Resolving conflicts

Implementation trade-offs

Conclusions

Resolving and avoiding design conflicts in ontology development and deployment

Maria Keet

Department of Computer Science, University of Cape Town, South Africa mkeet@cs.uct.ac.za

ISCBacademy Webinar series (bio-ontologies), 21 September 2021

Resolving conflicts

Implementation trade-offs

Conclusions

2 Resolving conflicts

Implementation trade-offs

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q () 2/55

Resolving conflicts

Implementation trade-offs

Conclusions

2 Resolving conflicts

Implementation trade-offs

<ロト <回 > < E > < E > E の Q @ 3/55

Resolving conflicts

Implementation trade-offs

Conclusions

An ontology

Simplified graphical rendering of a fragment of one:

 $\tt http://geneontology.org/docs/ontology_documentation/ __{\bigcirc \bigcirc}$

Resolving conflicts

Implementation trade-offs

Conclusions

In an ODE...

Resolving conflicts

Implementation trade-offs

Conclusions

... happenings behind the GUI ...

Resolving conflicts

Implementation trade-offs

Conclusions

... and underlying that serialisation

Resolving conflicts

Implementation trade-offs

Conclusions

Introduction

- Ontologies
 - For their own sake
 - For communication among humans
 - Used for many different ontology-driven information systems (database integration and linking, recommender systems, NLP, textbook annotation and search, question generation, Q&A systems, etc.)

Resolving conflicts

Implementation trade-offs

Conclusions

Introduction

- Ontologies
 - For their own sake
 - For communication among humans
 - Used for many different ontology-driven information systems (database integration and linking, recommender systems, NLP, textbook annotation and search, question generation, Q&A systems, etc.)
- \Rightarrow Someone has to build them, *somehow*

Implementation trade-offs

Conclusions

Typical stages of macro-level methodologies

Resolving conflicts

Implementation trade-offs

Conclusions

Scenarios for building Ontology Networks (NEON methodology)

Resolving conflicts

Implementation trade-offs

Conclusions

Ontology Summit 2013's lifecycle model

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique 🚊 🧠

Resolving conflicts

Implementation trade-offs

Conclusions

Ontology Summit 2013's lifecycle model

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique 🛓 🔗 🔍

Resolving conflicts

Implementation trade-offs

Conclusions

More cycles within a cycle (for "ontology design")

Keet CM, Ławrynowicz A. Test-Driven Development of Ontologies. ESWC'16. Davies K., Keet CM, Ławrynowicz A. More Effective Ontology Authoring with Test-Driven Development and the TDDonto2 tool. IJAIT, 2019, 28(7): 1950023.

Resolving conflicts

Implementation trade-offs

Conclusions

Ontology development at the 'micro-level' level (cf. macro)

• We need to get those axioms into the ontology

Ontology development at the 'micro-level' level (cf. macro)

- We need to get those axioms into the ontology
- The actual modelling, or *ontology authoring*, using micro-level guidelines, methods, and tools
 - $\bullet\,$ Methods, such as reverse engineering and text mining to start, OntoClean and $\rm ONTOPARTS$ to improve an ontology's quality
 - Tools to model, to reason, to debug, to integrate, to link to data

Ontology development at the 'micro-level' level (cf. macro)

- We need to get those axioms into the ontology
- The actual modelling, or *ontology authoring*, using micro-level guidelines, methods, and tools
 - $\bullet\,$ Methods, such as reverse engineering and text mining to start, OntoClean and $\rm ONTOPARTS$ to improve an ontology's quality
 - Tools to model, to reason, to debug, to integrate, to link to data
- ⇒ But what if you're not sure of the axioms yet? Or it leads to a conflict and possibly also an 'incoherent' ontology?

Implementation trade-offs

- BFO does not have Stuff (e.g., mucus, cytosol, water). Deny its existence? Add it as a not quite fitting subclass somewhere? Create/reuse a core ontology?
- \bullet Virus \sqsubseteq Organism vs. Virus \sqsubseteq acellular structure

Implementation trade-offs

Examples

- BFO does not have Stuff (e.g., mucus, cytosol, water). Deny its existence? Add it as a not quite fitting subclass somewhere? Create/reuse a core ontology?
- Virus 🗌 Organism vs. Virus 🗌 acellular structure
- A class Transformation or a relationship transforms?
- proper parthood is transitive, irreflexive, and asymmetric. Choose one? Give up on decidable reasoning?

Implementation trade-offs

Conclusions

The real use case (thanks to Rolf Grütter)

- Epizootic disease outbreak in the Lemanic Arc (France, Switzerland) in 2006
- Human-pathogenic avian influenza H5N1, modelling & data
- Swiss authorities set up protection zones within a radius of 3km, surveillance zones within a radius of 10km.
- Rules to apply; e.g., poultry must be kept in the henhouse
- Need to decide which municipalities to include in the protection zones and which in the surveillance zones

Resolving conflicts

Implementation trade-offs

Conclusions

One of the maps

Avian influenza in the Lemanic Arc; National Map 1:200,000 ©2008 swisstopo. Adapted from Perler L (2007). Geflügelgrippe: Ursprung – Entwicklung – Ausblick. EVD, Bundesamt für Veterinärwesen BVET (presentation).

Resolving conflicts

Implementation trade-offs

Conclusions

The real use case (thanks to Rolf Grütter)

• How to make those decisions better and faster for a next time? (we're in mid 2019 then...)

