
Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Resolving and avoiding design conflicts in
ontology development and deployment

Maria Keet

Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

ISCBacademy Webinar series (bio-ontologies), 21 September 2021

1 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Outline

1 Context and motivation

2 Resolving conflicts

3 Implementation trade-offs

4 Conclusions

2 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Outline

1 Context and motivation

2 Resolving conflicts

3 Implementation trade-offs

4 Conclusions

3 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

An ontology

Simplified graphical rendering of a fragment of one:

http://geneontology.org/docs/ontology-documentation/

4 / 55

http://geneontology.org/docs/ontology-documentation/

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

In an ODE...

5 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

... happenings behind the GUI ...

SubClassOf(awo:lion awo:animal)
SubClassOf(awo:lion ObjectSomeValuesFrom(awo:eats awo:Impala))
SubClassOf(awo:lion ObjectAllValuesFrom(awo:eats awo:herbivore))

6 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

... and underlying that serialisation

7 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Introduction

Ontologies
For their own sake
For communication among humans
Used for many different ontology-driven information systems
(database integration and linking, recommender systems, NLP,
textbook annotation and search, question generation, Q&A
systems, etc.)

⇒ Someone has to build them, somehow

8 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Introduction

Ontologies
For their own sake
For communication among humans
Used for many different ontology-driven information systems
(database integration and linking, recommender systems, NLP,
textbook annotation and search, question generation, Q&A
systems, etc.)

⇒ Someone has to build them, somehow

8 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Typical stages of macro-level methodologies

(scheduling, controlling, quality assurance)Ontology management

Ontology development and support

Ontology use

Feasibility study (problems, opportunities, potential
solutions, economic feasibility)

Conceptualisation (of the model, integration and
extension of existing solutions)

Implementation (ontology authoring in a logic-based
representation language)

Domain Analysis (motivating scenarios, competency
questions, existing solutions)

Maintenance (adapting the ontology to new
requirements)

Use (ontology-based search, integration, negotiation)

O
ntology reuse

Docum
entation

Evaluation

Knowledge
acquisition

9 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Scenarios for building Ontology Networks (NEON methodology)

10 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Ontology Summit 2013’s lifecycle model

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique

11 / 55

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Ontology Summit 2013’s lifecycle model

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique
11 / 55

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2013_Communique

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

More cycles within a cycle (for “ontology design”)

Ontology lifecycle

TDD
cycle

CQ added, template filled,
or axiom written

TDD
cycle

TDD
cycle

etc…TDD
cycle

etc…

TDD cycle

1. select
scenario

2. domain axiom
for TDD test

3. TDD test
expected to fail

4. update
ontology

5. classify ontology;
no contradictions

6. TDD test
expected to pass

7. refactor

8. regression
testing

TDD
cycle

TDD
cycle

TDD
cycle

TDD
cycle

TDD
cycle

Prior feasibility study, architecture,
language decisions, ontology reuse
decisions, etc etc, CQ specification

Deployment,
documentation, etc.

Keet CM, Lawrynowicz A. Test-Driven Development of Ontologies. ESWC’16.
Davies K., Keet CM, Lawrynowicz A. More Effective Ontology Authoring with Test-Driven Development and the
TDDonto2 tool. IJAIT, 2019, 28(7): 1950023.

12 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Ontology development at the ‘micro-level’ level (cf. macro)

We need to get those axioms into the ontology

The actual modelling, or ontology authoring, using micro-level
guidelines, methods, and tools

Methods, such as reverse engineering and text mining to start,
OntoClean and OntoPartS to improve an ontology’s quality
Tools to model, to reason, to debug, to integrate, to link to
data

⇒ But what if you’re not sure of the axioms yet? Or it leads to a
conflict and possibly also an ‘incoherent’ ontology?

13 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Ontology development at the ‘micro-level’ level (cf. macro)

We need to get those axioms into the ontology

The actual modelling, or ontology authoring, using micro-level
guidelines, methods, and tools

Methods, such as reverse engineering and text mining to start,
OntoClean and OntoPartS to improve an ontology’s quality
Tools to model, to reason, to debug, to integrate, to link to
data

⇒ But what if you’re not sure of the axioms yet? Or it leads to a
conflict and possibly also an ‘incoherent’ ontology?

13 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Ontology development at the ‘micro-level’ level (cf. macro)

We need to get those axioms into the ontology

The actual modelling, or ontology authoring, using micro-level
guidelines, methods, and tools

Methods, such as reverse engineering and text mining to start,
OntoClean and OntoPartS to improve an ontology’s quality
Tools to model, to reason, to debug, to integrate, to link to
data

⇒ But what if you’re not sure of the axioms yet? Or it leads to a
conflict and possibly also an ‘incoherent’ ontology?

