
Essential, mandatory, and shared parts in conceptual

data models?

Alessandro Artale and C. Maria Keet

KRDB Research Centre, Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
tel: +39 0471 0161{50,27} – fax: +39 0471 016009 – {artale,keet}@inf.unibz.it

Abstract. This chapter focuses on formally representing life cycle semantics of
part-whole relations in conceptual data models by utilizing the temporal modality.
We approach this by resorting to the temporal conceptual data modeling language
ERV T and extend it with the novel notion of status relations. This enables a pre-
cise axiomatization of the constraints for essential parts and wholes compared to
mandatory parts and wholes, as well as introduction of temporally suspended part-
whole relations. To facilitate usage in the conceptual stage, a set of closed questions
and decision diagram are proposed. The long-term objectives are to ascertain which
type of shareability and which lifetime aspects are possible for part-whole relations,
investigate the formal semantics for sharability, and how to model these kind of
differences in conceptual data models.

1 INTRODUCTION

Modeling part-whole relations and aggregations has been investigated and experimented
with from various perspectives and this has resulted in advances and better problem
identification to a greater or lesser extent, depending on the conceptual modeling lan-
guage (Artale et al., 1996a; Barbier et al., 2003; Bittner & Donnelly, 2005; Borgo & Ma-
solo, 2007; Gerstl & Pribbenow, 1995; Guizzardi, 2005; Keet, 2006b; Keet & Artale, 2008;
Motschnig-Pitrik & Kaasbøll, 1999; Odell, 1998; Sattler, 1995). Nowadays, part-whole re-
lations receive great attention both in conceptual modeling community (e.g. the Unified
Modeling Language, UML, the Extended Entity Relationship, EER, and the Object-Role
Modeling, ORM) as well as in the semantic web community (e.g. the Description Logic
based language OWL).

Several issues, such as transitivity and types of part-whole relations, are being ad-
dressed successfully with converging approaches from an ontological, logical, and/or lin-
guistic perspectives (Borgo & Masolo, 2007; Keet & Artale, 2008; Varzi, 2004; Vieu &
Aurnague, 2005). On the other hand, other topics, such as horizontal relations among
parts and life cycle semantics of parts and wholes, remain still an open research area
with alternative and complimentary approaches (Bittner & Donnelly, 2007; Guizzardi,
2005; Motschnig-Pitrik & Kaasbøll, 1999). For instance, how to model differences be-
tween an Information System for, say, a computer spare parts inventory compared to
one for transplant organs? Indeed, organs are at the time before transplantation not on
the shelf as are independently existing computer spare parts, but these organs are part
of another whole and can only be part of another whole sequentially. For a university
events database, one may wish to model that a seminar can be part of both a seminar

? This is a preprint version of the book chapter. The final version, in “Innovations in Information Systems
modeling: Methods and Best Practices” has minor changes in the text due to changes in layout (this version
is typeset with LATEX whereas IGI Global required an MS Word document).

2

series and a course, concurrently. Another long-standing issue is how to represent essential
versus mandatory parts and wholes (Artale et al., 1996a). The solution proposed in Guiz-
zardi (2005) as an extension to UML class diagrams is not easily transferable to other
modelling/representation languages.

In this chapter we study representation problems related to the notion of sharability
between parts and wholes. In particular, we are interested in representing that parts (i)
cannot be shared by more than one whole; (ii) cannot exist without being part of the
whole; (iii) can swap wholes in different ways. Clearly, these rich variations in shareability
of parts cannot be represented in any of the common, industry-grade, UML class diagram,
EER, or ORM CASE tools. In order to reach such a goal, we take a first step by aiming
to answer these main questions:

– Which type of shareability and which lifetime aspects are possible?
– What is the formal semantics for sharability?
– How to model these kind of differences in a conceptual data model?

To address these questions, we merge and extend advances in representing part-whole
relations as in UML class diagrams with formal conceptual data modeling for temporal
databases (temporal EER) and ORM’s usability features. The various shareability con-
straints are reworded into a set of modeling guidelines in the form of closed questions and
a decision diagram to enable easy navigation to the appropriate sharability case so as to
facilitate its eventual integration in generic modeling methodologies.

Concerning the formalization of the sharability notion and the relationships between
the lifespans of the involved entities, we use the temporally extended Description Logic
DLRUS (Artale et al., 2002). Indeed, while DLs have been proved useful in capturing the
semantics of various conceptual data models and to provide a way to apply automatic
reasoning services over them (Artale et al., 2007a; Berardi et al., 2005; Calvanese et al.,
1998b, 1999; Franconi & Ng, 2000; Keet, 2007), temporal DLs have been applied to the
same extent for temporal conceptual models (Artale & Franconi, 1999; Artale et al., 2003,
2002, 2007b). The formalization we present here is based on the original notion of status
relations that captures the evolution of a relation during its life cycle. Furthermore, a set
of DLRUS axioms are provided and proved to be correct with respect to the semantic we
provide for each particular sharability relation.

The remainder of the chapter is organised as follows. We start with some background
in section 2, where we review the state of the art of representing part-whole relations in
the four main conceptual modeling languages, being UML class diagrams, EER, ORM,
and Description Logic languages. The problems regarding shareability of parts are sum-
marised in section 2.4 and the basic preliminaries of the temporal DLRUS and ERV T

languages are given in section 3. Our main contribution is temporalising part-whole rela-
tions to give a clear and unambiguous foundation to notions such as essential part and
concurrent/sequentially shared part (section 4). Modeling guidelines will be presented
in section 5 so as to transform the theory into usable material. Last, we look ahead by
highlighting some future trends (section 6) and close with conclusions (section 7).

2 PART-WHOLE RELATIONS IN CONCEPTUAL
MODELING LANGUAGES

Part-whole relations have been investigated from different starting points and with dif-
ferent aims. At one end of the spectrum we have philosophy with a sub-discipline called

3

mereology and its sub-variants mereotopology and mereogeometry (Borgo & Masolo, 2007;
Simons, 1987; Varzi, 2004, 2006a) that focus on the nature of the part of relation and
its properties, such as transitivity of part of , reflexivity, antisymmetry, and parts and
places, or take as point of departure natural language (mereonomy). From a mathemat-
ical perspective, there is interest in the relation between set theory and mereology (e.g.
Pontow & Schubert (2003) and references therein). At the other end of the spectrum we
have application-oriented engineering solutions, such as aggregation functions in databases
and data warehouses. Investigation into and use of representation of part-whole relations
in conceptual data modeling languages lies somewhere in the middle: on the one hand,
there is the need to model the application domain as accurately as possible to achieve a
good quality application, yet, on the other hand, there is also the need to achieve usability
and usefulness to indeed have a working information system. In this section, we take a
closer look at four such conceptual modeling languages and how they fare regarding the
part-whole relation: UML class diagrams (in section 2.1), EER and ORM (section 2.2),
and Description Logics (section 2.3). It must be noted, however, that we primarily focus
on notions such as exclusive and shareable parts among wholes and this overview is as
such not a comprehensive introduction to all aspects of part-whole relations1.

2.1 Aggregation in UML Class Diagrams

Part-whole relations in UML class diagrams are represented with aggregation associations.
We first consider the UML specification of 2005 (OMG, 2005) and subsequently look at
several significant extensions and formalizations that seek to address its shortcomings in
particular regarding exclusiveness, sharability of parts among wholes, and thereby thus
also the life cycle semantics of parts and wholes.

UML specification. UML (OMG, 2005) offers aggregation in two modes for UML class
diagrams: composite and shared aggregation. Composite aggregation, denoted with a filled
diamond on the whole-side of the association (see Figure 1), is defined as

a strong form of aggregation that requires a part instance be included in at most
one composite at a time. If a composite is deleted, all of its parts are normally
deleted with it. Note that a part can (where allowed) be removed from a composite
before the composite is deleted, and thus not be deleted as part of the compos-
ite. Compositions define transitive asymmetric relationships – their links form a
directed, acyclic graph. (OMG, 2005) (emphases added)

The composite object is responsible for the existence and storage of the parts (OMG,
2005), which means an implicit ontological commitment at the conceptual level : the parts
are existentially dependent on the whole (which, in turn, implies mandatoryness), and not
that when a whole is destroyed its parts can exist independently. However, the “at a time”
suggests that at another instant of time the same part could be part of another whole; may
the part switch wholes instantaneously? In addition, the description for composite aggre-
gation neither says that the whole is, or should be, existentially dependent on its part(s)
nor that it has the part mandatorily. The difference between existential dependence and
mandatory parts and wholes is refined well by Guizzardi (2005), as we will see in the next
paragraph. There are three issues to take into account. First, to represent the difference
between, say, a heart that must be part of a vertebrate animal but can be changed as long
as the animal has a heart, whereas a brain cannot be transplanted and thus is deemed
essential to the animal. Second, and a weaker constraint than essential/mandatory, is that

4

we can have that a part indeed must be part of a whole, but either the part p (or whole
w) can continue to exist as long as it is part of (has as part) some w (p). Third, it is not
clear if w has as part p only. More general, let A be the whole with parts B, C, and D in
a UML class diagram as in Figure 1-A, then each part is associated to the whole through
a separate binary composite aggregation, as if A is a whole where its instance a is made
up of a collection of instances of type B, and/or made up of a collection of instances of
type C and/or D, making A a different type of entity for each way of aggregating its
parts, which cannot be the intention of the representation because that does not have a
correspondence with the portion of the real world it is supposed to represent. In addition,
the description of composite aggregation says it is an “asymmetric” relationship, which is
in mereological theories (Varzi, 2004) always attributed to proper parthood2. Thus, what
needs to be represented (at least), is that instances of B, C, and D together make up
the instance of the whole entity A, as in Figure 1-B, and prevent a modeler to create
something like Figure 1-A. This difference is not mentioned in the UML specification, and
one is left to assume it is a “semantic variation point” (OMG, 2005) which of the readings
should be used. Of course, the Object Constraint Language (OCL) aids disambiguation,
but is optional and one can only ‘hope’ for appropriate use as opposed to forcing the
modeler to make such modeling decisions in the modeling stage.

A

B C D

A

B C D

{disjoint, complete}

A B

Fig. 1. A: Ontologically ambiguous UML composite aggregation as separate binary associations; B: the composite
A is composed of parts B, C, and D.

Shared aggregation is denoted with an open diamond on the whole-side of the aggre-
gation association, which has it that “precise semantics ... varies by application area and
modeler” (OMG, 2005), and presumably can be used for any of the types of part-whole
relations and shareability described in (Barbier et al., 2003; Guizzardi, 2005; Johansson,
2004; Keet, 2006b; Keet & Artale, 2008; Motschnig-Pitrik & Kaasbøll, 1999; Odell, 1998;
Winston et al., 1987). The main difference with composite aggregation is that shared
aggregation poses no constraint on multiplicity with respect to the whole it is part of.
Thus, the part may be directly shared by more than one whole—be it at the same time
or sequentially—where those wholes are instances of either the same class or different
classes. Thus, this raises at least four possibilities, but neither one can be represented in
standard UML class diagrams in a way so as to be able to distinguish between them. Let
p be a part of type P (p ∈ P) and wi stand for wholes such that w1, w2 ∈ W , wa ∈ W ′,
¬(W = W ′), and t1, t2 are points in time such that t1 < t2, then one can have that
1. p is part of w1 at time t1 and of w2 at time t2; e.g., a heart is transplanted from—was

structural part of—one human w1 into another w2, or a car engine that used to be
part of a FerrariCar w1 used in Formula 1 racing and is put in another FerrariCar w2,
but the heart (car engine) cannot be part of both humans (cars) at the same time.

2. p is part of w1 and w2 at time t1; e.g., an ethics course is part of multiple BSc curricula.
3. p is part of w1 at time t1 and of wa at time t2; e.g., phosphorylation (a phosphor atom

part p is exchanged between two molecules w1 and wa of different type) or South Tyrol

5

used to be part of (located in) the Austro-Hungarian Empire w1 and is now part of
the Republic of Italy wa.

4. p is part of w1 and wa at time t1; e.g., a seminar is part of both the Language Colloquia
and of the Knowledge Representation course, or a cello player is member of a chamber
ensemble w1 and member of the Royal Philharmonic Orchestra wa.

The examples for the four cases are fairly straightforward for transplant databases, car
mechanics information systems, university databases, geographic information systems,
and employment information systems, yet cannot be represented unambiguously with
UML—nor with commonly used other conceptual data modeling languages, as we will see
in the next sections—other than using shared aggregation for all of them.

A range of scenarios of life cycles of participating objects are possible, each with differ-
ent behavior in the system, which thus ought to have their implementation-independent
counterpart in the conceptual model. However, overall, the ambiguous specification and
modeling freedom in UML does not enable making implicit semantics explicit in the con-
ceptual model, and rather fosters creation of unintended models. This has been observed
by several researchers, who have proposed a range of extensions to UML class diagrams.

