
Toward an ontology-driven unifying metamodel
for UML Class Diagrams, EER, and ORM2

C. Maria Keet1 and Pablo Rubén Fillottrani2,3

1School of Mathematics, Statistics, and Computer Science, University of
KwaZulu-Natal and UKZN/CSIR-Meraka Centre for Artificial Intelligence Research,

South Africa, keet@ukzn.ac.za
2 Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional

del Sur, Bah́ıa Blanca, Argentina, prf@cs.uns.edu.ar
3Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires, Argentina

Abstract. Software compatibility and application integration can be
achieved using their respective conceptual data models. However, each
model may be represented in a different language. While such languages
seem similar yet known to be distinct, no unifying framework exists that
respects all of their language features. Aiming toward filling this gap, we
designed a common, ontology-driven, metamodel of the static, structural,
components of ER, EER, UML v2.4.1, ORM, and ORM2, such that each
is a fragment of the encompassing consistent metamodel. This paper
presents and overview and notable insights obtained on the real common
core entities and constraints, roles and relationships, and attributes and
value types that we refine with the notion of dimensional attribute.
Keywords: Metamodel, UML, EER, ORM

1 Introduction

Complex software system design and information integration from heterogeneous
sources is required due to, among others, upscaling of scientific collaboration in
the life sciences [33], e-government initiatives [29], company mergers [4], and the
emergence of the Semantic Web. Therefore, establishing connections between
multiple conceptual models has become an important task, as the system’s con-
ceptual data models are available in, mainly, UML, EER, or ORM. However,
traditional information systems development and management only exhibit this
capability at the physical schema layer [7] or for conceptual models represented
in the same language [2,12]. Several works has been done for conceptual data
models lately, but subtle representational and expressive differences in the lan-
guages makes this task very difficult, and current tools offer only very limited
functionality in linking or importing models represented in one language into
one represented in another language; e.g., mandatory and disjointness is catered
for, but not weak entity types, identification, or attributes [7,8,9].

The differences between the main conceptual data modelling (CDM)
languages—UML Class Diagrams, ER, EER, ORM, and ORM2—may seem
merely terminological, but it is known that from a metamodelling viewpoint,



this is not the case [18], and at times not even within the same family of lan-
guages [25]; conversely, what may seem different may actually not be, or at least
have a common ‘parent’ in meaning. The latter concerns differences in ontolog-
ical foundations, but the state of the art in this area has not gone beyond a
single CDM language and only for UML and ORM (e.g., [15,25]). Thus, it is
unclear to what extent the languages differ or agree on their underlying princi-
ples for modelling information. This gap, in turn, is a limiting factor of mapping
and transformation algorithms for CASE tools to let one work in parallel on
conceptual data models represented in different languages that otherwise could
be highly useful in information integration and complex system development.
In addition, more detailed insight in the overlap and differences in underlying
modelling principles will contribute to the understanding of the extent to which
the language features affects modelling information as accurately as possible or
needed, and to tools and methodologies for model development and maintenance.

To solve these issues, a comprehensive formalisation of the languages is
needed to manage their interaction, but to arrive there, it first should be clear
what entities and constraints exist in each language and how the differences
can be reconciled without changing the languages. That is, not a comparison
of metamodels, but a single integrated metamodel inclusive of all language fea-
tures, so that one can unify the CDM languages and design straight-forward
transformation algorithms at the conceptual layer in software and database de-
velopment. We designed such a unifying metamodel for the static, structural
components of UML 2.4.1 class diagrams, EER, and ORM2/FBM and their
constraints, which, to the best of our knowledge, is the first of its kind. This
metamodel is ontology-driven in the sense that our arguments are supported by
insights from Ontology and ontologies rather than the argument of convenience
to fit with an a priori chosen logic language. The unification brings afore the
differences and commonalities, such as that they all agree only on Relationship
(association), Role (/association end/relationship component), and Object type
(/class/entity type), but also ‘incomplete’ coverage of certain features in one lan-
guage that are present in full in another one, such as attributes. While for the
static, structural, entities ontology helped the harmonization, this is much less
the case for the constraints: jointly, there are 38 constraints, but there is a re-
markable small overlap among the languages (mandatory, uniqueness/functional
and cardinality constraints in general, disjointness and completeness, and subset
constraints). In this paper, we provide a summary of the metamodel and, due
to space limitations, discuss the two most salient and ontologically interesting
aspects of it, being the roles and relationships, and attributes. We discuss related
works in Section 2, introduce and describe some interesting design decisions in
the metamodel in Section 3, and we conclude in Section 4.