13 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Examples

BFO does not have Stuff (e.g., mucus, cytosol, water). Deny
its existence? Add it as a not quite fitting subclass
somewhere? Create/reuse a core ontology?

Virus v Organism vs. Virus v acellular structure

A class Transformation or a relationship transforms?

proper parthood is transitive, irreflexive, and asymmetric.
Choose one? Give up on decidable reasoning?

14 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Examples

BFO does not have Stuff (e.g., mucus, cytosol, water). Deny
its existence? Add it as a not quite fitting subclass
somewhere? Create/reuse a core ontology?

Virus v Organism vs. Virus v acellular structure

A class Transformation or a relationship transforms?

proper parthood is transitive, irreflexive, and asymmetric.
Choose one? Give up on decidable reasoning?

14 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

The real use case (thanks to Rolf Grütter)

Epizootic disease outbreak in the Lemanic Arc (France,
Switzerland) in 2006

Human-pathogenic avian influenza H5N1, modelling & data

Swiss authorities set up protection zones within a radius of
3km, surveillance zones within a radius of 10km.

Rules to apply; e.g., poultry must be kept in the henhouse

Need to decide which municipalities to include in the
protection zones and which in the surveillance zones

15 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

One of the maps

Avian influenza in the Lemanic Arc; National Map 1:200,000 ©2008 swisstopo. Adapted from Perler L (2007).

Geflügelgrippe: Ursprung – Entwicklung – Ausblick. EVD, Bundesamt für Veterinärwesen BVET. (presentation).

16 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

The real use case (thanks to Rolf Grütter)

How to make those decisions better and faster for a next
time? (we’re in mid 2019 then...)

Two ontologies—epidemiology (finds, etc) and administrative
(generic, with Municipality etc.)—and a geodatabase

Municipality in exactly one region etc.

The (small) region of the find is contained in the region(s)
occupied by the protection zones that are contained in the
regions occupied by the surveillance zones

Reasoner: non-simple beyond OWL 2 DL!

17 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

The real use case (thanks to Rolf Grütter)

How to make those decisions better and faster for a next
time? (we’re in mid 2019 then...)

Two ontologies—epidemiology (finds, etc) and administrative
(generic, with Municipality etc.)—and a geodatabase

Municipality in exactly one region etc.

The (small) region of the find is contained in the region(s)
occupied by the protection zones that are contained in the
regions occupied by the surveillance zones

Reasoner: non-simple beyond OWL 2 DL!

17 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

The real use case (thanks to Rolf Grütter)

How to make those decisions better and faster for a next
time? (we’re in mid 2019 then...)

Two ontologies—epidemiology (finds, etc) and administrative
(generic, with Municipality etc.)—and a geodatabase

Municipality in exactly one region etc.

The (small) region of the find is contained in the region(s)
occupied by the protection zones that are contained in the
regions occupied by the surveillance zones

Reasoner: non-simple beyond OWL 2 DL!

17 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Outline

1 Context and motivation

2 Resolving conflicts

3 Implementation trade-offs

4 Conclusions

18 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

How to manage such differences?

Identify type of conflicts that can arise

Determine how to preempt or to detect them

Assess options what to do with it when a conflict arises

Specify a mechanism to keep track of these three aspects

Devise a way to make this easy to do and document choice

Keet CM, Grütter R. Toward a systematic conflict resolution framework for ontologies. JBMS, 2021, 12:15.

19 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Note: meaning negotiation vs conflict resolution

Meaning negotiation concerns deliberations to figure out the pre-
cise semantics one wants to represent in the ontology. They are all
positive choices in the sense of “which of the options is applicable?
Then we take that one”.

Conflict resolution Concerns choosing one option among a set of
two or more options, where that choice is deemed the ‘lesser among
evils’ for that scenario. It necessarily involves a compromise and
making it work requires reengineering something in at least one of
the ontologies or as a whole.

20 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Sample scenario to detect and resolve conflicts

Reuse scenario
Plan: import ontology O2 into ontology O1

Tool feedback (example)
1. O1+2 violates OWL 2 DL language
2. O1 reifies relations but O2 does not;

Examine sources of conflict (example)
1. o1:part-of = o2:part-of, but o1:part-of is transitive and
o2:part-of is used in a qualified cardinality constraint
2. This concerns o1:Vaccination and o2:vaccinates

Resolve conflicts (choices made for example)
1. Agree to keep both constraints and thus select a
more expressive ontology language.
2. Choose O1’s reification approach in line with its
modelling style

Ontology O1 Ontology O2

Implement resolution
1. No further action needed
2. Remodel o2:vaccinates axioms accordingly
3. Import O2’ into O1

Ontology O1 Ontology O2’

21 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

What are the key sources of conflicts?