Formalizations of aggregation in UML class diagrams. UML does not have a
formal semantics, which demands from the researchers who propose extensions to also
give the formal semantics. A near-complete formalization is proposed by Berardi et al.
(2005), who developed a First Order Logic (FOL) as well as Description Logic (DL)
encoding of UML with DLRifd ; that is, for each UML model, there is an equi-satisfiable
DLRifd knowledge base. However, UML’s aggregation has not been addressed other than
‘shared aggregation’ (no formalisation is provided to account for additional constraints
and composite aggregation). In Berardi et al’s (2005) formalisation of shared aggregation
in UML class diagrams, we have ∀x, y(G(x, y) → C1(x) ∧ C2(y)), where G is a binary
predicate for the aggregation and C1 and C2 are concepts. That is, a straightforward
binary relation as if it were a mere UML association relation. The avoidance to map UML’s
intuitive part-whole relation is partially due to the ambiguous semantics of aggregation in
UML and partially because adequately representing parthood in DL has its own issues (see
below). In contradistinction, others have been more precise on the aggregation, but they
omitted a formalization of UML class diagram language. For instance, Barbier et al. (2003)
represent several constraints on the part-whole relation using OCL, which is, however,
not immediately transferrable to other conceptual modeling languages. They formulate
the various add-ons as a context in OCL and add a meta-model fragment for whole-
part relations where the attribute aggregation is removed from the AssociationEnd

meta-class, Whole added as a subclass of Relationship and has two disjoint subclasses
Aggregation and Composite. Motschnig-Pitrik & Kaasbøll (1999) and Guizzardi (2005)
present a First Order Logic formalization and corresponding adornments for the graphical
notation in UML class diagrams using new icons and labels, which are effectively in
addition to the axiomatizations of mereological theories and perceived to be necessary
for conceptual modeling of mereological and meronymic relations. Guizzardi adds, among
others, the notion of essential part EP , which he defines as (Guizzardi (2005): p165):

Definition 5.11 (essential part): An individual x is an essential part of another
individual y iff, y is existentially dependent on x and x is, necessarily, a part of y:
EP (x, y) =def ed(y, x)∧2(x ≤ y). This is equivalent to stating that EP (x, y) =def

2(ε(y)→ ε(x))∧2(x ≤ y), which is, in turn, equivalent to EP (x, y) =def 2(ε(y)→
ε(x) ∧ (x ≤ y)). We adopt here the mereological continuism defended by (Simons,

6

1987), which states that the part-whole relation should only be considered to hold
among existents, i.e., ∀x, y(x ≤ y) → ε(x) ∧ ε(y). As a consequence, we can have
this definition in its final simplification

(47). EP (x, y) =def 2(ε(y)→ (x ≤ y))

where ε denotes existence, ≤ a partial order, and 2 necessity. The weaker version is
mandatory parthood MP , which is defined as (Guizzardi (2005): p167):

Definition 5.13 (mandatory part): An individual x is a mandatory part of
another individual y iff, y is generically dependent of an universal U that x instan-
tiates, and y has, necessarily, as a part an instance of U :

(49). MP (U, y) =def 2(ε(y)→ (∃U, x)(x < y)).

Observe that in this setting, essential parts are also immutable—“stability in identity and
number” (Barbier et al., 2003) of the part—and inseparable (“IP (x, y) =def 2(ε(x) →
(x ≤ y))” in (Guizzardi, 2005)). There are finer-grained details between essential parts
(or wholes) and immutable parts (wholes) that are caused by the kind of classes that
participate in the part-whole relation (Guizzardi, 2005, 2007; Artale et al., 2008); that is,
the former has participating classes that are rigid, whereas for immutable parts (wholes)
the class is not rigid (indeed, anti-rigid). The notion of a class’ metaproperty cencerning
rigidity—i.e., being rigid, non-rigid, semi-rigid, or anti-rigid—is important for designing
good subtype hierarchies (Guarino & Welty, 2000) and its use with UML and ORM2 is
actively being investigated regarding how to incorporate it and to what extent (Guizzardi,
2005; Halpin, 2007).

An example of adorning UML class diagrams is depicted in Figure 2 that demonstrates
the proposed representation for the sub quantity of relation with an additional symbol,
OCL constraint, and stereotypes. Motschnig-Pitrik and Kaasbøll, on the other hand,

184 CHAPTER 5 PARTS AND WHOLES

component-functional complex), actually reflects a distinction among
different types of relata.

Mass-Quantity:

The quantity/mass relation holds between quantities (in the technical sense
explained in section 5.5.1). Let us suppose a model such as the one
depicted in figure 5.26, in which A, B and C are quantities. We can show
that for any A, B, C, the part-whole relation (C < A) holds as a result from
the transitivity (C < B) and (B < A). The argumentation can be developed
as follows: if A is a quantity then it is a maximal portion of matter unified
by the characteristic relation of self-connectedness. That is, any part of A is
connected to any other part of A. If B is part of A then B is connected to all
parts of A. Likewise, if C is part of B then C is connected to all parts of B.
Since connection is transitive, then we have that C is connected to all parts
of A. Thus, since A is unified under self-connection, C must be part of A
(otherwise the composition of A would not be a closure system, see
definition 5.4). Therefore, we conclude that for the case of quantities,
transitivity always holds.

Another way to examine this situation is by inspecting A at an arbitrary
time instant t. We can say that all parts of A are the quantities that are
contained in a certain region of space R (i.e. a topoid, see Guizzardi &
Herre & Wagner, 2002a). Since A is an objectified matter, than the topoid
R occupied by A must be self-connected. Therefore, if B is part of A then B
must occupy a sub-region R�, which is part of R. Likewise, if C is part of B,
it occupies a region R��, part of R�. Since spatial part-whole relations are
always transitive (Johansson, 2004), we have that R�� is part of R, and if C
occupies R��, then it is contained in R. Ergo, by definition, C is a part of A.

{essential=true}

«category»
Container

«quantity»
A

«quantity»
B

«quantity»
CQ Qcontainment

1 1 1 1 1 1
{essential=true}

Parthood relationships between quantities are always non-shareable. For
instance, in figure 5.23, B can only be part of one single quantity of A, since
A is a maximal. Moreover, A has at maximum one quantity of B as part,
since B is also a maximal portion. Finally, as discussed in section 5.5.1,
every part B of A is essential.
 As in figure 5.26, we decorate the standard UML symbol for
composition with a Q to represent a quantity/mass parthood relation. If
cardinality constraints are fully specified, then the Q-parthood is a relation
which:

Figure 5-26 Part-Whole
relations among
quantities

Fig. 2. Part-whole relations among quantities. Essential parts are indicated with essential = true, which implies
a composite aggregation (filled diamond), which is of the type “Q” for quantities. The stereotypes (“��”) add
further constraints to the permitted types of classes. (Source: Guizzardi (2005))

focus on gradations of exclusiveness between part and whole. This corresponds partially
to Guizzardi’s mandatoryness and (in)separability of the part from the whole, as can
be observed from one of the definitions, such as total exclusiveness (Motschnig-Pitrik &
Kaasbøll (1999): p785):

Total exclusiveness. A part-of reference is totally exclusive if there exists exactly
one immediate part-of link from a part-type P to a whole-type W and, for each
instance p of P , there exists at most one instance w of W such that p part-of w.
More formally, let:

pk instance-of P, k ∈ [1..n],
wi instance-of W, i ∈ [1..n′], wi′ instance-of W, i′ ∈ [1..n],
wxj instance-of WX, j ∈ [1..n′′]

then
P totally-exclusive part-of W ⇔ ∀WX

7

((P part-of W ∧ P part-of WX) ⇒ (W = WX ∨W part-of WX)) ∧
((pk part-of wi ∧ pk part-of wi′))⇒ (i = i′))∧
((pk part-of wi ∧ pk part-of wxj)⇒ (wi = wxj ∨ wi part-of wxj))

One can add further gradations in sharability. Motschnig-Pitrik & Kaasbøll (1999) distin-
guish between “degree of sharing of parts among whole objects” and “degree of dependence
between some part object and some whole object(s)” where the former acts out as static
constraints and the latter concerns the life-cycle of objects. To summarize and comment on
Motschnig-Pitrik & Kaasbøll (1999), there are six cases that each get their own modeling
construct in a UML class diagram.
– Total exclusiveness: there exists exactly one immediate part-of relation from P to W

(thus P cannot have another part-of relation to a W ′), there is at most one instance
w s.t. p part-of w. Thus, with this constraint, the w can also exist without having as
part p, hence neither essential nor mandatory participation from that side.

– Arbitrary sharing: “A part-of link from P to W is shared if there may exist further
shared or intraclass exclusive (see below) links from P to whole-types WX, WY , etc.,
and if, for each instance p of P , there may exist more than one instance of W : w1, w2, ...
such that p part-of w1, p part-of w2, etc.”. Thus, with this combination where p can
be part of wi ∈ W j where 0 ≤ i ≤ n and 1 ≤ j ≤ n; i.e., p can be part of zero or more
ws that are instances of one or more W s, and thereby subsumes the next four options.

– Interclass exclusiveness: there exists exactly one type-level part-of relation from P to
W and for each p1, ...pm ∈ P there may exist w1, ...wn ∈ W such that we have p1

part-of wk, ... , p1 part-of wn, ... pn part-of w1, ... , ph part-of wl (with h ≤ m, k ≤ n,
and l ≤ n). Or, simply a 0:n relation between pi and wi, where wi ∈ W and 0 ≤ i ≤ n.

– Intraclass exclusiveness: as for interclass, but then ≥ 1 part-of relations to ≥ 1 different
types of wholes.

– Selective exclusiveness: ≥ 1 part-of relations to different types of wholes, but only one
of them may be instantiated. It is unclear if this means at a time or possibly ever
during the life time of the part (an XOR constraint at the type level).

– Selectively intraclass exclusive: as for selective exclusiveness, but then also that all
part-of relations have a max cardinality of 1.

In addition, the dependence/independence axis concerns “A dependent part-of relation-
ship between a part-type P and a whole-type W is one in which the existence of each
part-object pi of type P depends on the existence of one and the same whole-object wi

of type W throughout the lifetime of the part-object”, which is also called “lifetime-
dependence”, or in Guizzardi’s terminology essential whole to the part, but which implies
only a minimum cardinality of one on the W -side by Motschnig-Pitrik & Kaasbøll (1999).

Despite the problems with the UML class diagram specification as well as the limited
extensions, the issues have been investigated to a greater extent than within other concep-
tual modeling languages. The next two sections focus on EER, ORM and DL languages.

2.2 Part-Whole Relations in (E)ER and ORM

It may be clear from the previous section that part-whole relations in UML class diagrams
can have poorly defined semantics, but what about other conceptual modeling languages?
Entity-Relationship (ER) does not have a separate constructor for the part-whole re-
lations, despite the occasional (Shanks et al., 2004) request. Neither does Object-Role
Modelling (ORM) have a separate constructor for parthood relation. Are they better off
than UML? What, if any, can already be represented from part-whole relations with ER
or ORM? Here, we summarise ORM’s difference with UML based on (Keet, 2006b).

8

Recollect that the UML specification inserts design and implementation considerations
for composite aggregation, so that a part is existentially dependent on the whole, and
not that when the whole is destroyed, the parts, explicitly, can have their own life or,
explicitly, become part of another whole. Here there is a difference between UML and

B. Aggregation in ORM

A. Aggregation in UML

Club Team Player ***1

has part/part of has member/member of

Fig. 3. Graphical representation of “aggregation” in UML and ORM. (Source: adapted from Halpin (1999) with
part-whole relations as proposed in Keet (2006b))

ORM intended semantics: with composite aggregation in the UML specification, part p
cannot exist without that whole w, but ORM semantics of the suggested mapping (Halpin,
2001) says that ‘if there is a relation between part p and whole w, then p must participate
exactly once’. Put differently, p may indeed become part of some other whole w′ after w
ceases to exist as a whole, as long as there is some whole it is part of, but not necessarily
the same whole. Hence, in contrast with UML, in ORM there is no implicit existential
dependency of the part on the whole (see also Figure 3-B).

Compared to more and less comprehensive formalizations and extensions for aggrega-
tion in UML (Barbier et al., 2003; Guizzardi, 2005; Motschnig-Pitrik & Kaasbøll, 1999;
Berardi et al., 2005), for ORM, richer representations of the semantics are possible al-
ready even without dressing up the ORM diagram with icons and labels. For instance,
Motschnig-Pitrik & Kaasbøll (1999)’s new “selectively intraclass exclusive” constraint is
an XOR constraint (dotted circle with cross) over the Part-roles of two or more fact types
to different types of Whole in an ORM diagram. Suggestions to model several aspects
of the part-whole without extending ORM were presented in (Keet, 2006b), which also
includes several guidelines to ease selecting the appropriate part-whole relation and its
mandatory and uniqueness constraints.

2.3 Description Logics

Description Logic (DL) languages are more often used as knowledge representation lan-
guages than as conceptual data modeling languages and if they are used for conceptual
modeling, they are used in the background hidden from the modelers and domain experts
because the formalisms are deemed not easily accessible. Thus far, the combination of
DL languages and conceptual data modeling languages is primarily limited to the well-
studied DLR family of DL languages (Artale et al., 2006, 2007a; Berardi et al., 2005;
Calvanese et al., 1998b, 1999; Calvanese & De Giacomo, 2003; Fillottrani et al., 2006;
Franconi & Ng, 2000; Keet, 2007), which provide not only a formal foundation for the
mostly graphically-oriented conceptual data modeling languages, but also offer prospects
of automated reasoning over conceptual data models to derive implicit relations, con-
straints, and inconsistencies and thereby contribute to better quality conceptual data

9

models. Therefore, efforts in representing parthood in DL languages will be briefly sum-
marised.