2 Related works

There are different strands of investigation in different subfields that consider
multiple CDM languages; the physical schema layer and integrating conceptual



models represented in the same language have their own issues and solutions,
which is beyond the scope. Comparing the languages through their metamod-
els (in ORM) highlighting their differences [18] is a useful step before unifying
them. The Unifying Foundational Ontology (UFO) focuses on the philosophical
aspects of conceptual modelling and has been applied to extend the UML 2.0
metamodel with more specific entities, such as a Sortal Class [15,17]. Their onto-
logical analysis of, among others, the nature of UML’s class and association did
not translate into a revised metamodel specification, however.

Venable and Grundy designed [37] and implemented a partial unification
in MViews [13] and Pounamu [38]. Their metamodel in the CoCoA graphical
language covers a part of ER and a part of NIAM (a precursor to ORM), and
omits, mainly, value types, nested entity types, and composite attributes, and
NIAM is forced to have the attributes as in ER in the ‘integrated’ metamodel.
Consequently, their “dynamic” ad hoc mappings are limited.

Bowers and Delcambre [7] present a framework for representing schema and
data information coming from several data models, mainly relational, XML and
RDF. Its main characteristic is a flat representation of schema and data, and the
possibility of establishing different levels of conformance between them. However,
its representational language ULD only includes ordinal, set and union class
constructs, and cardinality constraints.

Boyd and McBrien [8] uses the Hypergraph Data Model to relate schemas
represented in ER, relational, UML, and ORM, and includes transformation rules
between them. Using graphs as intermediate representation has the advantage
of providing a simple irreducible form for schemas that can be used to prove
schema equivalence. The representational language includes inclusion, exclusion
and union class constructs, and mandatory, unique and reflexive constraints.
The combination of these types of constraints gives a rich language, but roles,
aggregation, and weak entity types are missing.

Atzeni et al [2,3] describe an automatic approach that translates a schema
from one model to another. They provide a small set of “metaconstructs” that
can be used to characterize different models. These metaconstructs are entities
(called “abstracts”), attributes (called “lexicals”), relationships, generalization,
foreign keys, and complex attributes. Automatic translations between schemas
are produced in the Datalog language, but translations from a rich representa-
tional language may require a sequence of such basic translations, if possible.

Thalheim [36] developed a framework for modelling layered databases, pos-
sibly integrating databases in different paradigms, such as OLAP systems and
streaming databases. This type of database modelling is out of scope since we
focus only on databases described with CDM languages.

Concerning unification by means of a single formalisation in a chosen logic,
there are separate formalizations, which can be seen as prerequisites, and partial
unifications, e.g., [1,5,9,19,22,23,27,32]. Their approach is, mainly, to choose a
logic and show it fits sufficiently with one of the CDM languages, and perhaps
due to this, different logics are used for different CDM languages, therewith
still not providing the sought-after interoperability for either of the languages



or among each other. For instance, the Description Logic ALUNI is used for a
partial unification [9] but DL-Lite and DLRifd for formalisation [1,5], which is
incomplete regarding the features is supports, and ORM has features that render
the language undecidable [24]. As such, they cannot simply be linked up and
implemented. Once there is a comprehensive metamodel, they could be either
formalised in one logic, or possibly the different logics (if implemented) could be
orchestrated by means of the Distributed Ontology Language and system that
is currently being standardised by ISO (http://ontoiop.org).

Our approach is different regarding two main aspects: scope and method-
ology. We aim to capture all the languages’ constructs and generalise in an
ontology-driven way so that the integrated metamodel subsumes the elements of
EER, UML Class Diagrams v2.4.1, and ORM2 without changing the base lan-
guages. Such an integrated metamodel has as fragments the EER, UML Class
Diagrams v2.4.1, and ORM2 metamodels, respectively, therewith leaving the
base languages intact. None of the related works includes roles, aggregation, and
relationship constraints, thus only limited subsets of UML or ORM are covered.
Methodologically, our metamodel is ontological rather than formal, compared to
all other known works that present first a formal common language for trans-
lations that leave aside important particular aspects of each language. We first
develop a conceptual model of all possible entities and their relations in the se-
lected languages, and will devise a formalization for their translations afterward.
The main benefit is that it allows one to have a clear comprehension of the mean-
ing(s) of an entity in each language whilst coping with the broader scope. This
is an essential step towards achieving the full potential of information sharing.