Ontological differences between established theories
– DOLCE vs BFO

Ontological differences at the axiom-level
– parthood antisymmetric or not? [Cotnoir(2010)]

Different modelling styles

– foundational ontology-inspired or conceptual model-influenced
[Fillottrani and Keet(2017), Fillottrani and Keet(2019)]

Logic limitations causing conflicts for an ontology, affecting
the software ecosystem

– OWL only or DOL [DOL(2018)] that can do FOL and HOL

Logic limitations by design, for the purpose of scalability

– OWL 2 EL vs. OWL 2 DL [Motik et al.(2009)]

Certain deductions (excluding modelling mistakes) that
manifest after adding the axioms, during TDD, or upon
ontology matching attempts.

– disjointness declared among some ancestor

22 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

What are the key sources of conflicts?

Ontological differences between established theories
– DOLCE vs BFO

Ontological differences at the axiom-level
– parthood antisymmetric or not? [Cotnoir(2010)]

Different modelling styles
– foundational ontology-inspired or conceptual model-influenced

[Fillottrani and Keet(2017), Fillottrani and Keet(2019)]

Logic limitations causing conflicts for an ontology, affecting
the software ecosystem

– OWL only or DOL [DOL(2018)] that can do FOL and HOL

Logic limitations by design, for the purpose of scalability

– OWL 2 EL vs. OWL 2 DL [Motik et al.(2009)]

Certain deductions (excluding modelling mistakes) that
manifest after adding the axioms, during TDD, or upon
ontology matching attempts.

– disjointness declared among some ancestor

22 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

What are the key sources of conflicts?

Ontological differences between established theories
– DOLCE vs BFO

Ontological differences at the axiom-level
– parthood antisymmetric or not? [Cotnoir(2010)]

Different modelling styles
– foundational ontology-inspired or conceptual model-influenced

[Fillottrani and Keet(2017), Fillottrani and Keet(2019)]

Logic limitations causing conflicts for an ontology, affecting
the software ecosystem

– OWL only or DOL [DOL(2018)] that can do FOL and HOL

Logic limitations by design, for the purpose of scalability
– OWL 2 EL vs. OWL 2 DL [Motik et al.(2009)]

Certain deductions (excluding modelling mistakes) that
manifest after adding the axioms, during TDD, or upon
ontology matching attempts.

– disjointness declared among some ancestor
22 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Illustration of language profile conflicts

Requirement “The COVID-relevant medical ontology for
information systems should not exceed the OWL 2 EL profile
(compatibility with OBO, SNOMED CT, scalability)”

CIDO ontology for COVID-19 [He et al.(2020)] is not in OWL
2 EL

Class expression with a universal quantifier on rhs; a.o.:
‘Yale New Haven Hospital SARS-CoV-2 assay’ v

∀‘EUA-authorized use at’.‘FDA EUA-authorized organization’

Need a tool to find violating axioms: the OWL Classifier

23 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Illustration of language profile conflicts

Requirement “The COVID-relevant medical ontology for
information systems should not exceed the OWL 2 EL profile
(compatibility with OBO, SNOMED CT, scalability)”

CIDO ontology for COVID-19 [He et al.(2020)] is not in OWL
2 EL

Class expression with a universal quantifier on rhs; a.o.:
‘Yale New Haven Hospital SARS-CoV-2 assay’ v

∀‘EUA-authorized use at’.‘FDA EUA-authorized organization’

Need a tool to find violating axioms: the OWL Classifier

23 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Section of the OWL classifier, having detected that CIDO 0000020 (i.e.,

Yale New Haven Hospital SARS-CoV-2 assay) violated OWL 2 EL.

OWL Classifier https://github.com/muhummadPatel/OWL_Classifier

24 / 55

https://github.com/muhummadPatel/OWL_Classifier

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

‘Library’ of common conflicts (selection – 1/2)

No. Conflict Description Examples
Conflicting theories at the top-level

1 foundational ontologies adhere to con-
flicting theories

BFO, DOLCE, GFO, SUMO,
UFO, YAMATO

2 mereological conflicting mereological
theories

with Atom or not, weak vs.
strong supplementation

3 topological conflicting topological
theories

region connection calculus on
non-simply connected regions

4 building
blocks

different ontological com-
mitments embedded in
the language

whether roles are part of the
fundamental furniture of the
universe, 3D + time vs. 4D
‘worms’

. . .

25 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Some of this is ‘easy’ to figure out

Delegate the choice: use an existing foundational ontology

How to choose an existing foundational ontology?
What if it conflicts with the rest of the system?

Delegate the choice: use an existing ontology language

How to choose an existing language?
What if it conflicts with the rest of the system?

26 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Some of this is ‘easy’ to figure out

Delegate the choice: use an existing foundational ontology

How to choose an existing foundational ontology?

What if it conflicts with the rest of the system?

Delegate the choice: use an existing ontology language

How to choose an existing language?