Research on part-whole relations for DLs date back to the early ’90s, but thus far none
of the DL languages that are being investigated and implemented (DL-Lite, DLR, OWL,
and EL families) have the part-whole relation as a first-class citizen. However, as neither
UML nor ER nor ORM, implement part-whole relations properly, it might not matter
that most DL languages do not have a comprehensive treatment of part-whole relations,
at present. It is, however, being investigated.

We first address two early attempts. Artale et al. (1996a) experimented with adding
a has part relation as � with the transitive closure of a parthood relation (1). One can
define, e.g., Car as having wheels that in turn have tires (2), such that it follows that cars
have as part tires (Car v ∃ �.Tire).

� .= (primitive-part)∗ (1)

Car
.
= ∃ � .(Wheel u ∃ � .Tire) (2)

However, adding transitive closure makes languages of even low expressivity, such as ALC,
already ExpTime-complete. Alternatively, one can define direct parthood ≺d (Sattler,
1995), but this should verify the immediate inferior, which makes the language undecidable
(Artale et al., 1996b), which is even less desirable for operational information systems.
Schulz et al. (2000) have developed an elaborate workaround (with ALC) so as to be able
to simulate transitivity of parthood relations by remodeling the part-of relation as is a
hierarchies using so-called SEP triplets. The three core items are the Structure-concept
node that subsumes one (anatomical) entity, called E-node, and the parts of that entity
(the P-node). An is a hierarchy is then built up by relating the P-node of a whole concept
D to the S-node of the part C, where in turn the P-node of C is linked to the S-node
of C’s part. More formally, the definition of the whole D is (3), by which one can derive
its anatomical proper part (a-pp) C as (4). Obviously, if this were to be used, this would
require an intuitive user interface.

DP
.
= DS u ¬DE u ∃a-pp.DE (3)

CE v ∃a-pp.DE (4)

Around the same time, Sattler (2000) showed that with some extensions to ALC, it is
possible to include more aspects of the parthood relation. These are: transitive roles (that
is, permit R+ ⊆ R), inverse roles to have both part-of and has-part, role hierarchies to
include subtypes of the parthood relation, and number restrictions to model the amount
of parts that go in the whole. This brings us to the language called SHIQ, which is a
predecessor of the OWL-DL ontology language. In fact, the base language for the even
more expressive OWL 2, SROIQ, has constructors for all but one of the relational prop-
erties: antisymmetry, required for mereological part-of (Varzi, 2004), is not possible yet
(Horrocks et al., 2006).

The latest—and most comprehensive—attempt to represent parthood relations in a DL
language is put forward by Bittner & Donnelly (2005), who approach the problem starting
from a FOL characterisation and subsequently limit its comprehensiveness and complexity
to fit it into a DL language, although it is unclear if their L∼Idt is decidable. In their
theory, called DL-PCC, several constraints and definitions cannot be represented. These
are: impossibility to state that component of (CP), proper part of (PP) and contained in
(CT) are irreflexive and asymmetric, and it is missing a discreteness axiom for CP or CT or

10

a density axiom for PP (see Bittner & Donnelly (2005) for details and discussion). They
include transitivity of the characterised parthood relations, but thereby do not have the
option to state also that, e.g., a directly contained in relation is intransitive (the same
problem as mentioned above for ALC).

Artale et al. (1996a,b) have placed the requirement for adequately representing the
part-whole relation in a wider context, where some outstanding issues of 12 years ago
are still in need of a solution. For instance, (non)distributivity of part-whole relations3,
‘horizontal’ relations between the parts, and disjoint covering over the parts. The latter is
an issue with DL but not for database models, because DL languages adhere to the open
world assumption whereas databases do not. For instance, if we have in a DL language a
type-level (TBox-) statement where C has two parts D and E:

C v ∃ has part.D u ∃ has part.E

then it may be that instances of C have more parts than only instances of D and E

because the composite C is not fully defined. No DL language deals with an additional
axiom that states that C is composed of—the mereological sum of—D and E only ; what
we can state is that C is defined by having D and E as parts (C

.
= ∃ has part.D u

∃ has part.E). In contradistinction, conceptual models and databases do adhere to a
closed world assumption, thereby making instances of C uniquely composed of at least
one instance of D and at least one instance of E. The status of differentiating between e.g.
essential and mandatory part (see section 2.1) is unclear, unless we use a temporal DL
such as DLRUS (see below).

2.4 Problems and Requirements for Modeling Shared and Composite Parts
and Wholes

Summarizing the problems for adequately modeling the different ways that parts can
be part of a whole in the main commonly used conceptual modeling languages—with
or without extensions—, we have (1) the absence of adequately distinguishing between
mandatory and essential parts and wholes and, vice versa, existence of p and/or w inde-
pendently for some time (e.g., the relation is temporarily “suspended” or p is “scheduled”
to become part of w), (2) lack of clarity how to represent that part p that can be part
of more than one whole s.t. either wi ∈ W or (wj ∈ W and wk ∈ W ′) and (3) if these
shared parts can be shared concurrently and/or sequentially among the wholes p being
part of wi and wj. These issues can be reformulated in a set of requirements for conceptual
data modeling languages if they want to be expressive enough to enable full shareability
semantics of parts and wholes.

Requirements for modeling shareability of parts. Based on the literature review,
we can formulate the following requirements for modeling shareability and, implicitly, life
cycle semantics in conceptual modeling languages4.
1. Arbitrarily shareable with no particular constraints;
2. Existentially dependent/essential part or whole (mutually, or not), and (im)possibility

of independent existence of the part from the whole;
3. Being able to differentiate between mandatory and essential parts and wholes;
4. Change in whole; that is, a part p was part of w1 (where w1 ∈ W) and can become part

of another whole w2, be it that there is a (negligible) time that p exists independently
before (after) being part of and be it that w2 ∈ W or w2 ∈ W ′;

5. Change in part; that is, the inverse of requirement nr.4 where the whole loses and
gains a part during its lifetime;

11

6. Disjoint covering of parts being part of a whole.

Notions such as essential parts, change, and before and after indicate temporality of either
the part-whole relation, or the participating parts and wholes, or both; hence, the more
general requirement for temporal conceptual data modeling in order to address the above-
mentioned requirements. For the current restricted scope, we may not need a full-fledged
temporal knowledge representation language to adequately address the shareability of
part and wholes. Before going into those details in section 3, we summarize the literature
dealing with temporal parts.

Temporalizing part-whole relations. The most straightforward, yet also limited, way
to temporalize part-whole relations is to turn a part-of predicate from a binary into a
ternary relation, such that we have p part of w at time t: part of(p, w, t). To the best of
our knowledge, almost all extant temporalizations of parthood take this approach (Bittner
& Donnelly, 2007; Masolo et al., 2003; Smith et al., 2005) but do not go further to take
advantage of a temporal knowledge representation language5. An exception is Barbier et
al. (2003), who created an oclUndefined observer function to “assert that all parts of result
do not exist before (@pre) the execution” of the creation of the whole instance w, which is
intended for representing life time dependencies in UML class diagrams. They also tried
representation of immutability, but this remained an open problem due to the lack of
a full-fledged implementation of a temporal UML. Furthermore, Barbier et al. (2003);
Opdahl et al. (2006) listed nine principle life cycle cases. We extend this here to 18 cases
(see Figure 4) mainly since they represent two distinct perspectives: (i) fixed the lifespan
of a whole, we are interested in characterizing the lifespan of its part (Figure 4-A) and, vice
versa, (ii) fixed the lifespan of the part, we are interested in the temporal relations with the
lifespan of its whole (Figure 4-B). We shall see in section 4.3 that these two views require
distinct constraints, too. A curious feature of UML is the Boolean readOnly metaproperty
that was initially proposed for attributes as a Changeability sort with constant symbols
“frozen” and “changeable” (Álvarez & Alemán, 2000). OMG (2005) now constrains it
such that “[i]f a navigable property is marked as readOnly, then it cannot be updated
once it has been assigned an initial value” (OMG, 2005), where a property is “structural
feature”, such as attribute and association end but it is also suggested for representing
rigid classes (Halpin, 2007). Unfortunately, its “semantics is undefined” (pp 241, 249, 251,
254, 280) for various cases, such as what should happen with a readOnly association end
when a link is destroyed. Intuitively, it captures a property that holds globally during
its entire existence, hence, is a candidate to use for representing at least some aspects
of lifecycle semantics. Albert et al. (2003) provide an additional interpretation where
objects instantiating readOnly classes can only participate in links created during creation
of the object, but no links to that object can be added afterward, and subsequently use
this for constraining the part-class in a composite aggregation. This seems too restrictive,
however, because if we assume Brain to be such a composite part of Patient, then it would
surely be possible in a hospital information system that brain o1 of patient o2 may have
to be linked to, say, some instance o3 ∈ BrainScan and at a later point in time participate
in a new aggregation association to o4 ∈ BrainTumor. The prospects for usage of readOnly
may be more interesting if it is (1) applied either to the composite aggregation association
or to the association ends because for the part-whole relation one has to consider also the
temporal behavior of the relation and (2) its semantics would be defined precisely and
have an effect in the modeling as opposed to in the software code only.

12

timelifetime
whole

p1
p2
p3
p4
p5
p6
p7
p8
p9

timelifetime
part

w1
w2
w3
w4
w5
w6
w7
w8
w9

A B

Fig. 4. Possible lifespans of the part with respect to the whole it is part of (A) and similarly for the whole’s
lifespan w.r.t its part (B).

Regarding the ternary temporal part-whole relation, we have, for instance, Bittner
and Donnelly’s “temporal mereology” (2007), which was developed to deal with “por-
tions of stuff”, i.e., how to deal with subquantities (portions) of amounts of matter, such
as gold, and mixtures, such as lemonade, in time (see also Figure 9 for types of part-
whole relations). Limiting oneself to only ternary part-whole relations runs into rather
complicated formalizations, whereas well-defined temporal logics—and those applied to
temporal conceptual data modeling in particular—can hide at least some of the details,
which enhances understandability and (re)usability of a conceptual model by modeler and
domain expert alike. In order to arrive at this point, we will introduce such a formal tem-
poral conceptual modeling language, which enables one to model essential and shareable
parts in a precise and clear way. Moreover, in addition to the modeling enhancements
for the conceptual models themselves (in section 4), we will add modeling guidelines to
facilitate easy navigation and choosing the appropriate part-whole relation and object
types (section 5).

3 TEMPORAL DATA MODELS

In order to capture the range of possibilities of sharebility, composite, and essential parts
and represent them in a convenient way in a conceptual modeling language, we introduce
here representation languages able to capture time varying information. As outlined in
the previous section, we need temporal constructs in a conceptual modeling language.
Temporal EER have been developed (e.g., Artale et al. (2003, 2006, 2007b) and references
therein) and a subset has been implemented in MADS (Parent et al., 2006), but one may
contend that, ideally, one should have a way to have the approach general enough so as to
be transferrable to ORM and UML class diagrams, too. Artale et al’s temporal EER, called
ERV T , has a correspondence with the temporal Description Logic DLRUS (Artale et al.,
2002), which, in turn, gives a model-theoretic semantics to ERV T —any corresponding icon
in the graphical diagrams can then be considered ‘syntactic sugar’ with a precise meaning.
In addition, with an UML/EER/ORM to DL transformation we can then provide the
sought-after genericity of the approach6.

13

C → > | ⊥ | CN | ¬C | C1 u C2 | ∃≶k[Uj]R |
3+C | 3−C | 2+C | 2−C |⊕ C | 	 C | C1 U C2 | C1 S C2

R → >n | RN | ¬R | R1 uR2 | Ui/n : C |
3+R | 3−R | 2+R | 2−R |⊕ R | 	 R | R1 U R2 | R1 S R2

>I(t) = ∆I

⊥I(t) = ∅
CNI(t) ⊆ >I(t)

(¬C)I(t) = >I(t) \ CI(t)

(C1 u C2)I(t) = C
I(t)
1 ∩ CI(t)2

(∃≶k[Uj]R)I(t) = { d ∈ >I(t) |]{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}
(C1 U C2)I(t) = { d ∈ >I(t) | ∃v > t.(d ∈ CI(v)

2 ∧ ∀w ∈ (t, v).d ∈ CI(w)
1)}

(C1 S C2)I(t) = { d ∈ >I(t) | ∃v < t.(d ∈ CI(v)
2 ∧ ∀w ∈ (v, t).d ∈ CI(w)

1)}

(>n)I(t) ⊆ (∆I)n

RNI(t) ⊆ (>n)I(t)

(¬R)I(t) = (>n)I(t) \RI(t)

(R1 uR2)I(t) = R
I(t)
1 ∩RI(t)2

(Ui/n : C)I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) | di ∈ CI(t)}
(R1 U R2)I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) |

∃v > t.(〈d1, . . . , dn〉 ∈ RI(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ RI(w)

1)}
(R1 S R2)I(t) = { 〈d1, . . . , dn〉 ∈ (>n)I(t) |

∃v < t.(〈d1, . . . , dn〉 ∈ RI(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ RI(w)

1)}
(3+R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕ R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}
(3−R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(R)I(t) = {〈d1, . . . , dn〉 ∈ (>n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

Fig. 5. Syntax and semantics of DLRUS .