Implementation trade-offs

Conclusions

The real use case (thanks to Rolf Grütter)

- How to make those decisions better and faster for a next time? (we're in mid 2019 then...)
- Two ontologies—epidemiology (finds, etc) and administrative (generic, with Municipality etc.)—and a geodatabase
- Municipality in exactly one region etc.
- The (small) region of the find is contained in the region(s) occupied by the protection zones that are contained in the regions occupied by the surveillance zones

Implementation trade-offs

Conclusions

The real use case (thanks to Rolf Grütter)

- How to make those decisions better and faster for a next time? (we're in mid 2019 then...)
- Two ontologies—epidemiology (finds, etc) and administrative (generic, with Municipality etc.)—and a geodatabase
- Municipality in exactly one region etc.
- The (small) region of the find is contained in the region(s) occupied by the protection zones that are contained in the regions occupied by the surveillance zones

Reasoner: non-simple beyond OWL 2 DL!

Resolving conflicts

Implementation trade-offs

Conclusions

Outline

2 Resolving conflicts

Implementation trade-offs

<ロト <回 > < E > < E > E の Q @ 18/55

Resolving conflicts

Implementation trade-offs

Conclusions

How to manage such differences?

- Identify type of conflicts that can arise
- Determine how to preempt or to detect them
- Assess options what to do with it when a conflict arises
- Specify a mechanism to keep track of these three aspects
- Devise a way to make this easy to do and document choice

Implementation trade-offs

Conclusions

Note: meaning negotiation vs conflict resolution

Meaning negotiation concerns deliberations to figure out the precise semantics one wants to represent in the ontology. They are all *positive choices* in the sense of "which of the options is applicable? Then we take that one".

Conflict resolution Concerns choosing one option among a set of two or more options, where that choice is deemed the *'lesser among evils' for that scenario*. It necessarily involves a compromise and making it work requires reengineering something in at least one of the ontologies or as a whole.

Resolving conflicts

Implementation trade-offs

Conclusions

Sample scenario to detect and resolve conflicts

Tool feedback (example) 1. O1+2 violates OWL 2 DL language 2. O1 reifies relations but O2 does not;

Examine sources of conflict (example) 1. o1:part-of = o2:part-of, but o1:part-of is transitive and o2:part-of is used in a qualified cardinality constraint 2. This concerns o1:Vaccination and o2:vaccinates **Resolve conflicts** (choices made for example) 1. Agree to keep both constraints and thus select a more expressive ontology language.

2. Choose O1's reification approach in line with its modelling style

Implement resolution

- 1. No further action needed
- 2. Remodel o2:vaccinates axioms accordingly
- 3. Import O2' into O1

Resolving conflicts

Implementation trade-offs

Conclusions

What are the key sources of conflicts?

- Ontological differences between established theories
 - DOLCE vs BFO
- Ontological differences at the axiom-level
 - parthood antisymmetric or not? [Cotnoir(2010)]

Resolving conflicts

Implementation trade-offs

Conclusions

What are the key sources of conflicts?

- Ontological differences between established theories
 - DOLCE vs BFO
- Ontological differences at the axiom-level
 - parthood antisymmetric or not? [Cotnoir(2010)]
- Different modelling styles
 - foundational ontology-inspired or conceptual model-influenced [Fillottrani and Keet(2017), Fillottrani and Keet(2019)]

Implementation trade-offs

Conclusions

What are the key sources of conflicts?

- Ontological differences between established theories
 - DOLCE vs BFO
- Ontological differences at the axiom-level
 - parthood antisymmetric or not? [Cotnoir(2010)]
- Different modelling styles
 - foundational ontology-inspired or conceptual model-influenced [Fillottrani and Keet(2017), Fillottrani and Keet(2019)]
- Logic limitations causing conflicts for an ontology, affecting the software ecosystem
 - OWL only or DOL [DOL(2018)] that can do FOL and HOL
- Logic limitations by design, for the purpose of scalability
 - OWL 2 EL vs. OWL 2 DL [Motik et al.(2009)]
- Certain deductions (excluding modelling mistakes) that manifest after adding the axioms, during TDD, or upon ontology matching attempts.
 - disjointness declared among some ancestor

A (1) A (

Resolving conflicts

Implementation trade-offs

Conclusions

Illustration of language profile conflicts

Requirement "The COVID-relevant medical ontology for information systems should not exceed the OWL 2 EL profile (compatibility with OBO, SNOMED CT, scalability)"

Implementation trade-offs

Conclusions

Illustration of language profile conflicts

Requirement "The COVID-relevant medical ontology for information systems should not exceed the OWL 2 EL profile (compatibility with OBO, SNOMED CT, scalability)"

- CIDO ontology for COVID-19 [He et al.(2020)] is not in OWL 2 EL
- Class expression with a universal quantifier on rhs; a.o.: 'Yale New Haven Hospital SARS-CoV-2 assay' ⊑ ∀'EUA-authorized use at'.'FDA EUA-authorized organization'