What if it conflicts with the rest of the system?

26 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Some of this is ‘easy’ to figure out

Delegate the choice: use an existing foundational ontology

How to choose an existing foundational ontology?
What if it conflicts with the rest of the system?

Delegate the choice: use an existing ontology language

How to choose an existing language?
What if it conflicts with the rest of the system?

26 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Choose an existing foundational ontology

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW’12.

27 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Choose an existing foundational ontology

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW’12.

27 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Choose an existing foundational ontology

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW’12.

27 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Choose an existing foundational ontology

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW’12.

27 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Choose an existing foundational ontology

Khan Z, Keet CM. ONSET: Automated Foundational Ontology Selection and Explanation. EKAW’12.

27 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Consider language: simple or complicated

Simple purpose-oriented guidance:

Is reasoning
required?

Only data
annotation?

Text
annotation?

Expressivity
is important?

Use OWL (2) DL

Use OWL 2 EL

Use OBO
or OWL 2 EL

Use SKOS, OBO, or
OWL 2 EL

No

Yes

Decidability is
important?

Use any FOL, extension thereof, or higher order
logic, e.g. Common Logic, DLRus

large ABox?

Use OWL 2 QL

Use ‘translators’ (e.g., SKOS → OWL, OBO → OWL, OWL
→ FOL) or DOL as ‘glue’

Complicated: design your own!

Keet CM. Transforming semi-structured life science diagrams into meaningful domain ontologies with DiDOn. JBI,
2012, 45(3): 482-494.

28 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Consider language: simple or complicated

Simple purpose-oriented guidance:

Is reasoning
required?

Only data
annotation?

Text
annotation?

Expressivity
is important?

Use OWL (2) DL

Use OWL 2 EL

Use OBO
or OWL 2 EL

Use SKOS, OBO, or
OWL 2 EL

No

Yes

Decidability is
important?

Use any FOL, extension thereof, or higher order
logic, e.g. Common Logic, DLRus

large ABox?

Use OWL 2 QL

Use ‘translators’ (e.g., SKOS → OWL, OBO → OWL, OWL
→ FOL) or DOL as ‘glue’

Complicated: design your own!

Keet CM. Transforming semi-structured life science diagrams into meaningful domain ontologies with DiDOn. JBI,
2012, 45(3): 482-494.

28 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Well-known fundamental language conflicts

Attributes/data properties (OWL, UML) or not (OBO)

Parthood as primitive (originally so in OBO) or not (OWL)

Some separation of language from ‘semantic layer’ (OBO
naming scheme of entities vs OWL, CL etc.)

3D+time vs. 4D (in theory at least; time is costly)

Fillottrani PR, Keet CM. An analysis of commitments in ontology language design. FOIS 2020.

29 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

‘Library’ of common conflicts (selection – 2/2)

. . .
Other conflicts

9 modeling style
applied vs. foundational whether there are data

property axioms, alike
height between Person and
xsd:decimal

class vs. object property Infection vs. infected-by
subsuming roles vs. roles
inhering in objects

doctor is-a person vs. doctor
inheres-in person

10 language cultural-linguistic and la-
beling differences, such as
preferred/alt labels, or-
thography, language vari-
ants

population immunity vs herd
immunity, color vs colour,
and non-1:1 mappings (e.g.,
‘river’ vs fleuve and rivière)

30 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Modelling style example (1/2)

Requirement: Integrate the CIDO and CODO COVID-19
ontologies

CODO: laboratory testfinding ≡
{positive, pending, negative}
CIDO: positive COVID-19 diagnosis

v COVID-19 diagnosis, presumptive
positive COVID-19 diagnosis v
COVID-19 diagnosis, and negative

COVID-19 diagnosis v COVID-19

diagnosis

31 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Modelling style example (1/2)

Requirement: Integrate the CIDO and CODO COVID-19
ontologies

CODO: laboratory testfinding ≡
{positive, pending, negative}
CIDO: positive COVID-19 diagnosis

v COVID-19 diagnosis, presumptive
positive COVID-19 diagnosis v
COVID-19 diagnosis, and negative

COVID-19 diagnosis v COVID-19

diagnosis

31 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Modelling style example 2/2

(Naming issue, or also ontological: finding (some fact) vs.
diagnosis (conclusion drawn from the fact) — when taken in
context, intention is the same)

⇒ Class vs. instance representations of the same idea

Solution options:

Change CODO to use CIDO’s style
Change CIDO to use CODO’s style
A joint outside option; e.g.: use attribute +
values instead

32 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Modelling style example 2/2

(Naming issue, or also ontological: finding (some fact) vs.
diagnosis (conclusion drawn from the fact) — when taken in
context, intention is the same)

⇒ Class vs. instance representations of the same idea

Solution options:

Change CODO to use CIDO’s style

Change CIDO to use CODO’s style
A joint outside option; e.g.: use attribute +
values instead

32 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Modelling style example 2/2

(Naming issue, or also ontological: finding (some fact) vs.
diagnosis (conclusion drawn from the fact) — when taken in
context, intention is the same)

⇒ Class vs. instance representations of the same idea

Solution options:

Change CODO to use CIDO’s style
Change CIDO to use CODO’s style

A joint outside option; e.g.: use attribute +
values instead

32 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Modelling style example 2/2

(Naming issue, or also ontological: finding (some fact) vs.
diagnosis (conclusion drawn from the fact) — when taken in
context, intention is the same)

⇒ Class vs. instance representations of the same idea

Solution options:

Change CODO to use CIDO’s style
Change CIDO to use CODO’s style
A joint outside option; e.g.: use attribute +
values instead

32 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Record such information: the conflict set

Conflict set grammar for recording individual conflict sets in or
between ontologies

(production rules of most terminals are omitted)

33 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

34 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

34 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

34 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

34 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Cognitive walk-throughs for the Avian influenza Case Study

Administrative ontology O1
Functional(partOf)

Epidemiology ontology O2
Transitive(partOf)

Modeller: Yes

System: O’ is beyond OWL 2 DL.
This is because partOf is declared
transitive and functional.
Is the alignment
O1:partOf = O2:partOf
your intention?

alignment: O1:partOf = O2:partOf

System: Noted. Do you want to
remain within the maximum
expressiveness of OWL 2 DL?

Modeller: Yes

System: Noted. In that case, your
main, least disruptive, options to
resolve the conflict are as follows.
a) Remove alignment axiom, remove
epidemiology.
b) Keep epidemiology imported, but
remove the transitive axiom.
c) Keep epidemiology imported, but
remove the functional axiom.
Choose one option.

Modeller: a

System: Noted. Doing so will
remove all other alignments as well.
Are you sure? Type yes to
implement or ask for details.

Modeller: What else
will be removed?

System: The following 2 axioms
with epidemiology will be lost:
i) O1:has_2D = O2:has_2D
ii) O1:located_in =
O2:located_in

Modeller: Ok, delete

System: Noted. Your decision
has been implemented. No other
conflicts were detected. This
concludes the session.

1

2

3

4

6

5

Modeller: Explain
why

System: O’ is beyond OWL 2 DL.
Do you want to know why, or just
delete the violating axiom(s)?

System: because partOf is
declared transitive (from O2)
but also functional (from O1),
yet you declared O1:partOf =
O2:partOf. This violates the
language specification for OWL 2
DL. Would you like to keep them or
change something?

Modeller: Keep them

System: Noted. Keeping them
leaves three options:
a) Stay within the OWL tooling
infrastructure.
b) Change to the DOL framework, and
use the Hets reasoning system.
c) Change to Common Logic.
Choose one option.

System: Noted. Doing so means
that you will lose automated reasoning
features. Are you sure? Type yes to
continue or ask for details.

Modeller: What are
the consequences

of switching to CL?
System: The ontology will be more
precise. Computing consistency
likely will take longer, and it may
not terminate. Ok?

Modeller: No; stay
with OWL

System: Noted. Your decision
has been implemented. No other
conflicts were detected. This
concludes the session.

A

B

C

D

F

Modeller: a

E

A B

35 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Minimal system requirements

A conflict resolution workflow management system, be it a
Question Answering system or another strategy that avails of
a knowledge-to-text controlled language, canned text, a
decision tree, and two data structures (the conflict set and the
resolution options);

Algorithms to populate the conflict set, which may avail of
new wrappers for existing OWL tools to recast their
computation and outputs as detection and conflict resolution
functionalities;

End-user usable DOL and CL tools;

Software support for the language annotation models and
extant assessments on modelling style and language conflicts.

36 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Outline

1 Context and motivation

2 Resolving conflicts

3 Implementation trade-offs

4 Conclusions

37 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

38 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Connecting the knowledge to the data

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Queries for decision-making
formulate queries using the
knowledge graph to retrieve data

39 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Knowledge-to-Data Pipeline options

Knowledge
base K with
instances D

Knowledge

Data

Mapping

queries
query 1

rewritten
query 2

Extended
database
with K+D

queries

K+D stored
as data

queries

AI-oriented

DB-oriented

“Knowledge
with data”

“Knowledge
mapping data”

“Data transformation
knowledge”

“Data with
Knowledge”

Fillottrani, P.R., Keet, C.M. KnowID: An architecture for efficient Knowledge-driven Information and Data access.
Data Intelligence, 2020, 2(4): 487-512.