3 Ontology-informed metamodelling

We focus on the metamodel, it being a conceptual model about the selected CDM
languages such that this metamodel covers all their native features and is still
consistent. Here, we do not question whether a feature of a language is a good
feature or how one can make it better by using some ontological principles, but
instead we aim at representing in a unified way what is present in the language.
To achieve this, we use several notions from Ontology and ontologies, which serve
to enhance understanding of the extant features, to reconcile or unify perceived
differences, and to improve the quality of the metamodel. This does not make the
metamodel an ontology, for its scope is still just the selected modelling languages.

The core entities are shown in Fig. 1 in UML Class Diagram notation and
the overview of the constraints is included in Fig. 2, where a white fill of a class
icon means that that entity is not present in a language, a single diagonal fill
that it is present in one language, a double diagonal that it is present in two,
and a dark fill that it is present in all three groups of languages (EER, UML
v2.4.1, ORM2); naming conventions and terminological differences and similar-
ities of the entities are listed in Table 1 at the end of the paper. The overview
picture of the constraints contains only those that are explicitly available in the
language as graphical or textual constraint in the diagram (note that OCL is a



separate OMG standard). Figures 3 and 5 are incomplete with respect to the
full set of constraints that apply due to the limited expressiveness of UML Class
Diagrams, but we preferred a more widely understood graphical notation for
communication over a richer one, such as ORM, as it will be formalised in a
suitable logic anyway. The reader may note there are a few redundancies in the
metamodel; e.g., multivalued attributes can be represented by means of plain
attributes. However, we aim to be complete with respect to the graphical fea-
tures in the CDM languages, and for the metamodel not to judge whether it
can be represented more elegantly (this can be addressed in a formalization).
We describe several salient aspects of the metamodel and explain and motivate
its contents in this section. More precisely, we discuss roles, relationship, and
attributes (and omit from this discussion class/entity type, nested and weak
entity type, subsumption, and aggregation); the metamodel for each constraint
has been developed but is omitted from the discussion due to space limitations.

Entity

RoleRelationship Entity type

Data type Object typeValue 
propertyFunction

{disjoint, complete}

{disjoint, complete}

Attributive 
property Dimensional 

value typeValue type

{disjoint, complete}

Nested object 
type

Weak object 
type

Dimensional 
attributeAttribute

{disjoint, complete}

Composite 
attribute

Multivalued 
attribute Mapped to

SubsumptionPartWhole

Shared 
Aggregate

Composite 
Aggregate

Fig. 1. Principal static entities of the metamodel; see text for details.

3.1 Roles and relationships

There are many points that can be discussed about roles and relationship, but
we shall restrict ourselves to their nature and definition (not the possible types,
as in [16]), and differences among them and with a object type; attributes will
be discussed afterward.

A relationship, or relational property in ontology [34], is an entity that re-
lates entities, hence, it requires at least two entities to participate in it, unlike
an entity type that is a thing on its own. By this basic distinction, one can
deduce that there are no unary relationships, in contrast to object types and
unary predicates. The second difference between relationship and object type is
due to roles, which are called “association ends” or “member ends” in UML [31],



Constraint

Relationship 
constraint

Uniqueness 
constraint

Disjointness 
constraint

Disjoint entity 
types

Disjoint 
relationships

Disjoint roles

{disjoint,complete}

External 
uniqueness

Internal 
uniqueness

{disjoint, complete}

Antisymmetry IrreflexivityTransitivity

{disjoint, complete}

Reflexivity

Symmetry

Asymmetry

Acyclicity Intransitivity

Purely-
reflexive

Join 
constraint

Subset 
constraint

Join-equality 
constraint 

Join-
disjointness 
constraint

Join-subset 
constraint

{disjoint}

Equality 
constraint

Relationship 
equalityRole equality

{disjoint, complete}

Value 
constraint

Role value 
constraint

Value type 
constraint

{disjoint, complete}

Completeness 
constraint

Value 
comparison 
constraint

Mandatory 
constraint

Frequency 
constraint

Disjunctive 
mandatory

Mandatory

Extended 
frequency 
constraint

Cardinality 
constraint

Object type 
cardinality

Attibutive 
property 

cardinality

{disjoint, complete}
Identification 

constraint

Internal 
identification

External 
identification

Single 
identification

Join-
disjointness 
constraint

Join-equality 
constraint 

Object type 
equality

{disjoint, complete} Inclusive 
mandatory

Strongly 
intransitive

Fig. 2. Unified hierarchy of constraints in the metamodel; see text for details.