Need a tool to find violating axioms: the OWL Classifier

イロト 不同 トイヨト イヨト

Context	and	motivation	
000000	000		

Implementation trade-offs

Conclusions

xpressivity In	formati	on	ONE T DE	, ONE 2	de De		OWETE			WE ITON	
xpressivity A	<u>xioms</u>										
Q		R	U	E	H	1	AL	- + ·	(D)	0	
6 - Equivalen 7 - Equivalen 8 - Equivalen 9 - Equivalen	tClasses tClasses tClasses tClasses	(<http: (<http: (<http: (<http:< td=""><td>//purl.obolibra //purl.obolibra //purl.obolibra //purl.obolibra</td><td>ary.org/c ary.org/c ary.org/c ary.org/c</td><td>bo/OBI_0 bo/UBERC</td><td>001506> 0 001506> 0 0N_000048 001479> 0</td><td>bjectSomeV 3> ObjectUr bjectInterse</td><td>aluesFrom(- nionOf(<htt ctionOf(Obj</htt </td><td>chttp://purl.ol p://purl.obolil ectSomeValue</td><td>bolibrary.o brary.org/c sFrom(<ht< td=""><td>rg/obo/O bo/UBER0 tp://purl.</td></ht<></td></http:<></http: </http: </http: 	//purl.obolibra //purl.obolibra //purl.obolibra //purl.obolibra	ary.org/c ary.org/c ary.org/c ary.org/c	bo/OBI_0 bo/UBERC	001506> 0 001506> 0 0N_000048 001479> 0	bjectSomeV 3> ObjectUr bjectInterse	aluesFrom(- nionOf(<htt ctionOf(Obj</htt 	chttp://purl.ol p://purl.obolil ectSomeValue	bolibrary.o brary.org/c sFrom(<ht< td=""><td>rg/obo/O bo/UBER0 tp://purl.</td></ht<>	rg/obo/O bo/UBER0 tp://purl.
6 – Equivalen 7 – Equivalen 8 – Equivalen 9 – Equivalen 10 – ObjectPr 11 – SubClas	tClasses tClasses tClasses opertyR: sOf(<htt< td=""><td>(<http: (<http: (<http: (<http: ange(<h p://pur</h </http: </http: </http: </http: </td><td>//purl.obolibra //purl.obolibra //purl.obolibra //purl.obolibra ttp://purl.obo</td><td>ary.org/c ary.org/c ary.org/c ary.org/c library.o g/obo/C</td><td>bbo/OBL_0 bbo/UBERC bbo/OBL_0 ing/obo/OBL_0 ing/obo/O DAE_00000</td><td>001506> 0 001506> 0 0N_000048 001479> 0 BI_0000304 084> Objec</td><td>bjectSomeV 3> ObjectUr bjectInterse >> ObjectUn tSomeValue</td><td>aluesFrom(- nionOf(<htt; ctionOf(Obj ionOf(<http sFrom(<http< td=""><td>shttp://purl.ob p://purl.obolil ectSomeValue s://purl.obolib s://purl.obolib</td><td>bolibrary.org/c brary.org/c sFrom(<ht rary.org/o prary.org/o</ht </td><td>rg/obo/O bo/UBER(tp://purl. bo/NCBIT bo/OAE_(</td></http<></http </htt; </td></htt<>	(<http: (<http: (<http: (<http: ange(<h p://pur</h </http: </http: </http: </http: 	//purl.obolibra //purl.obolibra //purl.obolibra //purl.obolibra ttp://purl.obo	ary.org/c ary.org/c ary.org/c ary.org/c library.o g/obo/C	bbo/OBL_0 bbo/UBERC bbo/OBL_0 ing/obo/OBL_0 ing/obo/O DAE_00000	001506> 0 001506> 0 0N_000048 001479> 0 BI_0000304 084> Objec	bjectSomeV 3> ObjectUr bjectInterse >> ObjectUn tSomeValue	aluesFrom(- nionOf(<htt; ctionOf(Obj ionOf(<http sFrom(<http< td=""><td>shttp://purl.ob p://purl.obolil ectSomeValue s://purl.obolib s://purl.obolib</td><td>bolibrary.org/c brary.org/c sFrom(<ht rary.org/o prary.org/o</ht </td><td>rg/obo/O bo/UBER(tp://purl. bo/NCBIT bo/OAE_(</td></http<></http </htt; 	shttp://purl.ob p://purl.obolil ectSomeValue s://purl.obolib s://purl.obolib	bolibrary.org/c brary.org/c sFrom(<ht rary.org/o prary.org/o</ht 	rg/obo/O bo/UBER(tp://purl. bo/NCBIT bo/OAE_(
6 – Equivalen 7 – Equivalen 8 – Equivalen 9 – Equivalen 10 – ObjectPr 11 – SubClas	tClasses tClasses tClasses tClasses opertyR. sOf(<htt< td=""><td>(<http: (<http: (<http: (<http: ange(<htp: p://pur</htp: </http: </http: </http: </http: </td><td>(/purl.oboilbra (/purl.oboilbra (/purl.oboilbra (/purl.oboilbra (tp://purl.obo (.oboilbrary.or</td><td>ary.org/c ary.org/c ary.org/c ary.org/c library.o g/obo/C WL 2 DL</td><td>owL 2</td><td>QL OWL</td><td>2 RL OW</td><td>aluesFrom(- nionOf(<htt; ctionOf(Obj ionOf(<http sFrom(<http /L 1 Lite</http </http </htt; </td><td>shttp://purl.obolil p://purl.obolil ectSomeValue p://purl.obolib p://purl.obolib</td><td>bolibrary.org/c brary.org/c sFrom(<ht irary.org/o prary.org/o</ht </td><td>rg/obo/O bbo/UBER0 tp://purl. bo/NCBIT bo/OAE_0</td></htt<>	(<http: (<http: (<http: (<http: ange(<htp: p://pur</htp: </http: </http: </http: </http: 	(/purl.oboilbra (/purl.oboilbra (/purl.oboilbra (/purl.oboilbra (tp://purl.obo (.oboilbrary.or	ary.org/c ary.org/c ary.org/c ary.org/c library.o g/obo/C WL 2 DL	owL 2	QL OWL	2 RL OW	aluesFrom(- nionOf(<htt; ctionOf(Obj ionOf(<http sFrom(<http /L 1 Lite</http </http </htt; 	shttp://purl.obolil p://purl.obolil ectSomeValue p://purl.obolib p://purl.obolib	bolibrary.org/c brary.org/c sFrom(<ht irary.org/o prary.org/o</ht 	rg/obo/O bbo/UBER0 tp://purl. bo/NCBIT bo/OAE_0

Yale New Haven Hospital SARS-CoV-2 assay) violated OWL 2 EL.