This section presents the formal background in modeling temporal varying informa-
tion. Such a formalization will be used in the following sections when the basic conceptual
data model is extended to capture particular properties of part-whole relations.

3.1 The Temporal Description Logic DLRUS

The temporal description logic DLRUS (Artale et al., 2002) combines the propositional
temporal logic with the Since and Until operators and the (non-temporal) description
logic DLR (Calvanese et al., 1998a; Baader et al., 2003) that serves as common founda-
tional language for various conceptual data modeling languages (Calvanese et al., 1998b,
1999). DLRUS can be regarded as an expressive fragment of the first-order temporal logic
L{since, until} (Chomicki & Toman, 1998; Hodgkinson et al., 2000).

The basic syntactical types of DLRUS are classes (also known as entity types or object
types) and n-ary relations (associations) of arity ≥ 2. Starting from a set of atomic classes
(denoted by CN), a set of atomic relations (denoted by RN), and a set of role symbols
(denoted by U , comparable to an ORM-role or component of a UML association) we can
define inductively (complex) class and relation expressions (see upper part of Figure 5),
where the binary constructors (u,t,U ,S) are applied to relations of the same arity, i,
j, k, n are natural numbers, i ≤ n, and j does not exceed the arity of R. Observe that
for both class and relation expressions all the Boolean constructors are available. The
selection expression Ui/n : C denotes an n-ary relation whose i-th argument (i ≤ n),
named Ui, is of type C. (In ORM terminology, Ui/n : C refers to the role Ui played by
C in the fact type.) If it is clear from the context, we omit n and simply write (Ui : C).
The projection expression ∃≶k[Uj]R is a generalisation with cardinalities of the projection

14

operator over argument Uj of relation R; the plain classical projection is ∃≥1[Uj]R. It is
also possible to use the pure argument position version of the language by replacing role
symbols Ui with their corresponding position numbers i.

The model-theoretic semantics of DLRUS assumes a flow of time T = 〈Tp, <〉, where
Tp is a set of time points (also called chronons) and < a binary precedence relation on
Tp, which is assumed to be isomorphic to 〈Z, <〉. The language of DLRUS is interpreted
in temporal models over T , which are triples of the form I .

= 〈T , ∆I , ·I(t)〉, where ∆I is
non-empty set of objects (the domain of I) and ·I(t) an interpretation function such that,
for every t ∈ T (t ∈ T will be used as a shortcut for t ∈ Tp), every class C, and every n-ary
relation R, we have CI(t) ⊆ ∆I and RI(t) ⊆ (∆I)n. The semantics of class and relation
expressions is defined in the lower part of Figure 5, where (u, v) = {w ∈ T | u < w < v}.

We will use the following equivalent abbreviations: C1tC2 ≡ ¬(¬C1u¬C2); C1 → C2 ≡
¬C1 tC2; ∃[U]R ≡ ∃≥1[U]R; ∀[U]R ≡ ¬∃[U]¬R; R1 tR2 ≡ ¬(¬R1 u¬R2). Furthermore,
the operators 3∗ (at some moment) and its dual 2∗ (at all moments) can be defined for
both classes and relations as 3∗C ≡ C t 3+C t 3−C and 2∗C ≡ C u 2+C u 2−C,
respectively.

A knowledge base is a finite set Σ of DLRUS axioms of the form C1 v C2 and R1 v R2,
and with R1 and R2 being relations of the same arity. An interpretation I satisfies C1 v C2

(R1 v R2) if and only if the interpretation of C1 (R1) is included in the interpretation

of C2 (R2) at all time, i.e. C
I(t)
1 ⊆ C

I(t)
2 (R

I(t)
1 ⊆ R

I(t)
2), for all t ∈ T . Various reasoning

services can be defined in DLRUS , such as satisfiability, logical implication and class
(relation) subsumption (see Baader et al. (2003) for details). While DLR knowledge bases
are fully able to capture atemporal EER schemas (Berardi et al., 2005; Calvanese et al.,
1998a,b)—i.e. given an EER schema there is an equi-satisfiable DLR knowledge base—in
the following Sections we show how DLRUS knowledge bases can capture temporal EER
schemas with both timestamping and evolution constraints.

3.2 The Temporal Conceptual Model ERV T

In this Section, the temporal EER model ERV T —which will be the basis to present our
proposal—is briefly introduced (see (Artale & Franconi, 1999; Artale et al., 2003) for full
details). ERV T supports timestamping for classes, attributes, and relationships. ERV T

is equipped with both a textual and a graphical syntax along with a model-theoretic
semantics as a temporal extension of the EER semantics (Calvanese et al., 1999). The
formal foundations of ERV T allowed also to prove a correct encoding of ERV T schemas
as knowledge base in DLRUS (Artale et al., 2002, 2003).

Definition 1 (ERV T Conceptual Data Model). An ERV T conceptual data model is
a tuple: Σ = (L,rel,att,card, isa,disj,cover, s,t,key), such that: L is a finite
alphabet partitioned into the sets: C (class symbols), A (attribute symbols), R (relationship
symbols), U (role symbols), and D (domain symbols) and

1. The set C of class symbols is partitioned into a set CS of Snapshot classes (marked
with an S), a set CM of Mixed classes (unmarked classes), and a set CT of Temporary
classes (marked with a T). A similar partition applies to the set R.

2. att is a function that maps a class symbol in C to an A-labeled tuple over D, att(C) =
〈A1 : D1, . . . , Ah : Dh〉.

3. rel is a function that maps a relationship symbol in R to an U-labeled tuple over C,
rel(R) = 〈U1 : C1, . . . , Uk : Ck〉, and k is the arity of R.

15

4. card is a function C × R × U 7→ N × (N ∪ {∞}) denoting cardinality constraints.
We denote with cmin(C,R, U) and cmax(C,R, U) the first and second component of
card.

5. isa is a binary relationship isa ⊆ (C × C) ∪ (R × R). isa between relationships is
restricted to relationships with the same arity. isa is visualized with a directed arrow.

6. disj,cover are binary relations over (2C×C)× (2R×R), describing disjointness and
covering partitions, respectively, over a group of isa that share the same superclass/super-
relation. disj is visualized with a circled “d” and cover with a double directed arrow.

7. s,t are binary relations over C×A containing, respectively, the snapshot and temporary
attributes of a class;

8. key is a function, key : C → A, that maps a class symbol in C to its key attribute.
Keys are visualized as underlined attributes.

The model-theoretic semantics associated with the ERV T modelling language adopts
the snapshot representation of temporal conceptual data models (Chomicki & Toman,
1998)7.

Definition 2 (ERV T Semantics). Let Σ be an ERV T schema. A temporal database
state for the schema Σ is a tuple B = (T , ∆B ∪∆BD, ·B(t)), such that: ∆B is a nonempty
set of abstract objects disjoint from ∆BD; ∆BD =

⋃
Di∈D∆

B
Di

is the set of basic domain

values used in the schema Σ; and ·B(t) is a function that for each t ∈ T maps:

– Every basic domain symbol Di into a set D
B(t)
i = ∆BDi

.

– Every class C to a set CB(t) ⊆ ∆B—thus objects are instances of classes.
– Every relationship R to a set RB(t) of U-labeled tuples over ∆B—i.e. let R be an n-ary

relationship connecting the classes C1, . . . , Cn, rel(R) = 〈U1 : C1, . . . , Un : Cn〉, then,

r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈ {1, . . . , n}.oi ∈ C
B(t)
i). We adopt

the convention: 〈U1 : o1, . . . , Un : on〉 ≡ 〈o1, . . . , on〉, when U-labels are clear from the
context.

– Every attribute A to a set AB(t) ⊆ ∆B ×∆BD, such that, for each C ∈ C, if att(C) =

〈A1 : D1, . . . , Ah : Dh〉, then, o ∈ CB(t) → (∀i ∈ {1, . . . , h}, ∃ai. 〈o, ai〉 ∈ A
B(t)
i ∧

∀ai.〈o, ai〉 ∈ AB(t)
i → ai ∈ ∆BDi

).

B is said a legal temporal database state if it satisfies all of the constraints expressed in
the schema, i.e. for each t ∈ T :

– For each C1, C2 ∈ C, if C1 isa C2, then, C
B(t)
1 ⊆ C

B(t)
2 .

– For each R1, R2 ∈ R, if R1 isaR2, then, R
B(t)
1 ⊆ R

B(t)
2 .

– For each cardinality constraint card(C,R, U), then:
o ∈ CB(t) → cmin(C,R, U) ≤ #{r ∈ RB(t) | r[U] = o} ≤ cmax(C,R, U).

– For C,C1, . . . , Cn ∈ C, if {C1, . . . , Cn} disj C, then,

∀i ∈ {1, . . . , n}.Ci isa C ∧ ∀j ∈ {1, . . . , n}, j 6= i.C
B(t)
i ∩ CB(t)

j = ∅.
(Similar for {R1, . . . , Rn} disjR)

– For C,C1, . . . , Cn ∈ C, if {C1, . . . , Cn} cover C, then,

∀i ∈ {1, . . . , n}.Ci isa C ∧ CB(t) =
⋃n

i=1C
B(t)
i .

(Similar for {R1, . . . , Rn} coverR)
– For each snapshot class C ∈ CS, then, o∈CB(t) → ∀t′∈T .o∈CB(t′).
– For each temporary class C ∈ CT , then, o∈CB(t) → ∃t′ 6= t.o 6∈CB(t′).
– For each snapshot relationship R∈RS, then, r∈RB(t) → ∀t′∈T .r∈RB(t′).
– For each temporary relationship R∈RT , then, r∈RB(t) → ∃t′ 6= t.r 6∈RB(t′).

16

– For each class C ∈ C, if att(C) = 〈A1 : D1, . . . , Ah : Dh〉, and 〈C,Ai〉 ∈ s, then,

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ AB(t)
i)→ ∀t′ ∈ T .〈o, ai〉 ∈ AB(t′)

i .
– For each class C ∈ C, if att(C) = 〈A1 : D1, . . . , Ah : Dh〉, and 〈C,Ai〉 ∈ t, then,

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ AB(t)
i)→ ∃t′ 6= t.〈o, ai〉 6∈ AB(t′)

i .
– For each C ∈ C, A ∈ A such that key(C) = A, then, A is a snapshot attribute–i.e.
〈C,Ai〉 ∈ s— and ∀a ∈ ∆BD.#{o ∈ CB(t) | 〈o, a〉 ∈ AB(t)} ≤ 1.

Given such a set-theoretic semantics for the temporal EER (or, for that matter, UML
class diagrams or ORM), some relevant modelling notions such as satisfiability, subsump-
tion, and derivation of new constraints by means of logical implication have been defined
rigorously (Artale et al., 2007b).

Definition 3 (Reasoning Services). Let Σ be a schema, C ∈ C a class, and R ∈ R a
relationship. The following modelling notions can be defined:

1. C (R) is satisfiable if there exists a legal temporal database state B for Σ such that
CB(t) 6= ∅ (RB(t) 6= ∅), for some t ∈ T ;

2. Σ is satisfiable if there exists a legal temporal database state B for Σ (B is also said
a model for Σ);

3. C1 (R1) is subsumed by C2 (R2) in Σ if every legal temporal database state for Σ is
also a legal temporal database state for C1 isa C2 (R1 isaR2);

4. A schema Σ ′ is logically implied by a schema Σ over the same signature if every legal
temporal database state for Σ is also a legal temporal database state for Σ ′.

3.3 Mapping ERV T into DLRUS

We briefly summarize how DLRUS is able to capture temporal schemas expressed in
ERV T —see (Berardi et al., 2005; Artale et al., 2006) for more details.

Definition 4 (Mapping ERV T into DLRUS). Let Σ = (L,rel,att,card, isa,disj,
cover, s,t,key) be an ERV T schema. The DLRUS knowledge base, K, mapping Σ is as
follows.

– For each A ∈ A, then, A v From :> u To :> ∈ K;
– If C1 isa C2 ∈ Σ, then, C1 v C2 ∈ K;
– If R1 isaR2 ∈ Σ, then, R1 v R2 ∈ K;
– If rel(R) = 〈U1 :C1, . . . , Uk :Ck〉 ∈ Σ, then R v U1 :C1 u . . . u Uk :Ck ∈ K;
– If att(C) = 〈A1 : D1, . . . , Ah : Dh〉 ∈ Σ, then, C v ∃[From]A1 u . . . u ∃[From]Ah u
∀[From](A1 → To : D1) u . . . u ∀[From](Ah → To : Dh) ∈ K;

– If card(C,R, U) = (m,n) ∈ Σ, then, C v ∃≥m[U]R u ∃≤n[U]R ∈ K;
– If {C1, . . . , Cn} disj C ∈ Σ, then K contains:
C1 v C u ¬C2 u . . . u ¬Cn;
C2 v C u ¬C3 u . . . u ¬Cn;
. . .
Cn v C;

– If {R1, . . . , Rn} disjR ∈ Σ, then K contains:
R1 v R u ¬R2 u . . . u ¬Rn;
R2 v R u ¬R3 u . . . u ¬Rn;
. . .
Rn v R;

17

– If {C1, . . . , Cn} cover C ∈ Σ, then K contains:
C1 v C;
. . .
Cn v C;
C v C1 t . . . t Cn;

– If {R1, . . . , Rn} coverR ∈ Σ, then K contains:
R1 v R;
. . .
Rn v R;
R v R1 t . . . tRn;

– If key(C) = A, then, K contains:
C v ∃=1[From]2∗A;
> v ∃≤1[To](A u [From] : C);

– If C ∈ CS, then, C v (2∗C) ∈ K (similar for R ∈ RS);
– If C ∈ CT , then, C v (3∗¬C) ∈ K (similar for R ∈ RT);
– If 〈C,A〉 ∈ s, then, C v ∀[From](A→ 2∗A) ∈ K;
– If 〈C,A〉 ∈ t, then, C v ∀[From](A→ 3∗¬A) ∈ K.