“roles” in ORM and fact-based modelling [19,20,11], components of a relation-
ship in EER [10,35]. A role is something that an object plays in a relationship,
and, thus, a relationship is composed of at least two roles, therewith contributing
to the characterisation of relationships and committing to the so-called position-
alist ontological commitment of relations and relationships (see [28] for a good
overview, which has been applied to ORM in [25]). The consequences are that
all three CDM languages have roles—hence, logically, they have to be first-class
citizens in a formalisation—and, ontologically, this inclusion entails that from
an information modelling viewpoint, they form a part of the so-called ‘funda-
mental furniture of the universe’ and thus that they are ontologically distinct
from entity types and relationships. Therefore, they appear in the metamodel as
separate entities (recall Fig. 1), and Relationship, Role, and Entity Type are dis-
joint. The interaction between them and predicates is depicted in Fig. 3. There
are three points of note. First, the relationship between Role and Relationship is



RoleRelationship Entity type

Cardinality 
constraint

Minimum 
cardinality

Maximum 
cardinality

role 
playing

0..*
playslinked to

1

0..1of

2..*1

Predicate ordered for

ordinal for 
predicate

contains

1..*

1of

order

2..*

Object type

Nested object 
type

1

0..1reified as

objecti-
fies

0..*

participates 
in

0..*

2..*

ordinal in

Fig. 3. Principal relationships between Relationship, Role, and Entity type; relations
between roles and a predicate can only exist if there is a relation between those roles
and the relationship that that predicate is an ordering of (i.e., it is a join-subset),
and likewise that entities that participate in the predicate must play those roles that
compose the relationship of which that predicate is an ordered version of it.

a composite aggregation. Ontologically, this might be considered an underspec-
ification, as one may argue that a relationship is even defined by its role-parts.
Second, Fig. 3 has a ternary role playing between Role, Entity type, and Cardi-
nality constraint: each role must have exactly one entity type with no or one
cardinality constraint (where the minimum and maximum cardinality are part
of the Cardinality constraint), and each entity type may play zero or more roles
with or without declared cardinality constraint.

Third, the inclusion of predicates. While each language has roles and names
for relationships, only ORM adds predicates as another way to handle its fact
types. In ORM, a relationship is composed of an unordered set of roles, whereas
predicates have the participating objects ordered in a fixed sequence. Given the
way relationships are used in CDM languages, we restrict Predicate to be at least
binary in the metamodel, and likewise for Relationship. In logic, predicates can
very well be unary, but unary predicates, ontologically, are of a different type,
and, besides, order in an unary predicate does not make sense. The relation-
ship between Relationship and Predicate is not clear. The draft ORM/FBM ISO
standard depicts Predicate with a composite aggregation to Fact type (relation-
ship) [11]. This is incorrect, because relationship and predicate each exemplify a
different ontological commitment: predicate adheres to the so-called “standard
view” and the latter to “positionalism” that requires the existence of roles [28],
and each permutation of an ordering among participating objects without the
use of roles is therewith not part of a single unordered composition of roles, and
the predicates do not constitute the relationship (roles do). Yet, it is not sub-
sumption either, because some thing without roles cannot be always a kind of
something with roles. Therefore, it is included now as a plain association, where
a predicate is one of the possible orderings of the entities that play the roles in
that relationship. Likewise, one can argue that Role is not ordered in a, but for a,
Predicate, because the roles are ordered and then ‘removed’ to obtain a predicate.
Alternatively, one can look at it that roles have nothing to do with predicates,
which is ontologically more precise, so that it is only Entity type that participates



in zero or more Predicates. While the idea is intuitively clear and sufficient for
our current purpose, ontologically, the interaction deserves refinement.