OWL Classifier https://github.com/muhummadPatel/OWL_Classifier _ = > + = >

Implementation trade-offs

Conclusions

'Library' of common conflicts (selection -1/2)

No.	Conflict	Description	Examples
		Conflicting theories at the	top-level
1	foundational	ontologies adhere to con-	BFO, DOLCE, GFO, SUMO,
		flicting theories	UFO, YAMATO
2	mereological	conflicting mereological	with Atom or not, weak vs.
		theories	strong supplementation
3	topological	conflicting topological	region connection calculus on
		theories	non-simply connected regions
4	building	different ontological com-	whether roles are part of the
	blocks	mitments embedded in	fundamental furniture of the
		the language	universe, $3D + time vs. 4D$
			'worms'

. . .

Resolving conflicts

Implementation trade-offs

Conclusions

Some of this is 'easy' to figure out

• Delegate the choice: use an existing foundational ontology

• Delegate the choice: use an existing ontology language
Resolving conflicts

Implementation trade-offs

Conclusions

Some of this is 'easy' to figure out

- Delegate the choice: use an existing foundational ontology
 - How to choose an existing foundational ontology?
- Delegate the choice: use an existing ontology language
 - How to choose an existing language?

Resolving conflicts

Implementation trade-offs

Conclusions

Some of this is 'easy' to figure out

- Delegate the choice: use an existing foundational ontology
 - How to choose an existing foundational ontology?
 - What if it conflicts with the rest of the system?
- Delegate the choice: use an existing ontology language
 - How to choose an existing language?
 - What if it conflicts with the rest of the system?

Resolving conflicts

Implementation trade-offs

Conclusions

Choose an existing foundational ontology

Ontological Commitments	Representation Language	Software Engineering Properties	Subject Domain	Applications	Submit
iseful Tip: lake use of the 'Explain' but some throughout OKSET to is sore about what may apply t ntology.	Los Iarn o your			Back to Star	t Menu Exit
	Ontolo	gical Commitments			
	You ma	y skip unnecessary questions			
Ontology of Universals/ Classes/Con	ises/Concepts or Perticular	s/Individuals?			xplain]
 Particulars/ Individuals Both 					
Descriptive or Realist ontol	9997				xplain
 Realist (Prescriptive) Both 					
Multiplicative or Reduction	st approach?			e	xplain
Multiplicative					

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW'12. 📳 👘 🖹 🚽 🔗 Q 📀

Resolving conflicts

Implementation trade-offs

Conclusions

Choose an existing foundational ontology

		and and				
	Return to ONSET	gineering Properties	Subject Domain	Applications	Submit	
				Back to Star	t Menu	-
Universals vs. Particulars					Exit	
Universals are objects that can have instances. Partie	ulars are objects	mmitments				1
that cannot have instances. e.g. Dog is a universal wh dog is a particular which cannot be instantiated.	ile 'Bruno' the	asary questions				Y
Universals/ Classes/Concepts	_				xplain	No.
O Particulars/ Individuals						
🔘 Both						
Descriptive or Realist ontology?					xplain	
🔿 Descriptive						
🚫 Realist (Prescriptive)						
💭 Both						
Multiplicative or Reductionist approach?					xplain	
O Multiplicative						Ŧ

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation., EKAW'12. 🛓 👘 🛬 👘 🖓 🔍 🔿

Resolving conflicts

Implementation trade-offs

Conclusions

Choose an existing foundational ontology

Resolving conflicts

Implementation trade-offs

Conclusions

Choose an existing foundational ontology

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW/12. 🛓 👘 🚊 🚽 🔗 🔍 🔿

Resolving conflicts

Implementation trade-offs

Conclusions

Choose an existing foundational ontology

Resolving conflicts

Implementation trade-offs

Conclusions

Consider language: simple or complicated

• Simple purpose-oriented guidance:

• Use 'translators' (e.g., SKOS \rightarrow OWL, OBO \rightarrow OWL, OWL \rightarrow FOL) or DOL as 'glue'

Keet CM. Transforming semi-structured life science diagrams into meaningful domain ontologies with DiDOn. JBI, 2012, 45(3): 482-494.

Resolving conflicts

Implementation trade-offs

Conclusions

Consider language: simple or complicated

• Simple purpose-oriented guidance:

- Use 'translators' (e.g., SKOS \rightarrow OWL, OBO \rightarrow OWL, OWL \rightarrow FOL) or DOL as 'glue'
- Complicated: design your own!

Keet CM. Transforming semi-structured life science diagrams into meaningful domain ontologies with DiDOn. JBI, 2012, 45(3): 482-494.