In the next sections we extend the formalism presented here to capture essential and
sharable parts.

4 MODELING ESSENTIAL PARTS AND WHOLES

This section presents a formalization of the notion of essential part-whole relations. To
formalize such properties of part-whole relations we will resort to the formalism intro-
duced in the previous section. As a result, the ERV T data model will be extended with
the possibility to capture such part-whole properties while the description logic DLRUS
will present a corresponding axiomatization for them. A basic building block to achieve
the desired formalization is the notion of status relations. The formalization of status re-
lations is an original contribution of this chapter. They are in analogy with status classes
addressed by (Artale et al., 2007b) and will be useful for modeling essential part-whole
relations. We therefore start by introducing status relations in the following subsection
and then we proceed by formalizing essential parts and wholes.

4.1 Status Relations

Status relations extend the notion of status classes (Spaccapietra et al., 1998; Etzion
et al., 1998; Artale et al., 2007b) to statuses for relations. Status classes—formalized
in (Artale et al., 2007b)—constrain the evolution of an instance’s membership in a class
along its lifespan. According to (Spaccapietra et al., 1998; Artale et al., 2007b), status
modeling includes up to four different statuses scheduled, active, suspended, disabled, each
one entailing different constraints.

Concerning status relations there are two options: (1) to derive a relation’s status
from the status of the classes participating in the relation, or (2) to explicitly define it
on the relation itself, where the latter, in turn, puts constraints on the statuses of the
classes. Since we are interested in modeling relations as first-class citizens, we choose
to have a means to explicitly model the status of a relation. Therefore, as for classes, we
have four different statuses for relations, too—scheduled, active, suspended, disabled—each
illustrated with an example before we proceed to the formal characterization.

18

.

.

TopR S

Exists-R

Scheduled-R

Disabled-R

R Suspended-R

d

d

Fig. 6. Status relations (from status classes in Artale et al. (2007a)).

– Scheduled: a relation is scheduled if its instantiation is known but its membership
will only become effective some time later. Objects in its participating classes must
be either scheduled, too, be active, or suspended. For instance, a pillar for finishing
the interior of the Sagrada Familia in Barcelona is scheduled to become part of that
church, i.e., this part of relation between the pillar and the church is scheduled.

– Active: the status of a relation is active if the particular relation fully instantiates
the type-level relation: the part is part of the whole. For instance, the Mont Blanc
mountain is part of the Alps mountain range, and the country Republic of Ireland is
part of the European Union. Only active classes can participate in an active relation.

– Suspended: to capture a temporarily inactive relation. For example, an instance of a
CarEngine is removed from the instance of a Car it is part of, for purpose of mainte-
nance at the car mechanic. Note that at the moment of suspension, part p and w must
be active, but can upon suspension of the relation be either active or become suspended
too, but neither scheduled (see below constraints on scheduled) nor disabled.

– Disabled: to model expired relations that never again can be used. For instance, to
represent the donor of an organ who has donated that organ and one wants to keep
track of who donated what to whom: say, the heart p1 of donor w1 used to be a
structural part of w1 but it will never be again a part of it. The heart, p1, then
may have become participant in a new part-of relation with a new whole, w2 where
w1 6= w2, but the original part-of between p1 and w1 remains disabled. Observe that
participating objects can be member of the active, suspended or disabled class.

Status relations apply only to temporal relations (i.e. either temporary or mixed relations
according to Definition 1). We assume that active relations involve only active classes and,
by default, the name of a relation denotes already its active status—i.e. Active-R ≡ R. Dis-
jointness and isa constraints among the four status relations are analogous to the one for
status classes and can be represented in ERV T as illustrated in Figure 6. In addition to hi-
erarchical constraints, the following constraints hold (we present both the model-theoretic
semantics and the correspondent DLRUS axioms considering, wlog, binary relations):

(Act) Active relations involve only active classes.

〈o1, o2〉 ∈ RB(t) → oi ∈ CB(t)
i , i = 1, 2

R v Ui :Ci, i = 1, 2
(RExists) Existence persists until Disabled.
〈o1, o2〉 ∈ Exists-RB(t) → ∀t′ > t.(〈o1, o2〉 ∈ Exists-RB(t′) ∨ 〈o1, o2〉 ∈ Disabled-RB(t′))
Exists-R v 2+(Exists-R t Disabled-R)

19

(RDisab1) Disabled persists.
〈o1, o2〉 ∈ Disabled-RB(t) → ∀t′ > t.〈o1, o2〉 ∈ Disabled-RB(t′)

Disabled-R v 2+Disabled-R

(RDisab2) Disabled was Active in the past.
〈o1, o2〉 ∈ Disabled-RB(t) → ∃t′ < t.〈o1, o2〉 ∈ RB(t′)

Disabled-R v 3−R

(RSusp1) Suspended was Active in the past.
〈o1, o2〉 ∈ Suspended-RB(t) → ∃t′ < t.〈o1, o2〉 ∈ RB(t′)

Suspended-R v 3−R

(RSusp2) Suspended involve Active or Suspended Classes.

〈o1, o2〉 ∈ Suspended-RB(t) → oi ∈ CB(t)
i ∨ oi ∈ Suspended-Ci

B(t), i = 1, 2
Suspended-R v Ui : (Ci t Suspended-Ci), i = 1, 2

(RSch1) Scheduled will eventually become Active.
〈o1, o2〉 ∈ Scheduled-RB(t) → ∃t′ > t.〈o1, o2〉 ∈ RB(t′)

Scheduled-R v 3+R

(RSch2) Scheduled can never follow Active.
〈o1, o2〉 ∈ RB(t) → ∀t′ > t.〈o1, o2〉 6∈ Scheduled-RB(t′)

R v 2+¬Scheduled-R

In the following we denote with Σst the above set of DLRUS axioms that formalize status
relations. In analogy with the logical implications holding for status classes (Artale et al.,
2007b), we can derive the following ones for status relations.

Proposition 1 (Status Relations: Logical Implications). Given the set of axioms
Σst (Act-RSch2), an n-ary relation (where n ≥ 2) R v U1 : C1 u . . . u Un : Cn, the
following logical implications hold:

(RAct) Active will possible evolve into Suspended or Disabled.
Σst |= R v 2+(R t Suspended-R t Disabled-R)

(RDisab3) Disabled will never become active anymore.
Σst |= Disabled-R v 2+¬R

(RDisab4) Disabled classes can participate only in disabled relations.
Σst |= Disabled-Ci u3−∃[Ui]R v ∃[Ui]Disabled-R

(RDisab5) Disabled relations involve active, suspended, or disabled classes.
Disabled-R v Ui:(Ci t Suspended-Ci t Disabled-Ci), for all i = 1, . . . , n.

(RSch3) Scheduled persists until active.
Σst |= Scheduled-R v Scheduled-R U R

(RSch4) Scheduled cannot evolve directly to Disabled.
Σst |= Scheduled-R v⊕¬Disabled-R

(RSch5) Scheduled relations do not involve disabled classes.
Scheduled-R v Ui :¬Dibabled-Ci, for all i = 1, . . . , n.

The proofs of these logical implications have been presented in (Artale & Keet, 2008).

Lifespan and related notions. The lifespan of an object with respect to a class describes
the temporal instants (and thus intervals) where the object can be considered a mem-
ber of that class. We can distinguish between the following notions: ExistenceSpanC ,
LifeSpanC , ActiveSpanC , BeginC , BirthC , and DeathC depending on the status of
the class the object is member of. We briefly report here their definition as presented
in (Artale et al., 2007b).

ExistenceSpanC(o) = {t ∈ T | o ∈ Exists-CB(t)}

20

timelifetime whole

p6
p7
p8
p9

timelifetime part

w6
w7
w8
w9

A. B.

Fig. 7. Lifespans of essential parts w.r.t. the whole (A) and vv (B).

LifeSpanC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}
ActiveSpanC(o) = {t ∈ T | o ∈ CB(t)}
BeginC(o) = min(ExistenceSpanC(o))
BirthC(o) = min(ActiveSpanC(o)) ≡ min(LifeSpanC(o))
DeathC(o) = max(LifeSpanC(o))

For atemporal classes, ExistenceSpanC(o) ≡ LifeSpanC(o) ≡ ActiveSpanC(o) ≡ T .
This concludes the preliminaries. In the next section we will use the notions introduced
so far for representing essential parts-whole relations.

4.2 Essential Parts and Wholes

Recollecting Guizzardi’s (2005) contribution on the formalization of the difference between
mandatory and essential parts and wholes we can say that: a part is mandatory if the
whole cannot exist without it, which can also be verbalized as “the whole has a mandatory
part”—i.e. a standard mandatory constraint on the role played by the whole in a part-
whole relation. In a symmetric way we can define mandatory wholes. A part is essential
if it is mandatory and cannot change without destroying the whole, i.e. “the whole has
an essential part” (in an analogous way we can define essential wholes). Furthermore,
we say that a part is exclusive if it can be part of at most one whole (similarly for
exclusive wholes). In this section we provide a formalization using DLRUS axioms of such
mandatory, essential and exclusive parts and wholes. Starting from Figure 4, Figure 7-A,
shows the various temporal relations that can hold between a whole and its essential part,
i.e. the lifespan of the whole is fixed and we consider the different lifespans for its essential
parts (Figure 7-B considers a fixed part and the cases for its essential whole)8.

Let partOf v part:P u whole:W be a generic part-whole relation, the following
DLRUS axioms give a formalization of mandatory and exclusive parts and wholes:

(ManP) W v ∃[whole]partOf Has Mandatory Part
(ManW) P v ∃[part]partOf Has Mandatory Whole
(ExlP) P v ∃≤1[part]partOf Is Exclusive Part
(ExlW) W v ∃≤1[whole]partOf Is Exclusive Whole

To capture essential parts and wholes, in addition to the above axioms, we will use ap-
propriate subsets of the following axioms.

(ConPO) Suspended-partOf v ⊥ Continuous Parts
(DisP) Disabled-partOf v part : Disabled-P Disabled Part
(DisW) Disabled-partOf v whole : Disabled-W Disabled Whole
(SchPO) partOf v 3−Scheduled-partOf Scheduled Part-Whole
(SchP) Scheduled-partOf v part : Scheduled-P Scheduled Part
(SchW) Scheduled-partOf v whole : Scheduled-W Scheduled Whole

21

We can now show that the above axiomatization is sufficient to represent the various
forms of mandatory and essential parts as shown in Figure 7.

Theorem 1 (Essential Parts). Let partOf v part:P u whole:W be a generic part-
whole relation satisfying Σst, then,

1. p7 holds if (ManP), (ConPO), (DisW) hold;
2. p9 holds if (ManP), (ConPO), (DisW), (DisP) hold;
3. p8 holds if (ManP), (ConPO), (DisW), (SchPO), (SchP) hold;
4. p6 holds if (ManP), (ConPO), (DisW), (DisP), (SchPO), (SchP) hold.

The proof has been presented in (Artale & Keet, 2008). A similar result can be proved
considering the various forms of essential wholes.

Theorem 2 (Essential Wholes). Let partOf v part:P u whole:W be a generic part-
whole relation satisfying Σst, then,

1. w7 holds if (ManW), (ConPO), (DisP) hold;
2. w9 holds if (ManW), (ConPO), (DisP), (DisW) hold;
3. w8 holds if (ManW), (ConPO), (DisP), (SchPO), (SchW) hold;
4. w6 holds if (ManW), (ConPO), (DisP), (DisW), (SchPO), (SchW) hold.

Thus, from the axiomatization presented above, the essential parts and wholes in a
part-whole relation are always active, cannot be suspended, and when the strict case is
allowed (i.e. either p6 or w6 holds) then they are either both member of their respective
Scheduled class, or both Active, or both member of their respective Disabled classes. Hence,
a change of membership from one of the two objects implies instantaneous change of the
other in the same type of status class.

Note that, in the literature, essential parts are often considered also exclusive. Our
modeling of essential parts and wholes can be easily extended by adding to the axiomati-
zation of Theorems 1-2 either the axiom (ExlP) or (ExlW) depending whether we want
to capture exclusive essential parts or wholes.

This concludes the formal characterization of the principal combinations in life cycles
between essential parts and wholes. The next section provides a solution sketch on how
to deal both with suspended part-whole relations and with parts shared among (possibly
different) wholes.

4.3 Shared Parts and Wholes

Sharing of parts and wholes permits many possibilities, some of which may be more use-
ful in practice than others. Rather than enumerating, formalizing, and, where necessary,
proving all theoretically possible options, we discuss the main typical cases and demon-
strate they indeed can be characterized by using the same formal apparatus and principles
that have been introduced in the previous sections. The first step is to add the possibility
to suspend parts, wholes, and part-whole relations, and the second step to make explicit
that some parts can be part of more than one whole of the same or different type.