Concerning subsumption, this is straightforward for entity types, but is less
clear for relationships and roles. UML 2.4.1 distinguishes between subsetting
and “specialization” of associations [31]. All CDM languages support subsetting
of relationships, where the participating object types are sub-ends/sub-classes
of those participating in the super-relationships (or indirectly through a rela-
tionship attributes). Specialization has to do with differences in intension of
the association [31], but the UML standard does not describe how that is sup-
posed to work. The only known option to change an association’s intension, is
to restrict the relational constraints [26]—e.g., each relationship that is asym-
metric is also irreflexive—but little is known about its practicality, other than
the few experiments in [26] for ontologies. To be comprehensive, both ways of
relationship subsumption are captured in the metamodel with the more general
Subsumption, and both UML and ORM include subsumption of roles, therefore,
the participating entities for Subsumption are Entity (not shown).

3.2 Attributes, value types, and data types

From a formal perspective, it is clear what an attribute is, but this does not
hold for CDM languages and ontologists have various theoretical frameworks to
deal with them (albeit only partially), as discussed in [6,21]. We shall address
the definition of an attribute, what Ontology and ontologies have to say about
it, how it is incorporated in UML, EER, and ORM, the issue of the dimension,
and how we represent it in the common metamodel and why.

Formally, an attribute (A) is a binary relationship between a relationship or
object type (R ∪ E) and a data type (D), i.e., A 7→ R ∪ E × D. For instance,
one can have an attribute hasColour, that relates an object type to a string; e.g,
hasColour 7→ Flower × String. An attribute is no more, and no less.

‘Attributes’ in Ontology and ontologies Observe the disjointness between
Object type, Value type, and Attributive property in the metamodel (Fig. 1), which
reflects their meaning in the CDM languages and it also can be motivated by On-
tology and ontologies. Ontology distinguishes between various kinds of properties
[34] (provided one accepts the existence of properties, which the CDM languages
do). Object type is in Ontology called, among others, a sortal property, which
are, roughly, those things by means we distinguish, classify, and identify objects
and they can exist on their own; e.g., Apple, Person. Attributions, or qualities,
such as the Colour of an apple or its Shape, need a bearer to exist and are also
formalised as unary predicates, not as attribute as in the definition above, and
one cannot sort the objects by its attribution and know what those objects are
(other than, e.g., ‘red objects’ or ‘square objects’). Thus, attributions differ from
sortals, and philosophers agree on this matter. Philosophers do discuss about the
details of the attributions, however, such as whether they are universals or tropes
or a combination thereof [6,14], which is relevant for linking the metamodel to



a foundational ontology, but we need not commit to either one of those for
the metamodel. The distinction between object types and attributive properties
is also reflected in the foundational ontologies; e.g., DOLCE has a distinction
between Quality (the attribution) and Endurant/Perdurant (the object or rela-
tion) [6] and the GFO includes this ontological distinction (albeit different from
DOLCE) and has refinements for dimensional and other attributes and between
atomic and non-atomic attributes [21], where the latter is, in spirit, the same as
EER’s composite attribute.

Attributions in UML, EER, ORM Examples of the notations of attribu-
tions in the CDM languages are depicted in Fig. 4. UML class diagrams use
the aforementioned definition and meaning of attribute and it is typically repre-
sented ‘inside’ a class- or association-icon as, e.g., “hasColour:String”, although
hasColour may be drawn also as an association with at the far end a class-icon for
the data type [31]. ER and EER support an incomplete attribute specification
that involves only the ER/EER entity type and the attribute name, noting that
declaring datatypes is carried out at the physical design stage of the database
development. This might give the impression that an attribute is an (unary, not
binary) entity of itself, but, overall, the understanding from the formal founda-
tion of ER and EER [10,35], is that the attribute is alike UML’s attribute. ER
and EER contain two additional types of attributes: composite and multival-
ued attributes. They have been included in the metamodel (see Fig. 1) because
they are in the languages, but both formally and ontologically, there is no real
addition, because both can be remodelled as basic attributes.

colour: string
weight: integer

Apple Apple String
1

colour
A. UML Class Diagram (two options) B. ORM 2 (two options)

Integer
1

weight

C. ER 
(Barker notation)

Apple
Colour

Weight

APPLE

* colour
* weight

D. EER 
(bubble notation)

Apple Colour

Weight

Apple Colour
(name)

Weight
(kg)

has colour

has weight

has colour

has weight

Fig. 4. Examples of attributes in UML Class Diagram notation, two ORM 2 options,
and in two well-known ER/EER notations.