Implementation trade-offs

Conclusions

Well-known fundamental language conflicts

- Attributes/data properties (OWL, UML) or not (OBO)
- Parthood as primitive (originally so in OBO) or not (OWL)
- Some separation of language from 'semantic layer' (OBO naming scheme of entities vs OWL, CL etc.)
- 3D+time vs. 4D (in theory at least; time is costly)

Fillottrani PR, Keet CM. An analysis of commitments in ontology language design. FOIS 2020.

I

Resolving conflicts

Implementation trade-offs

Conclusions

'Library' of common conflicts (selection -2/2)

		Other conflicts	
		applied vs. foundational	whether there are data
9	modeling sty	le	property axioms, alike
			height between Person and
			xsd:decimal
		class vs. object property	Infection vs. infected-by
	subsuming roles vs. roles		doctor is-a person vs. doctor
		inhering in objects	inheres-in person
10	language	cultural-linguistic and la-	population immunity vs herd
		beling differences, such as	immunity, color vs colour,
		preferred/alt labels, or-	and non-1:1 mappings (e.g.,
		thography, language vari-	'river' vs <i>fleuve</i> and <i>rivière</i>)
		ants	

Resolving conflicts

Implementation trade-offs

Conclusions

Modelling style example (1/2)

Requirement: Integrate the CIDO and CODO COVID-19 ontologies

Resolving conflicts

Implementation trade-offs

Conclusions

Modelling style example (1/2)

Requirement: Integrate the CIDO and CODO COVID-19 ontologies

- CODO: laboratory testfinding \equiv {positive, pending, negative}
- CIDO: positive COVID-19 diagnosis
 □ COVID-19 diagnosis, presumptive positive COVID-19 diagnosis
 □ COVID-19 diagnosis, and negative COVID-19 diagnosis
 □ COVID-19 diagnosis
 □ COVID-19 diagnosis

Resolving conflicts

Implementation trade-offs

Conclusions

- (Naming issue, or also ontological: finding (some fact) vs. diagnosis (conclusion drawn from the fact) — when taken in context, intention is the same)
- \Rightarrow Class vs. instance representations of the same idea

Resolving conflicts

Implementation trade-offs

Conclusions

- (Naming issue, or also ontological: finding (some fact) vs. diagnosis (conclusion drawn from the fact) — when taken in context, intention is the same)
- \Rightarrow Class vs. instance representations of the same idea
- Solution options:
 - Change CODO to use CIDO's style

Resolving conflicts

Implementation trade-offs

Conclusions

- (Naming issue, or also ontological: finding (some fact) vs. diagnosis (conclusion drawn from the fact) — when taken in context, intention is the same)
- \Rightarrow Class vs. instance representations of the same idea
- Solution options:
 - Change CODO to use CIDO's style
 - Change CIDO to use CODO's style

Resolving conflicts

Implementation trade-offs

Conclusions

- (Naming issue, or also ontological: finding (some fact) vs. diagnosis (conclusion drawn from the fact) — when taken in context, intention is the same)
- \Rightarrow Class vs. instance representations of the same idea
- Solution options:
 - Change CODO to use CIDO's style
 - Change CIDO to use CODO's style
 - A joint outside option; e.g.: use attribute + values instead

Implementation trade-offs

Conclusions

Record such information: the conflict set

Conflict set grammar for recording individual conflict sets in or between ontologies

<conflict-set></conflict-set>	::= <ontology> <ontology> [<diff>]</diff></ontology></ontology>
<ontology></ontology>	::= <iri> [<species>] <axiom> {<axiom>} [<inference>]</inference></axiom></axiom></species></iri>
<species></species>	::= "OWL DL" "OWL Lite" "OWL Full" "OWL 2 EL" "OWL 2 QL" "OWL 2 RL"
	"OWL 2 DL" "OWL 2 Full" "FOL" "HOL"
<axiom></axiom>	::= [<number>] <formula> [<description>] {<theory>} {<dl-expressivity>}</dl-expressivity></theory></description></formula></number>
<theory></theory>	::= <iri> <name> <iri> <name> "none"</name></iri></name></iri>
<diff></diff>	::= difference between the inferred axioms sets of the two ontologies

(production rules of most terminals are omitted)

Resolving conflicts

Implementation trade-offs

Ontology: O_1	Ontology: \mathcal{O}_2
IRI:appl:admin	IRI:appl:epidemiology
No.: 1.17	No.: 2.32
Axiom: has_2D ⊓	Axiom: Tr(partOf)
has_2D_inv ⊓ located_in ⊓	ar 15
partOf $\sqsubseteq \bot$	
Description: disjointness	Description: transitivity
Theory: n/a	Theory: M
$DL: (\neg), \mathcal{R}$	DL: \mathcal{S}, \mathcal{R}
No.: 1.22 Axiom: $\top \sqsubseteq (\le 1 \text{ partOf})$ Description: functionality Theory: n/a DL: \mathcal{F}, \mathcal{Q}	
Inference \mathcal{O}_1 : $(\mathcal{O}_1 \sqcup \mathcal{O}_2 \sqcup (ap appl:epidemiology#partOf))$	ppl:admin#partOf \equiv $\Box \neg 2.32 \models O'_1$
Inference \mathcal{O}_2 : $(\mathcal{O}_1 \sqcup \mathcal{O}_2 \sqcup (ap appl:epidemiology#partOf))$	$ ppl:admin#partOf \equiv \neg (1.17 \sqcup 1.22) \models \mathcal{O}_2' $
$\mathrm{Diff} \colon \mathcal{O}_1' \sqcap \neg \mathcal{O}_2' \sqsubseteq \bot$	