40 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Key distinguishing features of varying computational cost

Feature K a○D K ⇔ D D ./ K D a○K

World OWA OWA+CWA CWA CWA

Language for K OWL OWL relational,
DL

relational

Language for D OWL relational relational relational

Query language SPARQL SPARQL +
SQL (fragment)

SQLP SQL

Automated
reasoning

yes yes yes depends on
system

Reasoning
w.r.t. data

no separate
approach

query rewriting data comple-
tion

data comple-
tion

Mapping layer no yes no no

Transformations no no yes yes

Entity recasting no yes no yes

Syntactic sugar available available possible possible

41 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Queries for decision-making
formulate queries using the
knowledge graph to retrieve data

42 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

Flower
Height

Colour

ID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Mapping layer
links each entity
to a query over the
data source(s)

Flower
->
SELECT flowers.id
 FROM flowers
UNION
SELECT blom.name
 FROM blom
…

42 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

Flower
Height

Colour

ID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Mapping layer
links each entity
to a query over the
data source(s)

Flower
->
SELECT flowers.id
 FROM flowers
UNION
SELECT blom.name
 FROM blom
…

42 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

Flower

Height

Colour ID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Mapping layer
links each entity
to a query over the
data source(s)

Flower
->
SELECT flowers.id
 FROM flowers
UNION
SELECT blom.name
 FROM blom
…

xml:anytype
xml:int

42 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

Flower
Height

Colour

ID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Mapping layer
links each entity
to a query over the
data source(s)

Flower
->
SELECT flowers.id
 FROM flowers
UNION
SELECT blom.name
 FROM blom
…

42 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

Flower
Height

Colour

ID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Mapping layer
links each entity
to a query over the
data source(s)

Flower
->
SELECT flowers.id
 FROM flowers
UNION
SELECT blom.name
 FROM blom
…

End-user query
“give me all red flowers”
just click relevant elements
in the diagram

42 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

The WONDER System with the early version

Horizontal Gene Transfer (HGT) database
[Garcia-Vallvé et al.(2003)]

Reverse engineer the conceptual data model

Formalise it in OWL 2 QL

Create mappings

Create (web-based) interface for browsing, querying, and
answering as front-end to OBDA back-end

Calvanese D, Keet CM, Nutt W, Rodriguez-Muro M, Stefanoni G. Web-based Graphical Querying of Databases
through an Ontology: the WONDER System. ACM SAC 2010.

43 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA example in genomics

Organism
(Abbrev)

Gene
(.ID)

has / is on chromosome of

TaxID

NCBIID

OrganismName

BP

GenCode

{ 4, 11 }

NrGenes

NrPredHGTgenes

Taxonomy
(Abbrev)

KEGGCode
has link to

… has … information

… has … on its genome

has

has genome length

has

has

has has

NrCromosomes
{ 1, 2 }

… contains … chomosomes

GCValue

StDevGCorg

has computed *

GC1_o GC2_oGCtotal_o GC3_o

Percentage

… has … of transferred genes

GeneFunction
(.ID)

Function
has

has

Synonym

Strand

{ '-', '+' }

Coordinates
(.ID)

… has … on chromosome

BeginEnd

Length

GeneName
has

… has … of gene name

with

of has total has direction

GCstatsOrg
(Abbrev)

GCstatsGene
(.ID)

GCtotal_g GC1_g GC2_g GC3_g

has

has

MahSimMah

{ '1', '2' }

SimGC

{ '1', '2' }

DevAA

Nc

{ 20..61 }

P2

{ 0..1 }

ICDI

{ 0..1 }

Chi2

has

with translational efficiency

with bias

with bias degree

GCregion

{ 'high', 'low', '-', '+', 'f' }

Prediction

{ 'hgt', 'heg', '-' }
PID

has

has

with guesstimate

PATH
(.code)

KEGG
(.code)

participates in
… has … reference code

AltCode
(Abbrev)

has

OrganismInfo
(Abbrev)

has

HGTPredictions
(Abbrev)

has

… minus … makes up … **

GeneIDInfo
(.ID)

has additional

HGTPredictionGene
(.ID)

of has participant / participates in

GeneStats
(.ID)

hashas oddness
has oddness

has of / with

… has … at codon position

The statistics for AA and CodonUS are moved to a separate figure

ClusterOrthologGenes
has

nearby

"GeneNearbyGene"

adjacent to

overlaps with

Threshold

with max bp gap

GeneCluster
(.ID)located in

StrictHGTGeneCluster

FlexibleHGTGeneCluster

contains / located in

HGTGeneCluster

PathwayGenesCluster

Size

has minimum

NrStrictHGTClusters

has amount

is a cluster of

GCstDevGene

… has … at codon position

AggregateGCvalue
has computed *

Taxtree

has place in

44 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA example in genomics

44 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA example in genomics

44 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA example in genomics

44 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA example in genomics

44 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA example in genomics

44 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

OBDA with Ontop [Calvanese et al.(2017)] now more
elaborate and more robust

More case studies: Statoil and EPnet [Calvanese et al.(2016)]