ORM is a so-called “attribute-free” language [20], yet, actually, they do have
attributes in the strict sense of the meaning. It is true that ORM does not
have attributes ‘inside’ the entity type, and what is modelled as a binary in
UML, like the colour of the flower, is represented in ORM as a unary value
type Colour that can be related to more than one entity type through a user-
defined relationship (ORM fact type), but one has to specify the data type



Object type Data typeValue 
property

Dimensional 
value typeValue type

{disjoint, complete}

Mapped to

Dimension

0..*

0..* 1..*
domain

domain
1

range
1

1 dimensional 
value typing1

1
1

Relationship

Object type Data typeAttributive 
property 0..*

0..* range 1

{or}

0..*

0..*

domain

domain

0..*

Dimension
dimensional 
attribution

0..*
1

1

{or}
0..*

Dimensional 
attribute

Attribute

{disjoint}

Fig. 5. Metamodel fragment for value properties and simple and attributes; Dimensional
attribute is reified version of the ternary relation dimensional attribution, and likewise
for Dimensional value type and dimensional value typing.

for the value type in the ORM diagram. An ORM value type’s unique feature
distinguishing it from an ORM entity type (in our metamodel, Object type), is
that it has a behind-the-scenes “mapped to” relationship to the datatype [11]:
mapped to 7→ ValueType× DataType, which is generated by the software once a
value type and its data type have been declared; for our example, we obtain a
mapped to 7→ Colour × String in addition to a binary relationship called, say,
hasColour, asserted between Flower and Colour. Thus, ORM does have attributes
in the strict sense of the meaning. The principal difference between UML’s and
ORM’s attributes, is that ORM uses three entities with two binary relationships,
whereas UML collapses it all into one binary relationship.

The CDM languages’ attributes can be of relationships, of object types, or
both. The latter may be contentious for UML and ER/EER, as one could argue
that an attribute drawn in one Object type or Relationship is different from an
attribute with the same name and data type that occurs in another Object type or
Relationship. Practically in UML and ER/EER tools, one indeed has to add any
subsequent occurrence of an attribute again, like hasColour:String not only for
apples, but also for oranges, for cars and so on. However, there is no reason why
one cannot keep a separate list of attributes for the whole model, and upon reuse,
select an earlier-defined one; e.g., declaring hasHeight:Integer once, and use it for
both Table and Chair. This is can be done already with OWL’s data properties
[30] in ontology editors, and one still has the option to add another height
attribute, say, hasHeight:real when one has to make that distinction for another
Object type. The alternative approach is to give each attribute a unique identifier
and add a constraint that it must have exactly one domain declaration that is
either an object type or a relationship, i.e, an {xor} instead of an {or} in Fig. 5.
Practically, one still can do this in the tools, but we keep the less constrained,
more flexible way of permitting attribute reuse in the metamodel just in case
in the near future such more efficient and consistent attribute management is
implemented in the UML and EER CASE tools.



The dimension ORM’s CASE tools for modelling value types, such as in
NORMA or VisioModeler, lets one add not only the data type, but also, if
desired, the dimension of the measurement, such as cm, kg, or day, but there
is no formal characterisation of it yet. Thus, besides the basic, composite, and
multivalued attributes, there may be a dimension for the value, i.e., there is
an implicit meaning in the values that has to do with measurements. For in-
stance, when one needs to record the height of a plant, the measured value
is not simply an integer or real, but actually denotes a value with respect to
the measurement system (say, SI Units) and we measure in meters or centime-
ters. An attribute like hasHeight 7→ Flower × Integer does not contain any of
that information, yet somehow one has to include that in the specification of
the attribute or value type, even if just to facilitate data integration; e.g., as
hasHeight 7→ Flower×Integer× cm, or as three relations: hasHeight 7→ Flower×
Height, mapped to 7→ Height×Integer, and hasDimension 7→ Integer×cm. Within
the scope of unification, we are interested in adding the notion of dimension only,
not how to represent a whole system of recording measurement data for a spe-
cific scenario, because these are subject domain notions for a specific application.
Therefore we chose for the more precise ternary relation dimensional value typ-
ing in our metamodel, as shown in Fig. 5, with a mandatory data type and a
dimension. It has its analogue for attributes (also shown in Fig. 5), although
the solution is less obvious for UML, because the standard does not mention
anything about dimensions. A ternary complicates the formal apparatus, but
as unification is the aim, we prefer this option, therewith essentially allowing
for an extension of UML’s metamodel. While the figures for ORM and UML are
different due to where the attribute resides in the language, the same principle is
adhered to, i.e., using optional ternaries for dimensional attributes/value types.