Resolving conflicts

Implementation trade-offs

Implementation trade-offs

Ontology: O_1	Ontology: \mathcal{O}_2
IRI: appl : admin	IRI:appl:epidemiology
No.: 1.17	No.: 2.32
Axiom: has_2D ⊓	Axiom: Tr(partOf)
has_2D_inv ⊓ located_in ⊓ partOf ⊑ ⊥	
Description: disjointness	Description: transitivity
Theory: n/a	Theory: M
DL: $(\neg), \mathcal{R}$	DL: S, \mathcal{R}
Description: functionality Theory: n/a DL: \mathcal{F} , \mathcal{Q}	
Inference \mathcal{O}_1 : $(\mathcal{O}_1 \sqcup \mathcal{O}_2 \sqcup (appl:epidemiology#partOf))$	ppl:admin#partOf \equiv $\Box \neg 2.32 \models O'_1$
Inference \mathcal{O}_2 : $(\mathcal{O}_1 \sqcup \mathcal{O}_2 \sqcup (apt appl:epidemiology#partOf))$	$ ppl:admin#partOf \equiv \neg (1.17 \sqcup 1.22) \models \mathcal{O}'_2 $
$\mathrm{Diff} \colon \mathcal{O}_1' \sqcap \neg \mathcal{O}_2' \sqsubseteq \bot$	

Context	and	motivation
000000	0000	

Implementation trade-offs

Ontology: O_1	Ontology: \mathcal{O}_2
IRI: appl: admin	IRI:appl:epidemiolog
No.: 1.17	No.: 2.32
Axiom: has_2D ⊓	Axiom: Tr(partOf)
has_2D_inv ⊓ located_in ⊓	97 S.P
partOf $\sqsubseteq \bot$	
Description: disjointness	Description: transitivity
Theory: n/a	Theory: M
$DL: (\neg), \mathcal{R}$	DL: S, \mathcal{R}
Theory: n/a DL: \mathcal{F}, \mathcal{Q}	
Inference \mathcal{O}_1 : $(\mathcal{O}_1 \sqcup \mathcal{O}_2 \sqcup (ap appl:epidemiology#partOf))$	pl:admin#partOf \equiv $\neg \neg 2.32 \models \mathcal{O}'_1$
Inference \mathcal{O}_2 : $(\mathcal{O}_1 \sqcup \mathcal{O}_2 \sqcup (ap appl:epidemiology#partOf))$	pl:admin#partOf \equiv $\neg \neg (1.17 \sqcup 1.22) \models \mathcal{O}'_2$
$\operatorname{Diff}:\mathcal{O}_1'\sqcap\neg\mathcal{O}_2'\sqsubseteq\bot$	

Resolving conflicts

Implementation trade-offs

Conclusions

Cognitive walk-throughs for the Avian influenza Case Study

Resolving conflicts

Implementation trade-offs

Conclusions

Minimal system requirements

- A conflict resolution workflow management system, be it a Question Answering system or another strategy that avails of a knowledge-to-text controlled language, canned text, a decision tree, and two data structures (the conflict set and the resolution options);
- Algorithms to populate the conflict set, which may avail of new wrappers for existing OWL tools to recast their computation and outputs as detection and conflict resolution functionalities;
- End-user usable DOL and CL tools;
- Software support for the language annotation models and extant assessments on modelling style and language conflicts.

Resolving conflicts

Implementation trade-offs

Conclusions

Outline

1 Context and motivation

2 Resolving conflicts

Implementation trade-offs

<ロ><回><回><目><目><目><目><目><目><目><目</td>37/55

Resolving conflicts

Implementation trade-offs

Resolving conflicts

Implementation trade-offs

Conclusions

Connecting the knowledge to the data

Resolving conflicts

Implementation trade-offs

Conclusions

Knowledge-to-Data Pipeline options

Fillottrani, P.R., Keet, C.M. KnowlD: An architecture for efficient Knowledge-driven Information and Data access. Data Intelligence, 2020, 2(4): 487-512.

Implementation trade-offs

Key distinguishing features of varying computational cost

Feature	K@D	$K \Leftrightarrow D$	$D \bowtie K$	D a K	
World	OWA	OWA+CWA	CWA	CWA	
Language for ${\cal K}$	OWL	OWL	relational,	relational	
			DL		
Language for \mathcal{D}	OWL	relational	relational	relational	
Query language	SPARQL	SPARQL +	SQLP	SQL	
		SQL (fragment)			
Automated	yes	yes	yes	depends on	
reasoning				system	
Reasoning	no separate	query rewriting	data comple-	data comple-	
w.r.t. data	approach		tion	tion	
Mapping layer	no	yes	no	no	
Transformations	no	no	yes	yes	
Entity recasting	no	yes	no	yes	
Syntactic sugar	available	available	possible	possible	

Resolving conflicts

Implementation trade-offs

Conclusions

Implementation trade-offs

Conclusions

The WONDER System with the early version

- Horizontal Gene Transfer (HGT) database [Garcia-Vallvé et al.(2003)]
- Reverse engineer the conceptual data model
- Formalise it in OWL 2 QL
- Create mappings
- Create (web-based) interface for browsing, querying, and answering as front-end to OBDA back-end

