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Abstract
Parthood is used widely in ontologies across sub-
ject domains, specified in a multitude of mereolog-
ical theories, and even more when combined with
topology. To complicate the landscape, decidable
languages put restrictions on the language features,
so that only fragments of the mereo(topo)logical
theories can be represented, even though those full
features may be needed to check correctness during
modelling. We address these issues by specifying a
structured network of theories formulated in mul-
tiple logics that are glued together by the various
linking constructs of the Distributed Ontology Lan-
guage, DOL. For the KGEMT mereotopology and
its five sub-theories, together with the DL-based
OWL species and first- and second-order logic, this
network in DOL orchestrates 28 ontologies.

1 Introduction
Mereology, the theory of parthood, is well-established in On-
tology (philosophy), and is used widely in ontologies for the
Semantic Web and other ontology-driven information sys-
tems. For instance, the medical terminologies openGalen
(23 part-whole relations) [Rogers and Rector, 2000] and
SNOMED CT, the Gene Ontology [Gene Ontology Consor-
tium, 2000] that is used widely for database integration in the
biological sciences, and the Foundational Model of Anatomy
[Rosse and Mejino Jr, 2003] all use variants of mereology.
Mereotopology is an extension of mereology with topologi-
cal notions so that one can distinguish between interior part
and tangential part. It is used in geographic information sys-
tems and for annotation of pictures and with it, one can in-
fer, e.g., whether a country is landlocked; e.g., [Grütter and
Bauer-Messmer, 2007; Keet et al., 2012].

Due to the trade-offs between the expressiveness of logic
languages and computational complexity, it has been difficult
to represent mereology and mereotopology in full and such
that one can obtain the desired inferences. Attempts include
the extension of OWL with reflexivity and irreflexivity [Hor-
rocks et al., 2006] and trade-off assessments for the OWL
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species on consequences for automated reasoning [Keet et al.,
2012]. The most expressive Description Logics (DL)-based
OWL language, OWL2 DL, creates further complications for
the modeller due to expressiveness limitations on object prop-
erties. A concrete example of this is the choice between part-
hood’s transitivity vs. its use with qualified number restric-
tions. This gives a modeller three options, using humans with
their limbs and feet as example: 1) humans can have as part
any number of limbs and infer that if a foot is part of a limb
and a limb part of a human, then that foot is part of that hu-
man; 2) a (canonical) human has as part exactly four limbs
but it cannot be inferred that the foot is part of the human;
and 3) a human has exactly four limbs and we can make the
(transitive) inferences about feet at the cost of scant tool sup-
port and poor performance compared to options 1 and 2, due
to translating it to first-order logic (FOL) and calling a cor-
responding reasoner. If some OWL ontology O1 uses option
1 and OWL ontology O2 option 2, then importing or merg-
ing the ontologies leads to option 3—an OWL file outside of
OWL2 DL—and undecidability in general. This lack of clo-
sure under modular combination is a rather unusual aspect
for a logic-based modelling language (this problem does not
exist in, e.g., FOL), and in the typical situation of ontology
development with Protégé, this leaves the modeller stranded.

In sum, within the OWL context, it is confusing for the
modeller as to which mereo(topo)logical theory to include, it
does not meet the representation and reasoning requirements
of the domain experts, computationally incompatible mod-
elling choices may not be obvious, and yet for various sce-
narios different choices are applicable.

We aim to solve these issues by tying together two com-
ponents. First, we structure the mereological theories, using
a two-pronged approach. There are several recognised sub-
theories in the KGEMT mereotopology and there are estab-
lished languages with their language features that can rep-
resent various subsets of those theories. We investigate this
intersection and elucidate the maximum possible sub-theories
for each language. They and their interactions are presented
formally in a networked set of theories represented in the
Distributed Ontology, Model, and Specification Language
(DOL), as it was specifically designed for linking theories
represented in different logics up to higher order logic. DOL
is supported by a tool ecosystem (ontohub.org/Hets [Code-
scu et al., 2017a]) to select the appropriate reasoners for



it, rather than sticking to one upfront. This resulted in 28
interconnected micro-ontologies—serving as basic versions
of ontology design patterns—of mereology, topology, and
mereotopology. A modeller then can choose which theory to
include for which ontology usage scenario, and when to use
the linking to a more expressive version when reasoning time
is not crucial. Due to the interactions of language features that
pushes an ontology into one fragment or another, we propose
steps towards conflict resolution, which pinpoints automati-
cally which axioms violate which logic, so that a modeller
can make an informed decision.