Downsides

The mapping layer: cumbersome construction and
maintenance
Low expressiveness for ontology language
Limitations on types of queries

45 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Knowledge mapping data”: OBDA

OBDA with Ontop [Calvanese et al.(2017)] now more
elaborate and more robust

More case studies: Statoil and EPnet [Calvanese et al.(2016)]

Downsides

The mapping layer: cumbersome construction and
maintenance
Low expressiveness for ontology language
Limitations on types of queries

45 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Data-transformation-knowledge” example: KnowID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Queries for decision-making
formulate queries using the
knowledge graph to retrieve data

46 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Data-transformation-knowledge” example: KnowID

Flower
Height

Colour

name

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Transformation via abstract
relational model
with additional virtual identifiers

self *
name *
colour
height

FLOWER

46 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Data-transformation-knowledge” example: KnowID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Transformation via abstract
relational model
with additional virtual identifiers

self *
name *
colour
height

FLOWER

Flower

Height

Colour ID

xml:anytype

xml:int

46 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

“Data-transformation-knowledge” example: KnowID

Database Database
C++

application

Implementation
the actual information
system that stores and
manipulates the data

Ontology (or controlled vocab, kg)
provides the common vocabulary
and constraints that hold across
the applications

Transformation via abstract
relational model
with additional virtual identifiers

self *
name *
colour
height

FLOWER

Flower

Height

Colour ID

xml:anytype

xml:int

46 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Knowledge-driven Information and Data access (KnowID)

Data
management query formulation

in SQLP, assisted
by A or C

ARM A

RM A’Database
schema(s) S

Evaluation of
q1 over S+D

conceptual
data model

or application
ontology C

transform
transform

transform

SQL
result

q1 in SQLP

Query
request QData completion

KnowID
2. Formalisation

(if applicable)
1. Conversion to

EER (if applicable) 3. Classification 4. Materialisation
of deductions

Data D

Knowledge and information
management

EER diagram

OWL file,
XML etc.

RDF triples,
JSON etc.

Fillottrani, P.R., Keet, C.M. KnowID: An architecture for efficient Knowledge-driven Information and Data access.
Data Intelligence, 2020, 2(4): 487-512.
Fillottrani, P.R., Jamieson, S., Keet, C.M. Connecting knowledge to data through transformations in KnowID:
system description. Künstliche Intelligenz, 2020, 2020, 34, 373-379.

47 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Knowledge-driven Information and Data access (KnowID)

Data
management query formulation

in SQLP, assisted
by A or C

ARM A

RM A’Database
schema(s) S

Evaluation of
q1 over S+D

conceptual
data model

or application
ontology C

transform
transform

transform

SQL
result

q1 in SQLP

Query
request QData completion

KnowID
2. Formalisation

(if applicable)
1. Conversion to

EER (if applicable) 3. Classification 4. Materialisation
of deductions

Data D

Knowledge and information
management

EER diagram

OWL file,
XML etc.

RDF triples,
JSON etc.

Fillottrani, P.R., Keet, C.M. KnowID: An architecture for efficient Knowledge-driven Information and Data access.
Data Intelligence, 2020, 2(4): 487-512.
Fillottrani, P.R., Jamieson, S., Keet, C.M. Connecting knowledge to data through transformations in KnowID:
system description. Künstliche Intelligenz, 2020, 2020, 34, 373-379.

47 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Knowledge-driven Information and Data access (KnowID)

There’s more on the ‘knowledge and information
management’ module:

Swap between EER, UML, ORM
[Keet and Fillottrani(2015), Fillottrani and Keet(2014)]
DL (OWL) with reasoner at the back-end
Tool: crowd 2.0 (beta)
http://crowd.fi.uncoma.edu.ar:3335/

[Braun et al.(2020)]
More in the pipeline, such as integrating NOMSA for
summarisation and modularisation of ontologies

Querying with SQLP: SQLP requires less time for
understanding and authoring queries, with no loss in accuracy
[Ma et al.(2018)]

Data Completion TBD

48 / 55

http://crowd.fi.uncoma.edu.ar:3335/

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Outline

1 Context and motivation

2 Resolving conflicts

3 Implementation trade-offs

4 Conclusions

49 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Recap and future work

Foundational steps towards a framework that can deal in a
systematic way with modelling conflicts through conflict
resolution

Notion of conflict set, with a data structure

A first step towards a library of conflicts

Some supporting tools for conflict resolution; more needed

System design trade-offs in connecting the ontologies to the
data; more needed

50 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Main collaborators (on the works included in this talk)

Collaborators: Diego Calvanese and Werner Nutt (FUB,
Italy), Pablo Fillottrani (UNS, Argentina), Santi Garcia-Vellvé
(URV, Spain), Rolf Grütter (WSL, Switzerland), Stephan
Jamieson (UCT) Agnieszka Lawrynowicz (PUT, Poland),
David Toman (UW, Canada)

Current and former students: Zubeida Khan, Mandisa Baleni,
Kieren Davies, Bradley Malgas, Brian McGeorge, Aashiq
Parker, and Muhummad Patel, Giorgio Stefanoni

51 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

References I

Distributed ontology, model, and specification language, February 2018.