Taking into account suspension. The first variation that can be added to the basic
combinations of Figure 7, is that during some time either the participating part or the
whole, or both, is suspended or the part-whole relation is suspended. This offers a wide
range of possibilities. For instance, we have a word processing document management

22

sp8

sp9
sp9'

timelifetime
whole

sp7

sp6
sp6'

sp7'

sp8'

A B

sw8

sw9
sw9'

timelifetime
part

sw7

sw6
sw6'

sw7'

sw8'

C timelifetime
wholes wa

wb

ps2
ps1

ps3

ps4

ps5

Fig. 8. (A) Eight permutations for suspension from the viewpoint of the whole; (B) analogously from the part
viewpoint; (C) Solid line as being part of the whole, dotted line as being not part of that whole but either the
part-whole relation is suspended, or p is part of another whole, or both. For ps1-ps5 wa, wb ∈ W ; the analogous
situation where wa ∈W and wb ∈W ′ s.t. W 6= W ′ is not drawn.

system where a particular paragraph (part p) is blocked—suspended—for use and the
particular file (whole w) can only be published when the paragraph is member of the active
class again. Differently, one could have a defunct pillar (member of Suspended-Pillar)
in a historical building that is temporary removed for restoration (hence, a relational
instance of part-of in Suspended-partOf) and the building collapses before the pillar gets
restored. An example where both part and whole remain active but only the part-whole
relation is suspended can occur for, e.g., a car mechanic’s database that records the cars
and the parts that are under service for cleaning, i.e., temporarily removed, and the part
needs to be re-inserted in the car it was removed from, such as a car (ow) and the car
engine (op) that is structurally part of the car. Thus, the suspension of a relation does
not necessarily impose constraints on the permissible memberships of the part or whole
in their respective status classes other than (RSusp2).

To structure and fully address all cases, one can—as a start—systematically apply
suspension to the standard cases p6-p9 and w6-w9 as depicted in Figure 8-A and B,
respectively. In addition, sp6′-sp9′ and sw6′-sw9′ in Figure 8-A and B denote the cases
where, even though the whole (part) is suspended, the part (whole) still must remain
active. To capture these cases (at least the non primed ones), we need to replace the
(ConPo) axiom in both Theorem 1 and 2 with two additional axioms:

(SusP) Suspended-partOf v part : Suspended-P Suspended Part
(SusW) Suspended-partOf v whole : Suspended-W Suspended Whole

This change of axioms from (ConPO) to (SusP) and (SusW), however, does not
immediately address our pillar and collapsed building example. That is, we know from
the current axiomatization that when we have that at some time the pillar (part op) and
its relation with the historical building (ow ∈ W) become suspended (op ∈ Suspended-P

and r ∈ Suspended-partOf), which is a legal situation thanks to RSusp2 and Act, then
when the whole becomes disabled due to the collapse (ow ∈ Disabled-W), then so must r ∈
Disabled-partOf instantaneously, because of RDisab4. To combine the appropriate set
of constraints and formally prove it to be correct with respect to the intended semantics
is a topic of current work.

23

Explicit sharing of parts among wholes. We now turn to explicit sharing of parts,
where the main variations are depicted in Figure 8-C. Cases ps1-ps5 actually capture two
possibilities: either wa, wb ∈ W or wa ∈ W , wb ∈ W ′ such that W 6= W ′; henceforth, the
latter will be identified with ps1′-ps5′. Observe that there is a principal distinction between
parts that are shared “sequentially” and parts that are shared in “parallel”. Examples
of the former (ps1) could be the heart transplantation between humans wa and wb, and
an example for ps1′ a “multipurpose part” that is reused for another whole, e.g, a screw
in a table that is used later for a bookshelf. The opposite case is where p becomes part
of wb as soon as it becomes active (ps4 and ps4′). An example of the latter, concurrent
part-of (ps5′), is a seminar being part of both a seminar series and of a graduate course in
a teaching database. An example of ps3 with the notion of one of the parthood relations,
contained in, is where the contained p switches containers wa and wb back and forth or
a administrative region in a war zone area (or simply a longer historical time interval) so
that it alternately belongs to one country or another. Colloquially, one can reformulate
the constraints of ps1, ps3, ps4, ps1′, ps3′, and ps4′ as the part being sequentially part of
more than one whole in some way, and for ps2, ps5, ps2′, and ps5′ as where the part can
be part of more than one whole concurrently.

To formally represent ps1-ps5 and ps1′-ps5′, we may not need additional axioms, but
recombine in various ways the 12 listed above. For instance, ManW says only that the
part must participate in the part-whole relation but does not have a range restriction
at all, meaning it could a whole of any type (W,W ′, . . .); so for ps1, this means just
mandatory participation by the part and if wa, wb ∈ W then there is no mandatory
constraint on the whole (because wb does not have to have the part), whereas if wa ∈ W ,
wb ∈ W ′ and W 6= W ′, then it may be the case that the whole must have a part, but
one cannot know this a priori9. From a conceptual modeling perspective, however, this is
undesirable, because one would want to be able to distinguish between the ps1-ps5 and
ps1′-ps5′ series. To this end to be utterly explicit, we can add the following axiom.

(DisjW) Wi v unj=i+1¬Wj Disjoint Wholes

Given the full set of axioms, then ps1-ps5 and ps1′-ps5′ may be formally characterized
and proven by taking different subsets of constraints. We have omitted them here due to
their length and detail and for several cases it is not easy to find realistic examples. In
addition, they obfuscate that, at least in some cases (ps1, ps4) we actually deal with a
contracted version of the p1-p5 and w1-w5 cases in Figure 4. It may now be clear that
although p2-p4 have the same ratio of the lines as w7-w9, the base axioms for the p-series
is distinct from that of the w-series in Theorems 1 and 2 and that they do not necessarily
involve essential or mandatoryness but can be optional parts/wholes. This is even more
flexible with p1, p5, w1, and w5, where the part (whole) is contingently part of the whole
(part), or: they are “independent parts” and “independent wholes” for which one can fix
either only a minimal set of constraints where, temporally, almost anything is allowed
or choose to be utterly specific so as to capture that and only that life cycle option. We
are currently working on defining and proving the meaningful and realistic cases of the
suggested options that are depicted informally in Figure 8-C.

Finally, in ERV T and in DLRUS we can specify cardinality constraints on the partici-
pation of classes into relations. This allows for expressing multiple sharing of parts/wholes
like, for example, in specifying that cars must have exactly four wheels as parts:

24

Part-whole relation

mpart_of
((Meronymic) part-whole relation)

part_of
(Mereological part-of relation)

member-of constitutes sub-quantity-of participates-in involved-in spatial-part-of

f-part-of

s-part-of

located-in contained-in member-of’

… …
… …

… …

Fig. 9. Taxonomy of basic mereological and meronymic part-whole relations; the part-whole relations in the
left-hand branch are all transitive, but those in the right-hand branch not necessarily. s-part-of = structural
part-of; f-part-of = functional part-of. Dashed lines indicate that the subtype has additional constraints on the
participation of the entity types; ellipses indicate several possible finer-grained extensions to the basic part-whole
relations. (Source: Keet & Artale (2008))

partOf v part:Wheel u whole:Car (typing of the part-of relation)

Car v = 4 [whole]partOf.Car (each car has exactly four wheels)

Wheel v ≤ 1 [part]partOf.Car (each wheel is part of max 1 car)

The constraints introduced in this section can represent all shareability constraints
proposed earlier in the related literature (recollect section 2), meets the requirements
as laid out in section 2.4, and refines shareability further with notions such as concur-
rently versus sequentially being part of a whole and temporary suspension of a part-whole
relation.

4.4 Interaction with Types of Part-Whole Relations

Examples in the previous section for various cases of part-whole life cycles did mention
different part-whole relations, such as (spatially) contained in, structural parthood, and
location. How these types of part-whole relations interact precisely with the life cycle
semantics is an open question and in this section we only provide a flavor of the issues.

Summarizing the taxonomy of types of part-whole relations, we have a diagrammatic
rendering in Figure 9 together with the formal characterization of the leaf types, where
part of is the parthood relation from Ground Mereology whereas mpart of is neither
transitive nor intransitive; refer to (Keet & Artale, 2008) for details on its rationale and
the formal characterization, and Keet (2006b) for additional modeling guidelines.

Considering the possible interactions between the part-whole relations and shareabil-
ity, one directly can note that if something is physically a proper part of a whole, such
as that a car engine is a proper part of the car, then obviously, this proper part cannot
physically be directly part of another whole at the same time, and likewise for its sub-
types proper containment and proper location. Put differently, in those cases we must en-
force, at least, the (ExlP) axiom. In contrast, a proper subprocess can be simultaneously
involved in (part of) several grander processes; e.g., a key chemical reaction intersecting
in two metabolic pathways. Likewise, we can have, say, a musician m who is concurrently
member of a string quartet and of the Royal Philharmonic Orchestra. The situation be-
comes more complicated with subquantity of and so-called “portions of stuff”. Provided
one uses measurements for the quantities—say, a syringe full of dissolved morphine taken
from the dissolved morphine stock in the bottle—then we can assert at the type level that
the part-quantity must have its individual part-whole relation to the stock quantity as

25

either member of Suspended-partOf (in case the liquid in the syringe can be put back in
the bottle) or of Disabled-partOf. To address such issues fully requires additional tem-
poral constraints, which has been addressed only in part by Bittner & Donnelly (2007)
(cf. section 2.4). Last, with the constitutes relation we have no sharing. These kind of
interactions, however, merit further research and a precise characterization of constraints.

5 MODELING GUIDELINES

Clearly, while the formal characterization in the previous section provides precise seman-
tics to shareability, one cannot burden the conceptual modeler, let alone the domain
expert, with such details. The first step toward modeling guidelines is for the visually-
oriented user: either present Figures 7-8 and one can directly point to the appropriate
option or use their respective informal descriptions as initial modeling heuristic, such as

(Example) Can an instance p of P exist before some w of type W it will become part of?

Yes ⇒ p1, p7, or p9
And can that instance p exist after that w is disabled/deleted?

Yes ⇒ p7
No ⇒ p1 or p9

That w can outlive that p?

Yes ⇒ p1
No ⇒ p9

And so forth for the other six cases. The alternatives are a set of questions alike imple-
mented in VisioModeler 3.1, but then tailored to shareability of part-whole relations, or a
decision diagram alike proposed for choosing the appropriate type of part-whole relation
(Keet, 2006b). We combine these two approaches. The first step is to differentiate be-
tween the basic options of essential part/whole, mandatory part/whole, and shareability,
through posing a set of closed questions. The questions are formulated in such a way
so as to be both uniform in sentence structure and to simplify further processing of the
answers. Also, in a real conceptual model, P and W are replaced by their respective object
types in the conceptual model.

(a1) Can an instance p of P exist without some w of type W it is part of?

(a2) Can an instance p of P exist without the same w of type W it is part of?

(a3) Can an instance p of P be part of more than one whole w at some time?

(b1) Can an instance w of W exist when it does not has part some p of type P?

(b2) Can an instance w of W exist when it does not has part the same p of type P?

(b3) Can an instance w of W has part more than one part p of type P at some time?

Figure 10 shows the resultant fact types for the six questions when answered with “no”.
We choose to depict them in ORM2 for three reasons. First, ORM2 is more expressive
than either UML class diagrams or EER and ORM has an established transformation to
these other conceptual data modeling languages (Halpin, 2001), the usability approach
with questions-to-ORM diagram interaction is already an established practice, and it
simplifies adding additional icons for the shareability semantics; the proposed icons are
listed in Figure 11 and added to sample ERV T diagrams in Figure 12.10 In casu, for
A2/B2, the current graphical ORM2 language is extended with a filled box in the role for
essential part or whole (hence, note the different effects of the “some” and “same” in the
questions and representation). On can, of course, combine the “no” answers to A1-B3,

26

two of which are depicted in Figure 10, too. Relating this back to the sets of constraints,
then A1 corresponds to a simple ManW constraint and A2+B2 combines the constraints
of p6+w6 (see Theorems 1 and 2).

P W
part of

P W
part of

P W
part of

B3

A1 A2 A3

B1 B2

P W
part of

P W
part of

P W
part of

P W
part of

A1+A3+B1+B3 P W
part of

A2+B2

Fig. 10. Representations resulting from the answers to questions A1-B3 when answered with “no”. Regarding
semantics, A2 and B2 have an additional icon (rectangle in the role) to denote essential part/whole; see also
Figure 11.

Given that there is a whole list of questions, one can build in intermediate feedback
loops, such as asking the modeler after all “yes” on A1-B3:

(feedback) With a “yes” on A1-B3, either the part or the whole, or both, can be shared. Is that true?

If the answer is, “no”, then A1-B3 should be revisited; if the answer is in the affirmative,
the modeler can proceed to the second set of questions. The second step is assessment of
the sharing of parts, where we can reuse the answers on the previous five questions. For
instance, when we have a mandatory but not essential participation on the part-side—a
“no” for A1—it is obvious that the part cannot exist independently; i.e., then we must
have any of the options p2, p3, or p4 or ps1-ps5′ so that asking questions to cover the
remaining options has become irrelevant. With the C1-C5 question series, one can extract
from a domain expert if the sharing can/must be sequential or in parallel and if the wholes
may be of a different type or not; this selection procedure is depicted in Figure 13 with
additional explanatory notes that a CASE tool developer might want to include as an
extra service.