2 Preliminaries
2.1 Mereotopology
The mereotopologies we focus on are based on [Varzi, 2007;
Keet et al., 2012], which zooms in on ontologically interest-
ing mereological and topological theories, building them up
from the primitive parthood and connection relations up to
the KGEMT mereotopological theory, as depicted in Fig. 1.
Ground Mereology commences with the primitive part of
relation that is transitive, reflexive, and antisymmetric (t1-
t3) and Ground Topology commences with the reflexive and
symmetric (t6,t7) connection relation. It is possible to con-
struct a different lattice of mereo(topo)logical theories; the
scope of this paper, however, is to present a reusable approach
to represent and reason over a set of interconnected theories
in different logics.

Ground Topology 
T = t6,t7

Minimal (mereo) Topology 
MT = T+t8,t9

Ground Mereology 
M = t1-t3; and t20,t21,t25-t27

General Extensional Mereology 
GEM = M+t4,t5  

General Extensional Mereotopology 
GEMT = MT+GEM+t10-t13; and t23,t24

Kuratowski extension of GEMT 
KGEMT = GEMT+t14-t19

Figure 1: Hasse Diagram of the theories we focus on, from weaker
to stronger. The “tX” numbering refers to the set of axioms listed
[Keet and Kutz, 2017] and an “; and” are additional axioms or defi-
nitions that can be asserted based on the axioms in the theory, such
as defining proper parthood (t20) in terms of parthood.

KGEMT does not (have to) exist in isolation. For in-
stance, it may integrate with the DOLCE foundational on-
tology as it already incorporates GEM [Masolo et al., 2003]
and other foundational ontologies rely heavily on theories
of parts, such as BFO [BFO, last accessed July 2017], who
are struggling to reconcile the expressive theories from On-
tology with the practicalities of OWL and OBO. It could
serve the many attempts in domain ontology development
in, e.g., medicine and environment [Donnelly et al., 2006;
Grütter and Bauer-Messmer, 2007].

2.2 Logics
We zoom into logics with a considerable uptake and some
tool support: the OWL family of languages [Cuenca Grau et

al., 2008; Horrocks et al., 2003], FOL, and the newly stan-
dardised DOL [Kutz et al., 2010; Mossakowski et al., 2015].

Mereotopology and OWL The most recent standardised
language in the OWL family is OWL2 [Motik et al., 2009],
of which most sublanguages are based on DLs [Baader et al.,
2008], which are decidable fragments of FOL that aim to find
‘sweet spots’ of the trade-offs between expressiveness and
decidability. It is already problematic to represent even just
Ground Mereology in OWL2 DL: antisymmetry (t3) is not
supported, nor can one use both transitivity of proper part-
hood (t26) together with asymmetry (t27). Such issues in-
crease the number of subtheories to deal with (e.g.: theory 15
vs. 16 in Table 1).

Relevant DOL features When two independently de-
veloped ontologies have to be reused as modules in a
larger ontology, their differences will typically prevent them
from working together properly due to, e.g., synonyms,
homonyms, and the need for bridge axioms to link the on-
tologies appropriately [Euzenat and Shvaiko, 2013; Code-
scu et al., 2017b]. DOL aims to provide a unified met-
alanguage for handling this diversity [Kutz et al., 2010;
Mossakowski et al., 2015]. It was approved as a standard of
the Object Management Group (OMG) in 2016 [DOL, 2016].
DOL enjoys many distinctive features, including, among oth-
ers: (1) structuring constructs for building ontologies from
existing ontologies, like imports, union, forgetting, interpo-
lation, and filtering; (2) module extraction; (3) various map-
pings between ontologies and (4) networks of ontologies.

DOL is designed as a multi-logic meta-language, already
supporting all of the mainstream ontology languages in use
today. The framework is based on the theory of ‘institutions’,
abstracting from the peculiarities of syntax and semantics of
particular logics; see [Goguen and Burstall, 1992; Kutz et al.,
2010] for technical details.