URL http://www.omg.org/spec/DOL/.

Germán Braun, Christian Gimenez, Laura Cecchi, and Pablo Fillottrani.

crowd: A Visual Tool for Involving Stakeholders into Ontology Engineering Tasks.
Künstliche Intelligenz, 2020.

D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal, M. Rezk, and G. Rull.

Ontology-based data integration in epnet: Production and distribution of food during the roman empire.
Engineering Applications of Artificial Intelligence, 51:212–229, 2016.

Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk,

Mariano Rodriguez-Muro, and Guohui Xiao.
Ontop: Answering SPARQL queries over relational databases.
Semantic Web Journal, 8(3):471–487, 2017.

Aaron J. Cotnoir.

Anti-symmetry and non-extensional mereology.
The Philosophical Quarterly, 60(239):396–405, 2010.

P. R. Fillottrani and C. M. Keet.

Dimensions affecting representation styles in ontologies.
In 1st Iberoamerican conference on Knowledge Graphs and Semantic Web (KGSWC’19), volume 1029 of
CCIS, pages 186–200. Springer, 2019.
24-28 June 2019, Villa Clara, Cuba.

52 / 55

http://www.omg.org/spec/DOL/

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

References II

Pablo R. Fillottrani and C. Maria Keet.

Patterns for heterogeneous tbox mappings to bridge different modelling decisions.
In E. Blomqvist et al., editors, Proceeding of the 14th Extended Semantic Web Conference (ESWC’17),
volume 10249 of LNCS, pages 371–386. Springer, 2017.
30 May - 1 June 2017, Portoroz, Slovenia.

Pablo Rubén Fillottrani and C. Maria Keet.

Conceptual model interoperability: a metamodel-driven approach.
In A. Bikakis et al., editors, Proceedings of the 8th International Web Rule Symposium (RuleML’14),
volume 8620 of LNCS, pages 52–66. Springer, 2014.
August 18-20, 2014, Prague, Czech Republic.

S. Garcia-Vallvé, E. Guzman, M.A. Montero, and A. Romeu.

HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes.
Nucleic Acids Research, 31(1):187–189, 2003.

Yongqun He, Hong Yu, Edison Ong, Yang Wang, Yingtong Liu, Anthony Huffman, Hsin hui Huang, John

Beverley, Asiyah Yu Lin, William D. Duncan, Sivaram Arabandi, Jiangan Xie, Junguk Hur, Xiaolin Yang,
Luonan Chen, Gilbert S. Omenn, Brian Athey, and Barry Smith.
Cido: The community-based coronavirus infectious disease ontology.
In Janna Hastings and Frank Loebe, editors, Proceedings of the 11th international Conference on
Biomedical Ontologies, volume 2807. CEUR-WS, 2020.

53 / 55

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

References III

C. Maria Keet and Pablo Rubén Fillottrani.

An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2.
Data & Knowledge Engineering, 98:30–53, 2015.
doi: 0.1016/j.datak.2015.07.004.

Weicong Ma, C. Maria Keet, Wayne Oldford, David Toman, and Grant Weddell.

The utility of the abstract relational model and attribute paths in sql.
In Catherine Faron Zucker, Chiara Ghidini, Amedeo Napoli, and Yannick Toussaint, editors, Proceedings of
the 21st International COnference on Knowledge Engineering and Knowledge Management (EKAW’18)),
volume 11313 of LNAI, pages 195–211. Springer, 2018.
ISBN 978-3-030-03667-6.
12-16 Nov. 2018, Nancy, France.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.

OWL 2 Web Ontology Language Profiles.
W3C recommendation, W3C, 27 Oct. 2009.
http://www.w3.org/TR/owl2-profiles/.

54 / 55

http://www.w3.org/TR/owl2-profiles/

Context and motivation Resolving conflicts Implementation trade-offs Conclusions

Thank you!

Questions?

Some self-promotion:

My textbook on ontology engineering
(aimed at computer scientists)

Free pdf (and slides and exercises) at
https://people.cs.uct.ac.za/

~mkeet/OEbook/

Also available in paperback:

55 / 55

https://people.cs.uct.ac.za/~mkeet/OEbook/
https://people.cs.uct.ac.za/~mkeet/OEbook/

	Context and motivation
	Resolving conflicts
	Implementation trade-offs
	Conclusions