(c1) Can an instance p of P be part of more than one whole w at the same time?
(c2) Regarding the wholes w1, ..., wn that p can be part of, must w1, ..., wn be instances of the same type W?
(c3) Can an instance p of P also be part of only one whole w of type W?
(c4) Can an instance p of P only become part of another whole w2 after whole w1 cease to be active as whole?
(c5) Will an instance p of P become part of another whole w2 and cease to be part of w1 as soon as w2 becomes

active as whole?

A sample diagrammatic representation for ps1′-ps5′ is included in Figure 14; UML and
EER are currently less fine-grained and less expressive, but with a DLR in the background
in the CASE tool, this can be added trivially, see e.g. the Icom tool (Fillottrani et al.,
2006). Formulating the same series for the perspective of the whole—starting with the
“yes” on B3—is left as an exercise to the reader. Third, we add a further dimension:
suspension of the part-whole relation or of the parts or wholes. By default, the part-whole
relation can be suspended, except where it is explicitly disallowed, i.e. for those cases that
include ConPO. To ascertain this, one has to ask at least the following questions.

(d1) Can the part of relation be suspended?

If “no” then we have any of the cases that have ConPO; if yes, the constraints for
the cases cannot include ConPO.

27

Icon Description Examples with ORM2

 Essential part or essential whole, or both

∼

Part-whole relation is continuous (may not be
suspended)

 The p can be part of more than one whole
sequentially

 The p can be part of more than one whole

concurrently

 < Can have type-level part-whole relation to ≥1
object types (constraint on part)

 − Can have type-level part-whole relation to ≤1

object types (constraint on part)

 Part-whole relation can be across-time (with

marked roles either P, F, S, or =)

∼

AT

≈
∩

⊂

Fig. 11. Suggested icons to denote the various aspects of shareability of parts and of the part-whole relation.
Example use is demonstrated for ORM2 notation, but also can be added to EER or UML’s association relation
and classes. Note that � and ∼ are new additions for all modeling languages, the arrows make explicit certain
temporal behavior, whereas < and − are mainly useful in the light of further model development.

(d2) Can an instance p of P that is part of w of W become suspended?

If “No” then P must have a (strong) essential whole. If “yes” then P can have a
weak essential whole or other shareability options (depending on the answers of prior
questions).

(d3) If this p of P cannot be suspended, can the w of W it is part of become suspended?

If “no” then p has an essential whole (w6-w9), if “yes” then p has a strong essential
whole (sw6’-sw9’).

One could add cross-checks to prevent violation of the constraints, as has been proposed
by Motschnig-Pitrik & Kaasbøll (1999) in a modeling guideline mode. These are, however,
already covered by the current decision diagram and specific set of constraints for each
case and a simple check (set comparison) can be implemented where the manually modeled
constraints are compared with the combinations of constraints from the previous section.

At the time of writing, however, question series C1-C5 and D1-D3 are for indicative
purpose to gain insight into what actually are the salient cases that recur during the
modeling process and which scenarios are more prevalent in a subject domain. Thus, they
aid in stimulating domain experts and modelers to assess in more detail which life cycle
semantics are more important and realistic, as opposed to providing a forest of constraints
where possibly only a third or even less is practically used. After scoping relevance, one
then could choose to implement only the useful subset of part-whole shareability.

28

1 1
Brain part of Person

Politician member
of Government

Ministrymember
of

Heart part of Person

Backplane part of Storage
Enclosure

0..1

0..1

1..n

1..n

0..1 1

Brain is an essential part of Person

Heart must be part of Person, can be
part of more than one Person, but
only sequentially

If a Politician is member of the
Government, s/he is also member of
a Ministry, concurrently

Backplane is part of Storage
Enclosure, and can never be part
of another class

1..n 1

T

Fig. 12. Several examples of the suggested icons in conjunction with ERV T , for conceptual models that are
ontology-inspired, intended for organ transplant databases, government administration software, and a hardware
manufacturing database, respectively. (That is, it could be modeled differently for different application software,
such as permitting coalition governments to create ministerial posts in name only, i.e., without a portfolio and
ministry, to please a coalition partner so that the double arrow should be removed). The “T” in the part-of
relation between Heart and Person makes explicit it is a temporal relation, as defined in ERV T (Definition 1).

6 FUTURE TRENDS

As the reader may have noticed from section 2, there is much recent research activity on
part-whole relations. From one viewpoint, this is good because significant improvements in
understanding of part-whole relations are being achieved. From a practitioner’s viewpoint,
however, this also means that most of these advances have not yet made it into the
readily available CASE tools and are thereby primarily of direct use as ‘paper exercise’ in
the analysis and modeling steps of the software development process. Considering some
general requirements to implement support for various aspects of part-whole relations, an
overall structure and implementation would have to meet several requirements such as to:

i. Ensure the representation is such that one can distinguish between parthood relations
of a class (or its instances) and other generic properties (/relations/roles/associations),
i.e. to make part-whole and whole-part relations first-class citizens;

ii. Identify unambiguously and model a ‘minimal amount’ of part-whole relations in the
conceptual data models; sub-requirements (Keet & Artale, 2008) comprise representing
at least the simplest parthood theory Ground Mereology (Varzi, 2004), expressing
ontological categories and their taxonomic relations, having the option to represent
transitive and intransitive relations, and to be able to specify the domain and range
restrictions (/relata/entity types) for the classes participating in a relation;

iii. Provide a set of combinations of essential, uniqueness, and mandatoryness constraints
applicable to the relation;

iv. Clarify and accommodate for other, sometimes called “secondary”, properties of part-
whole relations, such as functional dependence and completeness;

v. Ensure the inverse, has-part, relation is properly modeled as well;

29

C4?

C5?

C5?

C4?ps1 C2?
ps1, ps3,

ps4

ps1, ps1',
ps3, ps3',
ps4, ps4'

A3? C1?

ps2'C3?

ps5'
ps1',
ps3',
ps4'

ps1'

ps2',
ps5' ps5

ps2, ps2',
ps5, ps5'

C2?
ps2, ps5

C3? ps2

ps3,
ps4

ps3',
ps4'ps3

ps4

ps4'

ps3'

YES

NO

Fig. 13. Decision diagram to assess on the appropriate type of shareability; see text for the complete questions
in the decision diamonds.

P

W
part of

W1

part ofP

W
part of

W1

part of P

W
part of

W1

part of

P

W
part of

W1

part of

ps1’/ps4’ ps3’ ps2’ ps5’

Fig. 14. Graphical rendering of constraints ps1′-ps′ in ORM2. Note that the double arrows in ps2′ and ps5′ are
redundant in ORM because they can be captured with the regular constraints already, but are required for UML
class diagrams and ER. Optionally, one could add yet another new icon so as to have the distinction between ps1′

and ps4′. The < on P is obviously satisfied in the figure, but in the light of conceptual model evolution, useful to
make explicit.

vi. Transitivity of parthood relations is enabled where applicable and prohibited for non-
transitive part-whole relations;

vii. Address the possibilities and consequences of horizontal interrelations between the
parts of a whole;

viii. Develop an underlying unifying paradigm that relates the conceptual modeling lan-
guage specific constructors, if possible.

At the time of writing, we are far away from meeting all these requirements. Point i is
met only informally with UML’s aggregation relation. Point ii can be met partially with
the taxonomic structure as presented in (Keet, 2006b; Keet & Artale, 2008), and UML’s
stereotypes and/or conceptual model meta-modeling. So-called secondary properties, in-
verse relations, transitivity, antisymmetry, and horizontal relations are only to a limited
extent possible in some languages (extensions of UML, ORM’s ring constraints, but no
DL has a constructor for antisymmetry), which could be extended and harmonized fur-
ther. Full computational support not only for computer-aided conceptual modeling with
the guidelines but also including automated satisfiability and consistency checking of a
conceptual model, is likely to be difficult due to undecidability—e.g., DLRUS with time
stamping for relations is undecidable whereas without the option to represent tempo-
ral persistence of n-ary relations, reasoning in DLRUS is an ExpTime-complete problem
(Artale et al., 2002). Dropping the evolution constraints from DLRUS allows timestamp-
ing on relations and is decidable (Artale et al., 2007b). On the other hand, conceptual

30

modeling emphasizes expressiveness, not computability; constraints can be dropped in a
design-level specification and then one at least knows what has been removed and why.

Open problems. To give an indication of open problems on part-whole relations, i.e.,
transforming several requirements from the previous subsection into research and engi-
neering questions, we outline a non-exhaustive list of avenues.
? DL: Which subtheory of mereology fits best with any of the extant DLs? Can one of the

DL languages be extended, and if so, how and what about its complexity? What about
property inheritance across the parthood relation? What are the difference between
the intensional and extensional reasoning (behavior of the parthood relation at the
TBox and ABox, respectively)?

? ER and ORM: what and how to add part-whole relations? What about developing
more expressive versions of ER and ORM that include the parthood relation, alike
the DL languages with difference in expressiveness and complexity? How to make it
usable for the modeler?

? Applied parthood relations: what lessons can be learned from practical use of part-
whole relations in specific subject domains such as bio-ontologies and geographical
information systems? If any, can this be fed back into mereology to extend mereological
theories? Does usage of the part-whole relation across subject domains reveal domain
specific intricacies that cannot be generalised to domain-independent characteristics?

Notwithstanding these gaps, many aspects of the part-whole relations can be modeled with
extant conceptual modeling languages or require only minor extensions. This situation
changes if one were to require efficient reasoning over conceptual data models, but as long
as the focus is on expressiveness to enable the subject domain as good as possible, then
this poses no problem.

7 CONCLUSIONS

The main questions addressed in this chapter were: which type of shareability and which
lifetime aspects are possible, what is the formal semantics for sharability, and how to
model these kind of differences? In order to solve these issues, we merged and extended
advances in representing part-whole relations in UML class diagrams, EER, ORM, and DL
languages with formal conceptual data modeling for temporal databases (temporal EER)
and ORM’s usability features. First, the different semantics of part-whole shareability
notions were formally characterized by availing of the temporal Description Logic DLRUS ,
which was hitherto only used for temporal EER (ERV T), and having extended it with the
original notion of status relations so as to capture unambiguously and at the conceptual
layer the different life cycle semantics of parts and wholes and what happens to the part-
whole relation. These formally defined constraints can represent all shareability constraints
proposed earlier in the related literature, meets the requirements as laid out in section
2.4, and refines shareability further with notions such as concurrently versus sequentially
being part of a whole and temporary suspension of a part-whole relation. By having
used DLRUS as foundational mechanism to represent the different shareability semantics,
the results obtained are easily transferrable to UML class diagrams and ORM/ORM2.
Second, the shareability options were transformed into three complimentary conceptual
modeling guidelines: visuals, a simple list of questions, and a decision diagram so as to
easily navigate to the appropriate constraints and their shareability cases of the relations
and its participating parts and wholes.

31

Several issues, however, have not been addressed, both from the theoretical and prac-
tical side. These include, but are not limited to, across-time part-whole relations, their
precise interaction with various types of part-whole relations, and software support to
simplify modeling of part-whole relations.

Bibliography

Albert, M., Pelechano, V., Fons, J., Ruiz, M. & Pastor, O. (2003). Implementing UML As-
sociation, Aggregation, and Composition. A Particular Interpretation Based on a Mul-
tidimensional Framework. In Eder, J. and Missikoff, M. (ed.), Proceedings of CAiSE’03
LNCS Vol 2681 (pp. 143-158). Berlin: Springer Verlag.

Álvarez, A.T. & Alemán, J.L.F. (2000). Formally modeling UML and its evolution: a holis-
tic approach. In Fourth International Conference on Formal methods for open object-
based distributed systems IV (pp. 183-206). Amsterdam: Kluwer Academic Publishers.

Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V. & Zakharyaschev, M. (2007a).
Complexity of Reasoning over Entity Relationship Models. Proc. of DL-07, CEUR WS
Vol 250.

Artale, A., Franconi, E., Guarino, N. & Pazzi, L. (1996a). Part-Whole Relations in Object-
Centered Systems: an Overview. Data and Knowledge Engineering, 20 (3), 347-383.

Artale, A., Franconi, E. & Guarino, N. (1996b). Open Problems for Part-Whole Relations.
In: Proceedings of 1996 International Workshop on Description Logics (DL-96) (pp 70-
73). Cambridge, MA: AAAI Press.

Artale, A. & Franconi, E. (1999). Temporal ER modeling with description logics. In Proc.
of the Int. Conf. on Conceptual Modeling (ER’99). Berlin: Springer-Verlag.

Artale, A., Franconi, E. & Mandreoli, F. (2003). Description Logics for Modelling Dy-
namic Information. In Chomicki, J., van der Meyden, R. & Saake, G. (eds.), Logics for
Emerging Applications of Databases. Berlin: Springer-Verlag.

Artale, A., Franconi, E., Wolter, F. & Zakharyaschev, M. (2002). A temporal description
logic for reasoning about conceptual schemas and queries. In S. Flesca, S. Greco, N.
Leone, G. Ianni (eds.), Proceedings of the 8th Joint European Conference on Logics in
Artificial Intelligence (JELIA-02), LNAI vol 2424 (pp. 98-110). Berlin: Springer Verlag.