3 Tying it together with DOL

Given the five mereo(topo)logical theories together with
the DL-based OWL species with their feature trade-offs
and exclusions, FOL, and HOL, then in combining them,
one can construct 28 theories (presented fully in [Keet
and Kutz, 2017]), which are the maximal subsets of the
mereo(topo)logical theories per language. Note that there are
not 227 theories, because not every combination of the 27 ax-
ioms makes sense ontologically. For instance, the combina-
tion of, say, t1 (reflexivity of parthood) and t16 (additivity of
closure) into one theory is not meaningful, because i) the two
are independent as such, for t1+t16 lacks the inclusion ax-
iom (t14) that relates parthood with closure, and ii) each one
misses characteristics deemed essential in ontology (transi-
tivity and antisymmetry for parthood, and its definition and
idempotence for closure, respectively).

The theories are available on OntoHub at https:
//ontohub.org/repositories/mereotopology,
and the repository is currently being extended with further
first- and second-order modelling and full structuring. For
presentation purposes and anticipated usage, we present the
structuring of the network of theories using DOL by focusing



on the OWL species and extensions to OWL + FOL. From
the DOL structuring point of view, second-order axioms can
be dealt with in the same way, including SOL (a second-order
sublogic of CASL), HasCASL (the higher-order extension
of CASL), Common Logic, Isabelle/HOL and HOL-light, as
well as THF; see [Mossakowski et al., 2014].

3.1 Organising micro-ontologies in DOL

The basic structuring operations for logical theories are al-
ready available on the logic-specific level. For instance, when
working exclusively with OWL theories, we can employ
the purely homogeneous DL-based OWL fragment of DOL,
called DOWL [Kutz et al., 2016]. The most basic mecha-
nisms relevant for the present paper that we gain, in terms
of structuring, on top of OWL are the following: (1) con-
trol over signatures via renaming symbols along imports, (2)
extending existing theories with new axioms (theory exten-
sions), (3) unions of theories, (4) theory interpretation, (5)
syntactic extraction of modules using specified symbols, and
(6) lemma book-keeping and counterexample specification.
Features 1–5 will be illustrated in this section; the two more
advanced DOL features (item 6) will be discussed in Sec-
tion 3.2. We begin by illustrating the idea of extending a
theory by new axioms (feature 2). We use the simplest possi-
ble examples on purpose, to illustrate the underlying ideas as
clearly as possible.
Extensions We extend theory8 (OWL2 EL/QL) into the-
ory4 (OWL2 QL) by adding symmetry (t7):
logic OWL2.QL
ontology theory4 =
theory8
then
ObjectProperty: C Characteristics: Symmetric %(t7)

Unions We simultaneously illustrate unions of theories
(feature 4) with control over signatures (feature 1). The union
of theory7 (OWL2 EL) and theory11 (OWL2 RL) results in
theory2, expressed in OWL2 QL. To illustrate how we can di-
rectly manage signatures, the given theories use diverging vo-
cabulary for talking about connection, which is a very com-
mon phenomenon in practice.
logic OWL2.QL
ontology theory2 =
theory7 with Con |- > C
and
theory11 with Co |- > C

The result is a theory that combines the axioms of theories
7 and 11, with a unified signature for connection, using the
symbol C.
Theory Interpretation To continue the previous example,
clearly, theory7 (or theory11) can be interpreted into theory2
by mapping the symbol Con to C. According to the seman-
tics of theory interpretation, theory2 can then prove all the
consequences of theory7, under this translation (see [Kutz et
al., 2010] for a more detailed discussion of interpretations).