Calvanese D, Keet CM, Nutt W, Rodriguez-Muro M, Stefanoni G. Web-based Graphical Querying of Databases through an Ontology: the WONDER System. ACM SAC 2010.
Resolving conflicts

Implementation trade-offs

Conclusions

Implementation trade-offs

<pre>cmapping id/"Ending codess"></pre>
<pre><coupling (coo<="" (cools)="" cools="" electrony="" td="" to=""></coupling></pre>
<mapping id="0rganismHasCodon"></mapping>
<cq string="OHCHasOrganism(getOrganismHasCodon(\$BUNDLEID),getOrganism(\$ID)),</td></tr><tr><td>OHCHasCodon(getOrganismHasCodon(\$BUNDLEID),getCodon(\$cODOM)), OrganismHasCodon(getOrganismHasCodon(\$BUNDLEID),
CodonValueOrg(getOrganismHasCodon(\$BUNDLEID),sCODONVALUE), CodonS0(getOrganismHasCodon(\$BUNDLEID),sCODONSD),
RSCUorg(getOrganismHasCodon(\$BUNDLEID),SSSCU),SOBSCU(getOrganismHasCodon(SBUNDLEID),SSOBSCU)" ~<br=""><sqlquery bundleid,="" codon,="" codonsd,="" codonvalue,="" from<="" id,="" p="" rscu),sobscu="" stringe"select=""></sqlquery></cq>
ORGANISMHASCODON"/>
<mapping id="GeneHasCodon"></mapping>
<co string="GHCHasGene(getGeneHasCodon(\$BUNDLEID).getGene(\$ID)).</td></tr><tr><td>GHCHasCodon(getGeneHasCodon(SBUNDLEID),getCodon(SCODON)), GeneHasCodon(getGeneHasCodon(SBUNDLEID)).</td></tr><tr><td>CodonValueGene(getGeneHasCodon(\$BUNDLEID), \$CODONVALUE), RSCUgene(getGeneHasCodon(\$BUNDLEID), \$RSCU)"></co> <sqlquery string="SELECT ID, CODON, CODONVALUE, BUNDLEID, RSCU FROM GENEHASCODON"></sqlquery>

Resolving conflicts

Implementation trade-offs

Conclusions

Construct	Graphical Element	Semantic
Class	с	$C \sqsubseteq \top$
Object Property	C P D	$\exists P \sqsubseteq C \\ \exists P^- \sqsubseteq D$
Data Property	C A	$\delta(A) \sqsubseteq C$ $\rho(A) \sqsubseteq \top_d$
SubClass Relationship		$C\sqsubseteq D$

Implementation trade-offs

Resolving conflicts

Implementation trade-offs

Conclusions

"Knowledge mapping data": OBDA example in genomics

Retrieve all genes of the organisms Neisseria for which horizontal gene transfer is predicted or have a GC3 value > 80

Resolving conflicts

Implementation trade-offs

Conclusions

Construct	Graphical Element	Semantic
Class node	C, D	C(x), D(x)
Object Property link	C P D	C(x), P(x, y), D(y)
Data Property node and link	C A	C(x), A(x,y)

Implementation trade-offs

Conclusions

"Knowledge mapping data": OBDA

- OBDA with Ontop [Calvanese et al.(2017)] now more elaborate and more robust
- More case studies: Statoil and EPnet [Calvanese et al.(2016)]

Implementation trade-offs

Conclusions

"Knowledge mapping data": OBDA

- OBDA with Ontop [Calvanese et al.(2017)] now more elaborate and more robust
- More case studies: Statoil and EPnet [Calvanese et al.(2016)]
- Downsides
 - The mapping layer: cumbersome construction and maintenance
 - Low expressiveness for ontology language
 - Limitations on types of queries

Resolving conflicts

Implementation trade-offs

Conclusions

"Data-transformation-knowledge" example: KnowID

Resolving conflicts

Implementation trade-offs

Conclusions

"Data-transformation-knowledge" example: KnowID

Resolving conflicts

Implementation trade-offs

Conclusions

"Data-transformation-knowledge" example: KnowID

Resolving conflicts

Implementation trade-offs

Conclusions

"Data-transformation-knowledge" example: KnowID

46 / 55

イロト イボト イヨト イヨト

Resolving conflicts

Implementation trade-offs

Conclusions

Knowledge-driven Information and Data access (KnowID)

Fillottrani, P.R., Keet, C.M. KnowlD: An architecture for efficient Knowledge-driven Information and Data access. Data Intelligence, 2020, 2(4): 487-512. Fillottrani, P.R., Jamieson, S., Keet, C.M. Connecting knowledge to data through transformations in KnowlD: system description. Künstliche Intelligenz, 2020, 2020, 34, 373-379.

Resolving conflicts

Implementation trade-offs

Conclusions

Knowledge-driven Information and Data access (KnowID)

Fillottrani, P.R., Keet, C.M. KnowlD: An architecture for efficient Knowledge-driven Information and Data access. Data Intelligence, 2020, 2(4): 487-512. Fillottrani, P.R., Jamieson, S., Keet, C.M. Connecting knowledge to data through transformations in KnowlD: system description. Künstliche Intelligenz, 2020, 2020, 34, 373-379.