Artale, A., Guarino, N., & Keet, C.M. (2008). Formalising temporal constraints on part-
whole relations. In Brewka, G, Lang, J (Eds.), 11th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR’08). Cambridge, MA: AAAI
Press.

Artale, A. & Keet, C.M. (2008). Essential and Mandatory Part-Whole Relations in Con-
ceptual Data Models. Proceedings of the 21st International Workshop on Description
Logics (DL’08), CEUR WS Vol 353, Dresden, Germany, 13-16 May 2008.

Artale, A., Parent, C. & Spaccapietra, S. (2006). Modeling the evolution of objects in
temporal information systems. In: 4th International Symposium on Foundations of In-
formation and Knowledge Systems (FoIKS-06), LNCS vol 3861 (pp. 22-42). Berlin:
Springer-Verlag.

Artale, A., Parent, C. & Spaccapietra, S. (2007b). Evolving objects in temporal infor-
mation systems. Annals of Mathematics and Artificial Intelligence (AMAI), 50 (1-2),
5-38.

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. & Patel-Schneider, P.F. (eds).
(2003). Description Logics Handbook. Cambridge: Cambridge University Press.

Barbier, F., Henderson-Sellers, B., Le Parc-Lacayrelle, A. & Bruel, J.-M. (2003). For-
malization of the whole-part relationship in the Unified Modelling Language. IEEE
Transactions on Software Engineering, 29 (5), 459-470.

Berardi, D., Calvanese, D. & De Giacomo, G. (2005). Reasoning on UML class diagrams.
Artificial Intelligence, 168 (1-2), 70-118.

33

Bittner, T. & Donnelly, M. (2005). Computational ontologies of parthood, component-
hood, and containment, In Kaelbling, L. (ed.) Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence 2005 (IJCAI05) (pp. 382-387). Cam-
bridge, MA: AAAI Press.

Bittner, T. & Donnelly, M. (2007). A temporal mereology for distinguishing between inte-
gral objects and portions of stuff. In Proceedings of the Twenty-second AAAI Conference
on Artificial intelligence (AAAI’07) (pp. 287-292). Cambridge, MA: AAAI Press.

Borgo, S. & Masolo, C. (in press). Full mereogeometries. Journal of Philosophical Logic.
Calvanese, D. & De Giacomo, G. (2003). Expressive description logics. In Baader, F.,

Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (Eds) The Description
Logic Handbook: Theory, Implementation and Applications (pp. 178-218). Cambridge:
Cambridge University Press.

Calvanese, C., De Giacomo, G. & Lenzerini, M. (1998a). On the decidability of query
containment under constraints. In: Proceedings of the 17th ACM SIGACT SIGMOD
SIGART Symposium on Principles of Database Systems (PODS’98) (pp. 149-158).

Calvanese, D., Lenzerini, M. & Nardi, D. (1998b). Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems. Amsterdam: Kluwer.

Calvanese, D., Lenzerini, M. & Nardi, D. (1999). Unifying class-based representation
formalisms. Journal of Artificial Intelligence Research, 11, 199-240.

Chomicki, J. & Toman, D. (1998). Temporal logic in information systems. In J. Chomiki
and G. Saake (Eds.). Logics for databases and information systems. Amsterdam:
Kluwer.

Etzion, O., Gal, A., & Segev, A. (1998). Extended update functionality in temporal
databases. In O. Etzion, S. Jajodia, and S. Sripada (eds) Temporal Databases - Re-
search and Practice LNCS (pp 56-95). Berlin: Springer-Verlag.

Fillottrani, P., Franconi, E. & Tessaris, S. (2006). The new ICOM ontology editor. In 19th
International Workshop on Description Logics (DL 2006), Lake District, UK. May 2006.

Franconi, E. & Ng, G. (2000). The iCom tool for intelligent conceptual modeling. 7th
International Workshop on Knowledge Representation meets Databases (KRDB’00),
Berlin, Germany. 2000.

Gerstl, P. & Pribbenow, S. (1995). Midwinters, end games, and body parts: a classification
of part-whole relations. International Journal of Human-Computer Studies, 43, 865-889.

Guarino, N., and Welty, C. (2000). A formal ontology of properties. In Dieng, R., ed.,
Proceedings of EKAW ’00, LNCS. Berlin: Springer Verlag.

Guizzardi, G. (2005). Ontological foundations for structural conceptual models. PhD The-
sis, Telematica Institute, Twente University, Enschede, the Netherlands.

Guizzardi, G. (2007). Modal Aspects of Object Types and Part-Whole Relations and the
de re/de dicto distinction. 19th International Conference on Advances in Information
Systems Engineering (CAiSE) LNCS 4495. Berlin: Springer-Verlag.

Halpin, T. (1999). UML Data Models from an ORM Perspective (Part 8). Journal of
Conceptual Modeling, Issue 8, April 1999. Stable URL http://www.inceoncept.com/jcm.

Halpin, T. (2001). Information Modeling and Relational Databases. San Francisco: Morgan
Kaufmann Publishers.

Halpin. T. (2007). Subtyping revisited. In Pernici, B., Gulla, J. (eds.) Proceedings of
CAiSE’07 Workshops (pp. 131-141). Academic Press.

Hawley, K. (2004). Temporal Parts. In Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy (Winter 2004 Ed.). Stable URL
http://plato.stanford.edu/archives/win2004/entries/temporal-parts/.

34

Hodgkinson, I.M., Wolter, F. & Zakharyaschev, M. (2000). Decidable fragments of first-
order temporal logics. Annals of pure and applied logic, 106, 85-134.

Horrocks, I., Kutz, O. & Sattler, U. (2006). The Even More Irresistible SROIQ. In: Pro-
ceedings of the 10th International Conference of Knowledge Representation and Rea-
soning (KR-2006), Lake District, UK, 2006.

Johansson, I. (2004). On the transitivity of the parthood relation. In Hochberg, H. and
Mulligan, K. (eds.) Relations and predicates (pp. 161-181). Frankfurt: Ontos Verlag.

Keet, C.M. (2006a). Introduction to part-whole relations: mereology, conceptual model-
ing and mathematical aspects (Tech. Rep. No. KRDB06-3). KRDB Research Centre,
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy.

Keet, C.M. (2006b). Part-whole relations in Object-Role Models. 2nd International Work-
shop on Object-Role Modelling (ORM 2006), Montpellier, France, Nov 2-3, 2006. In
Meersman, R., Tari, Z., Herrero, P. et al. (Eds.) OTM Workshops 2006 LNCS Vol 4278
(pp. 1116-1127). Berlin: Springer-Verlag.

Keet, C.M. (2007). Prospects for and issues with mapping the Object-Role Modeling
language into DLRifd . 20th International Workshop on Description Logics (DL’07)
CEUR-WS Vol 250 (pp. 331-338) 8-10 June 2007, Bressanone, Italy.

Keet, C.M. (2008). A formal comparison of conceptual data modeling languages. 13th In-
ternational Workshop on Exploring Modeling Methods in Systems Analysis and Design
(EMMSAD’08) CEUR-WS Vol 337 (pp. 25-39). Montpellier, France, 16-17 June 2008.

Keet, C.M. & Artale, A. (2007). Representing and Reasoning over a Taxonomy of Part-
Whole Relations. Applied Ontology – Special Issue on Ontological Foundations for Con-
ceptual Models, 3 (1), in print.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N. & Oltramari, A. (2003).
Ontology Library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003).
http://wonderweb.semanticweb.org. 2003.

Motschnig-Pitrik, R. & Kaasbøll, J. (1999). Part-Whole Relationship Categories and Their
Application in Object-Oriented Analysis. IEEE Transactions on Knowledge and Data
Engineering, 11 (5), 779-797.

Object Management Group. Unified Modeling Language: Superstructure. v2.0. formal/05-
07-04. http://www.omg.org/cgi-bin/doc?formal/05-07-04.

Odell, J.J. (1998). Advanced Object-Oriented Analysis & Design using UML. Cambridge:
Cambridge University Press.

Opdahl, A.L., Henderson-Sellers, B., Barbier, F. (2001). Ontological analysis of whole-part
relationships in OO-models. Information and Software Technology, 43 (6), 387-399.

Parent, C., Spaccapietra, S. & Zimányi, E. (2006). Conceptual modeling for traditional
and spatio-temporal applications—the MADS approach. Berlin: Springer Verlag.

Pontow, C. & Schubert, R. (2006). A mathematical analysis of theories of parthood. Data
& Knowledge Engineering, 59, 107-138.

Sattler, U. (1995). A concept language for an engineering application with part-whole
relations. In Borgida, A., Lenzerini, M., Nardi, D., Nebel, B. (Eds.) Proceedings of the
international workshop on description logics (DL’95) (pp. 119-123).

Sattler, U. (2000). Description Logics for the Representation of Aggregated Objects. In
Horn, W. (Ed.) Proceedings of the 14th European Conference on Artificial Intelligence
(ECAI2000). Amsterdam: IOS Press.

Schulz, S., Hahn, U. & Romacker, M. (2000). Modeling Anatomical Spatial Relations with
Description Logics.In Overhage, J.M. (ed.) Proceedings of the AMIA Symposium 2000
(pp. 779-83).

35

Shanks, G., Tansley, E. & Weber, R. (2004). Representing composites in conceptual mod-
eling. Communications of the ACM, 47 (7), 77-80.

Simons, P. (1987). Parts: a study in Ontology. Oxford: Clarendon Press.
Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C.,

Neuhaus, F., Rector, A.L. & Rosse, C. (2005). Relations in biomedical ontologies.
Genome Biology, 6 :R46.

Spaccapietra, S., Parent, C. & Zimanyi, E. (1998). Modeling time from a conceptual
perspective. In Int. Conf. on Information and Knowledge Management (CIKM98).

Varzi, A.C. (2004). Mereology. In Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy (Fall 2004 Ed.). Stable URL
http://plato.stanford.edu/archives/fall2004/entries/mereology/.

Varzi, A.C. (2006a). Spatial reasoning and ontology: parts, wholes, and locations. In
Aiello, M., Pratt-Hartmann I., van Benthem J. (eds.) The Logic of Space. Dordrecht:
Kluwer Academic Publishers.

Varzi, A.C. (2006b). A Note on the Transitivity of Parthood. Applied Ontology, 1, 141-146.
Vieu, L. & Aurnague, M. (2005). Part-of Relations, Functionality and Dependence. In M.

Aurnague, M. Hickmann, L. Vieu (eds.) Categorization of Spatial Entities in Language
and Cognition. Amsterdam: John Benjamins.

Winston, M.E., Chaffin, R. & Herrmann, D. (1987). A taxonomy of partwhole relations.
Cognitive Science, 11 (4), 417-444.

Notes

1Other recurring topics that will receive comparatively little attention are transitivity of part-whole relations
(Johansson, 2004; Varzi, 2004, 2006b), analysis of types of part-whole relations (Gerstl & Pribbenow, 1995;
Keet, 2006b; Keet & Artale, 2008; Odell, 1998; Winston et al., 1987), horizontal relations between parts, and
automated reasoning with part-whole relations. For a comprehensive introduction to such sub-topics from different
perspectives, see, e.g., (Artale et al., 1996a; Guizzardi, 2005; Keet, 2006a; Simons, 1987).

2proper part hood is usually defined in terms of the parthood relation (∀x, y(proper part of(x, y) , part of(x, y)∧
¬part of(y, x))), but also can be taken as primitive and then to have parthood defined in terms of proper parthood
(∀x, y(part of(x, y) , proper part of(x, y) ∨ x = y)).

3Downward distributive: there are properties of the whole that the parts inherit; upward distributive: the whole
inherits properties from its parts. Alternatively, they are called property inheritance through parts and property
refinement through parts.

4In addition to these requirements, the usual ones for including basic properties of the parthood relation
remain as well. That is, transitivity, reflexivity and antisymmetry for parthood, and transitivity, irreflexivity and
asymmetry for proper parthood relations (see for a discussion and feasibility Keet & Artale (2008)).

5Temporal parts in the sense of 4-dimensionalism (Hawley, 2004) is out of scope for common information
systems modeling.

6More precisely, UML without the part-of, EER, and a subset of ORM and ORM2 have a correspondence with
DLRifd (Berardi et al., 2005; Calvanese et al., 1998a, 1999; Keet, 2007, 2008), which is DLR with additional
identification and non-unary functional dependency constraints.

7Following the snapshot paradigm, Tp is a set of time points (or chronons) and < is a binary precedence
relation on Tp, the flow of time T = 〈Tp, <〉 is assumed to be isomorphic to either 〈Z, <〉 or 〈N, <〉. Thus, standard
relational databases can be regarded as the result of mapping a temporal database from time points in T to
atemporal constructors, with the same interpretation of constants and the same domain.

8Cases p1-p5 shown earlier in Figure 4 are not essential parts/wholes; we return to this point at the end of
this section.

9Optional participation (≥ 0) of either the part or the whole in the part-whole relation means that either
(ManP) or (ManW) is not included in the list of constraints.

10We are open to better suggestions (the icons have not been examined by modelers and domain experts). Ba-
sically, for each constraint ManP-DisjW there could be some explicit on in the diagrammatic modeling language,
even though some are already covered in the language itself, such as XOR in ORM2. It is beyond the current
scope to provide a fixed graphical and pseudo-NL syntax for all major conceptual modeling languages.