Heterogeneous DOL: Logic translation The heteroge-
neous case, i.e., when moving from a weaker logic (say, OWL
DL) to a more expressive one (say, full FOL) is a specific
strength of DOL. We illustrate this by extending theory6

(in OWL2 EL) with antisymmetry and weak supplementation
(this is ‘almost’ theory20 (in FOL), however still lacking the
definitions of O and EQ), as follows:
logic CASL.FOL
ontology theory6_plus_antisym_and_WS =
theory6 with translation OWL22CASL
then
forall x,y:Thing . P(x,y) /\ P(y,x) => x =y %%(t3)
forall x,y:Thing . not P(y,x) =>

exists z:Thing . P(z,y) /\ not O(z,x) %%(t4)

Definitional Extensions Definitional extensions are one of
the most basic tools in ontology design (cf., e.g., DOLCE)
and can be specified explicitly in DOL. Indeed, they are one
of the basic structuring means to organise mereotopological
theories: e.g., proper part of (PP) and overlap (O) can be
defined in terms of part of (P), and tangential proper part
of (TPP) in terms of part of and connection.

Technically, a definitional extension with a definition of,
e.g., overlap (O) consists of a signature extension with the
binary predicate symbol O(x, y), together with the basic def-
inition of O in terms of P. More formally, a theory T2 in sig-
nature σ′ is a definitional extension (%def) of theory T1 in
signature σ, if any T1-model has a unique expansion to a T2-
model. Intuitively, T2 adds neither additional constraints nor
additional freedom of interpretation to T1, but rather the new
symbols in T2 are uniquely defined in terms of the symbols
in T1 [Kutz et al., 2010]. Note that it is a slightly different
situation when previously introduced symbols, even if unax-
iomatised, are augmented with definitions (which is in gen-
eral neither definitional nor conservative). We say that T2 is
a weakly definitional theory extension (%wdef) of T1 if each
realisation of T1 can be expanded to at most one realisation
of T2. All these requirements can be expressed in DOL. We
complete the previous incomplete definition of theory20 as
follows:
logic CASL.FOL
ontology theory20 =
theory6_plus_antisym_and_WS
then %wdef
. forall x,y:Thing . O(x,y) <=> exists z:Thing (P(z,x)

/\ P(z,y)) %(t21)
. forall x,y:Thing . EQ(x,y) <=> P(x,y) /\ P(y,x) %(t22)

The result is a complete specification of theory20, where the
previously undefined symbols O and EQ have been aug-
mented with their formal definitions.

DOL network and colimits The entire network of 28 the-
ories can be formally represented as a DOL network, written
as follows:
network KGEMT_network = theory1,...,theory28,M1,...,Mp

Here, the theories theory1–theory28 are listed, followed by
the defined theory interpretations Mi connecting the various
ontology nodes.

Since the network explores the subtheories of KGEMT
along the dimensions of language expressivity and ontolog-
ical soundness, there are no conflicting logical statements
among the 27 axioms. In fact, DOL’s combination technique
(based on computing colimits of the network) can compute
the colimit of the network of theory1–theory28 resulting in
the full KGEMT.



Table 1: Selection of subsets of KGEMT that can be represented in HOL, FOL, and the OWL species. For the OWL species, t9, t20-t24 were
simplified and added as primitives (axiom numbers of [Keet and Kutz, 2017] appended with a “p”). For readability and brevity, FOL and
HOL are not listed where OWL species are listed, and OWL2 DL is not listed if it lists an OWL2 DL fragment.

N Language Subsets of KGEMT axioms Comments
2 OWL 2 QL t6, t7 T, c
4 OWL 2 QL t6, t7, t8, t9p MT
7 OWL 2 EL t6 T, c, partial
8 OWL 2 EL, 2QL t6, t8, t9p MT, partially
11 OWL 2 RL, 2QL, OWL Lite, DL t7 T c, partial
15 OWL 2 DL t1, t2, t6-t10, t20p-t24p, t25, t27 GEMT, partial
16 OWL 2 DL t1, t2, t6-t10, t20p-t24p, t26 GEMT, partial
20 FOL, HOL t1, t2, t3, t21, t22, t4 M, with p
23 FOL, HOL t6, t7, t8, t9 MT
25 FOL t1-t4, t6-t12, t14-t27 KGEMT, partial
26 HOL t1-t5, t20, t21, t22, t25, t26, t27 GEM
28 HOL t1-t27 KGEMT

All 28 theories live in subsignatures of the full KGEMT,
where some, but not all, have different signatures. E.g., MT’s
signature does not have parthood, and GEM does not have
connection and enclosure, and neither has closure, interior,
and exterior that are part of KGEMT’s axioms only.
ontology KGEMT = combine KGEMT_network

Moreover, the network construct allows us to exclude cer-
tain mappings and ontology nodes. Therefore, we can select
a language species, and compute the maximal combination
of subtheories that live in that species. Note, as discussed
earlier, that this might lead to a theory outside of the logic
species for some logics, such as OWL2 DL, but this will not
occur for OWL2 EL or FOL sub-networks.