Resolving conflicts

Implementation trade-offs

Conclusions

Knowledge-driven Information and Data access (KnowID)

- There's more on the 'knowledge and information management' module:
 - Swap between EER, UML, ORM [Keet and Fillottrani(2015), Fillottrani and Keet(2014)]
 - DL (OWL) with reasoner at the back-end
 - Tool: crowd 2.0 (beta) http://crowd.fi.uncoma.edu.ar:3335/ [Braun et al.(2020)]
 - More in the pipeline, such as integrating NOMSA for summarisation and modularisation of ontologies
- Querying with SQLP: SQLP requires less time for understanding and authoring queries, with no loss in accuracy [Ma et al.(2018)]
- Data Completion TBD

Resolving conflicts

Implementation trade-offs

Conclusions •000000

Outline

Context and motivation

2 Resolving conflicts

Implementation trade-offs

Implementation trade-offs

Conclusions

Recap and future work

- Foundational steps towards a framework that can deal in a systematic way with modelling conflicts through conflict resolution
- Notion of conflict set, with a data structure
- A first step towards a library of conflicts
- Some supporting tools for conflict resolution; more needed
- System design trade-offs in connecting the ontologies to the data; more needed

Implementation trade-offs

Conclusions

Main collaborators (on the works included in this talk)

- Collaborators: Diego Calvanese and Werner Nutt (FUB, Italy), Pablo Fillottrani (UNS, Argentina), Santi Garcia-Vellvé (URV, Spain), Rolf Grütter (WSL, Switzerland), Stephan Jamieson (UCT) Agnieszka Ławrynowicz (PUT, Poland), David Toman (UW, Canada)
- Current and former students: Zubeida Khan, Mandisa Baleni, Kieren Davies, Bradley Malgas, Brian McGeorge, Aashiq Parker, and Muhummad Patel, Giorgio Stefanoni

Implementation trade-offs

References I

Distributed ontology, model, and specification language, February 2018.
URL http://www.omg.org/spec/DOL/.

Germán Braun, Christian Gimenez, Laura Cecchi, and Pablo Fillottrani.

crowd: A Visual Tool for Involving Stakeholders into Ontology Engineering Tasks. Künstliche Intelligenz, 2020.

D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal, M. Rezk, and G. Rull.

Ontology-based data integration in epnet: Production and distribution of food during the roman empire. Engineering Applications of Artificial Intelligence, 51:212–229, 2016.

Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop: Answering SPARQL queries over relational databases. Semantic Web Journal, 8(3):471–487, 2017.

Aaron J. Cotnoir.

Anti-symmetry and non-extensional mereology. The Philosophical Quarterly, 60(239):396–405, 2010.

P. R. Fillottrani and C. M. Keet.

Dimensions affecting representation styles in ontologies.

In 1st beroamerican conference on Knowledge Graphs and Semantic Web (KGSWC'19), volume 1029 of CCIS, pages 186–200. Springer, 2019. 24-28 June 2019, Villa Clara, Cuba.

Implementation trade-offs

Conclusions

References II

Pablo R. Fillottrani and C. Maria Keet.

Patterns for heterogeneous tbox mappings to bridge different modelling decisions. In E. Blomqvist et al., editors, *Proceeding of the 14th Extended Semantic Web Conference (ESWC'17)*, volume 10249 of *LNCS*, pages 371–386. Springer, 2017. 30 May - 1 June 2017, Portoroz, Slovenia.

Pablo Rubén Fillottrani and C. Maria Keet.

Conceptual model interoperability: a metamodel-driven approach. In A. Bikakis et al., editors, *Proceedings of the 8th International Web Rule Symposium (RuleML'14)*, volume 8620 of *LNCS*, pages 52–66. Springer, 2014. August 18-20, 2014, Prague, Czech Republic.

S. Garcia-Vallvé, E. Guzman, M.A. Montero, and A. Romeu.

HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. *Nucleic Acids Research*, 31(1):187–189, 2003.

Yongqun He, Hong Yu, Edison Ong, Yang Wang, Yingtong Liu, Anthony Huffman, Hsin hui Huang, John Beverley, Asiyah Yu Lin, William D. Duncan, Sivaram Arabandi, Jiangan Xie, Junguk Hur, Xiaolin Yang, Luonan Chen, Gilbert S. Omenn, Brian Athey, and Barry Smith. Cido: The community-based coronavirus infectious disease ontology.

In Janna Hastings and Frank Loebe, editors, Proceedings of the 11th international Conference on Biomedical Ontologies, volume 2807. CEUR-WS, 2020.

Implementation trade-offs

Conclusions

References III

C. Maria Keet and Pablo Rubén Fillottrani.

An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data & Knowledge Engineering, 98:30–53, 2015. doi: 0.1016/j.datak.2015.07.004.

Weicong Ma, C. Maria Keet, Wayne Oldford, David Toman, and Grant Weddell.

The utility of the abstract relational model and attribute paths in sql.

In Catherine Faron Zucker, Chiara Ghidini, Amedeo Napoli, and Yannick Toussaint, editors, *Proceedings of the 21st International COnference on Knowledge Engineering and Knowledge Management (EKAW'18))*, volume 11313 of *LNAI*, pages 195–211. Springer, 2018. ISBN 978-3-030-03667-6. 12-16 Nov. 2018, Nancy, France.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.

OWL 2 Web Ontology Language Profiles.

W3C recommendation, W3C, 27 Oct. 2009. http://www.w3.org/TR/owl2-profiles/.

Resolving conflicts

Implementation trade-offs

Conclusions

Thank you!

Questions?

Some self-promotion:

- My textbook on ontology engineering (aimed at computer scientists)
- Free pdf (and slides and exercises) at https://people.cs.uct.ac.za/ ~mkeet/OEbook/
- Also available in paperback:

