau B, Parsia B, Sirin E. Combining OWL ontologies using ε-connections. Web Semantics: Science, Services

and Agents on the World Wide Web 2006;4(1):40–59.

[67] Khan Z, Keet CM. The foundational ONtology SElection Tool ONSET. online; 2012. URL http://www.meteck.org/

files/onset/.

[68] Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF, editors. The Description Logics Handbook –

Theory and Applications. Cambridge University Press; 2 ed.; 2008.

28

Algorithm 1 PS Polygon to OWL

Require: diagram is not empty

repeat

x← getPolygon() %% select a polygon, and obtain information:

shape← getPolygonShape(x)

colour ← getPolygonColour(x)

label← getPolygonLabel(x)

if label consists of capitals and integers then

name ← resolve abbreviation of label

%% “ name” is a variable that holds the name of the class that will be added to the ontology

else

name ← label

end if

associate x with name

%% this is useful for the arrows in Algorithm 2

select case

shape = oval and colour = red:

add name v Protein to the ontology

shape = oval and colour = purple:

add name v NuclearReceptor to the ontology

add name v ∃inheres in.Protein to the onto-

logy

shape = rectangular and colour = yellow:

add name v CellProcess to the ontology

%% Let us assume BioTop is imported as well

parts← getPartonomy(Cell)

y ← selectPart(parts)

add name v ∃located in.y to the ontology

shape = hexagon:

%% and so forth for the other polygons

end select case

search the PRO Protein Ontology

if name == termX in PRO then

add name ≡ termX to the ontology

%% with termX a variable denoting a term in PRO

end if

until all shapes have been processed

%% one can proceed with Algorithm 2

29

Algorithm 2 PS arrow to OWL

Require: diagram has been processed by Algorithm 1

repeat

x← getArrow() %% select an arrow, and obtain information:

colour ← getArrowColour(x)

y ← getArrowBase(x)

z ← getArrowHead(x)

%% now obtain their respective class, thanks to Algorithm 1

namey ← retrieveClass(y)

namez ← retrieveClass(z)

select case

colour = blue:

add namez v ∃expressed by.namey to the

to the ontology

colour = grey:

shape← getArrowShapeMiddle(x)

if shape = square then

add namez v ∃regulated by.namey to the

ontology

else %% i.e., it is a cricle

add namez v ∃regulated directly by.namey

to the ontology

end if

colour = purple:

%% and so forth for the other arrow colours

end select case

search equivalence axioms with PRO

if namey and namez occur in an equivalence axioms and in namez v ∃OP.namey with PRO then

remove axiom from ontology

%% with OP a variable denoting an object property obtained also in PRO

%% this removes the redundant axioms

end if

until all arrows have been processed

30