3.2 Lemmas, Consistency, and Countermodels
When using one or more of the 28 mereotopological theories,
it is important to keep track of the desired consequences of
the theories and to record counterexamples of properties that
do not follow from the current theory. Both features are sup-
ported by DOL, as discussed next.
Keeping track of consequences We continue the example
from above. If proper part of is introduced definitorially
then we expect its typical properties to be entailed by the def-
inition. This depends on how precise part of was axioma-
tised. We can augment any given theory with a definition of
PP , and record the consequences, as follows:
logic CASL.FOL
ontology theory20_with_PP_lemmas =
theory20
then %wdef
. forall x,y: Thing . PP(x,y) <=> P(x,y) /\ not P(y,x)
then %implies
.forall x,y: Thing . not PP(x,x) %(t25)
.forall x,y,z: Thing . PP(x,y) /\ P(y,z) => PP(x,z) %(t26)
.forall x,y,z: Thing . PP(x,y) => not PP(y,z) %(t27)

Assuming the stated theory, the declared lemmas (sen-
tences in the present logic), namely, the three axioms listed
after the annotation %implies, are logical consequences of
the theory. This specification therefore introduces proof obli-
gations, i.e., forces a connected automated reasoner to prove
the axioms (t25)–(t27) from the theory specified before.

Relative consistency and countermodels Proving consis-
tency of the theories is easy for the OWL-based ones, for one
simply can use one of the OWL2 reasoners. Theories 1-19
have been checked as such, and are consistent according to
those reasoners. However, as soon as we move away from
OWL to FOL, establishing consistency can be extremely dif-
ficult with current automatic reasoning capabilities.

We outline how in DOL we can specify and verify automat-
ically the consistency of adding axioms to an existing theory,
and how to prove that a theory admits unintended models.
This is possible with theory interpretation and formal speci-
fication of models. A model can be declaratively specified as
a logical theory with exactly one model up to isomorphism
(there is standard approaches for this in the literature). For
instance, to prove that theory23 is consistent, one specifies
a finite model in a specification M which we assume uses
symbols co, e, P and write the following interpretation:
logic CASL.FOL
interpretation Cons : theory23 to M = C |-> co, E |-> e

By definition of theory interpretation, ‘Cons’ is correct iff
every model of M reduced along the morphism defined in
Cons is a model of theory23. Now M specifies a fixed model
and thus proving the interpretation correct (the axioms of the-
ory23 hold on M ) establishes consistency. The same tech-
nique can be used to show that a theory T is both consistent
and admits counterexamples to specific principles, by inter-
preting T into a model M that violates principle φ. Here,
the heterogeneous features of DOL are a powerful tool, since
the countermodel can be specified in a more expressive logic
(e.g., FOL) than the theory that we interpret (e.g., OWL2 EL).
A very simple example: the mereology in theory15 leaves out
antisymmetry, which clearly has unintended models. We can
specify in FOL a non-well-founded model for part of, and by
interpreting theory15 into this model, give formal proof that
theory15 admits such models.

4 Conclusion
We have presented an overview of a network of 28 modu-
lar ontologies in DOL (more fully presented in [Keet and



Kutz, 2017]), relating various fragments of the KGEMT
mereotopological theory and its five sub-theories, which was
driven by the expressiveness of the six DL-based OWL
species and first and second order logic.

Work has commenced with resolution of feature conflicts
among the OWL species with the OWL classifier tool, in-
forming a modeller about language violations in order to
make informed decisions; its preliminary results and usage
scenarios are described in [Keet and Kutz, 2017]. Future
work includes extending this network with incompatible ex-
tensions, such as atomicity and gunk, as well as a detailed
specification of countermodels, formal consistency proofs,
and the exploration of logic-specific sub-networks.
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