4 Conclusions

We presented a summary of the unifying metamodel capturing ORM, EER, and
static UML v2.4.1 conceptual data modelling languages with respect to their
static, structural, entities and their relationships, and their constraints. In the
strict sense of the languages’ features meanings, the only intersection among all
these CDM languages are role, relationship (including subsumption), and ob-
ject type, with each therewith also adhering to the positionalist commitment of
the meaning of relationship, and for the constraints disjointness, completeness,
mandatory, object cardinality, and the subset constraint. Attributions are rep-
resented differently in each language, but, ontologically, they denote the same
notions. Several implicit aspects, such as dimensional attribute and its reusabil-
ity and relationship versus predicate, have been made explicit.

Due to space limitations, the details of the complete metamodel is not de-
scribed; it has been developed already and revealed that, aside from identifica-
tion, there are no crucial irreconcilable disagreements in the languages. We have
commenced with the formalisation. Once completed, this metamodel will help in



the comprehension of differences between heterogenous conceptual models and
in the development of tools that will aid information integration.

Acknowledgements This work is based upon research supported by the National
Research Foundation of South Africa (Project UID: 80584) and the Argentinian
Ministry of Science and Technology.

References

1. Artale, A., et al.: Reasoning over extended ER models. In: Proc. of ER’07. LNCS,
vol. 4801, pp. 277–292. Springer (2007)

2. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB Journal 17(6), 1347–1370 (2008)

3. Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and transla-
tion signatures in a multi-model framework. AMAI Mathematics and Artificial
Intelligence 63, 1–29 (2012)

4. Banal-Estanol, A.: Information-sharing implications of horizontal mergers. Inter-
national Journal of Industrial Organization 25(1), 31–49 (2007)

5. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

6. Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Handbook on Ontolo-
gies, pp. 361–381. Springer, 2 edn. (2009)

7. Bowers, S., Delcambre, L.M.L.: Using the uni-level description (ULD) to support
data-model interoperability. Data & Knowledge Engineering 59(3), 511–533 (2006)

8. Boyd, M., McBrien, P.: Comparing and transforming between data models via an
intermediate hypergraph data model. J. on Data Semantics IV, 69–109 (2005)

9. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. Journal of Artificial Intelligence Research 11, 199–240 (1999)

10. Chen, P.P.: The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems 1(1), 9–36 (1976)

11. Committee Members: Information technology – metamodel framework for inter-
operability (MFI) – Part xx: Metamodel for Fact Based Information Model Reg-
istration (Draft release date: 2012-04-18 2012), iSO/IEC WD 19763-xx.02

12. Fillottrani, P.R., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web Journal 3(3), 293–306 (2012)

13. Grundy, J., Venable, J.: Towards an integrated environment for method engi-
neering. In: Proceedings of the IFIP TC8, WG8.1/8.2 Method Engineering 1996
(ME’96). vol. 1, pp. 45–62 (1996)

14. Guizzardi, G., Masolo, C., Borgo, S.: In defense of a trope-based ontology for
conceptual modeling: An example with the foundations of attributes, weak entities
an datatypes. In: Proc. of ER’06. LNCS, vol. 4215, pp. 112–125. Springer (2006)

15. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Phd
thesis, University of Twente, The Netherlands. Telematica Instituut Fundamental
Research Series No. 15 (2005)

16. Guizzardi, G., Wagner, G.: What’s in a relationship: An ontological analysis. In:
Proc. of ER’08. LNCS, vol. 5231, pp. 83–97. Springer (2008)

17. Guizzardi, G., Wagner, G.: Using the unified foundational ontology (UFO) as a
foundation for general conceptual modeling languages. In: Theory and Applications
of Ontology: Computer Applications, pp. 175–196. Springer (2010)



18. Halpin, T.A.: Advanced Topics in Database Research, vol. 3, chap. Comparing
Metamodels for ER, ORM and UML Data Models, pp. 23–44. Idea Publishing
Group, Hershey PA, USA (2004)

19. Halpin, T.: A logical analysis of information systems: static aspects of the data-
oriented perspective. Ph.D. thesis, University of Queensland, Australia (1989)

20. Halpin, T.: Information Modeling and Relational Databases. San Francisco: Mor-
gan Kaufmann Publishers (2001)

21. Herre, H.: General Formal Ontology (GFO): A foundational ontology for concep-
tual modelling. In: Theory and Applications of Ontology: Computer Applications,
chap. 14, pp. 297–345. Springer (2010)

22. Hofstede, A.H.M.t., Proper, H.A.: How to formalize it? formalization principles for
information systems development methods. Information and Software Technology
40(10), 519–540 (1998)

23. Kaneiwa, K., Satoh, K.: Consistency checking algorithms for restricted UML class
diagrams. In: Proc. of FoIKS’06. Springer (2006)

24. Keet, C.M.: Prospects for and issues with mapping the Object-Role Modeling
language into DLRifd. In: Proc. of DL’07. CEUR-WS, vol. 250, pp. 331–338 (2007)

25. Keet, C.M.: Positionalism of relations and its consequences for fact-oriented mod-
elling. In: Proc. of ORM’09. LNCS, vol. 5872, pp. 735–744. Springer (2009)

26. Keet, C.M.: Detecting and revising flaws in OWL object property expressions. In:
Proc. of EKAW’12. LNAI, vol. 7603, pp. 252–266. Springer (2012)

27. Keet, C.M.: Ontology-driven formal conceptual data modeling for biological data
analysis. In: Biological Knowledge Discovery Handbook: Preprocessing, Mining and
Postprocessing of Biological Data, chap. 6, p. in press. Wiley (2013)

28. Leo, J.: Modeling relations. Journal of Philosophical Logic 37, 353–385 (2008)
29. Mendes Calo, K., Cenci, K.M., Fillottrani, P.R., Estevez, E.C.: Information

sharing-benefits. Journal of Computer Science & Technology 12(2) (2012)
30. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language struc-

tural specification and functional-style syntax. W3c recommendation, W3C (27
Oct 2009), http://www.w3.org/TR/owl2-syntax/

31. Object Management Group: Superstructure specification. Standard 2.4.1, Object
Management Group (2012), http://www.omg.org/spec/UML/2.4.1/

32. Queralt, A., Teniente, E.: Decidable reasoning in UML schemas with constraints.
In: Proc. of CAiSE’08. LNCS, vol. 5074, pp. 281–295. Springer (2008)

33. Rosenthal, A., Mork, P., Li, M.H., Stanford, J., Koester, D., Reynolds, P.: Cloud
computing: a new business paradigm for biomedical information sharing. Journal
of Biomedical Informatics 43(2), 342–353 (2010)

34. Swoyer, C.: Properties. In: Zalta, E.N. (ed.) The Stanford En-
cyclopedia of Philosophy. Stanford, winter 2000 edn. (2000),
http://plato.stanford.edu/archives/win2000/ entries/properties/

35. Thalheim, B.: Extended entity relationship model. In: Liu, L., Özsu, M.T. (eds.)
Encyclopedia of Database Systems, vol. 1, pp. 1083–1091. Springer (2009)

36. Thalheim, B.: Model suites for multi-layered database modelling. In: Proceeding
of the XXI Conference on Information Modelling and Knowledge Bases 2010. pp.
116–134. Frontiers in Artificial Intelligence and Applications, IOS Press (2010)

37. Venable, J., Grundy, J.: Integrating and supporting Entity Relationship and Object
Role Models. In: Proc. of ER’95. LNCS, vol. 1021, pp. 318–328. Springer (1995)

38. Zhu, N., Grundy, J., Hosking, J.: Pounamu: a metatool for multi-view visual lan-
guage environment construction. In: IEEE Conf. on Visual Languages and Human-
Centric Computing 2004 (2004)



T
a
b
le

1
.

T
er

m
in

o
lo

g
y

co
m

p
a
ri

so
n

a
n
d

co
n
v
en

ti
o
n
s

o
f
th

e
en

ti
ti

es
in

U
M

L
C

la
ss

D
ia

g
ra

m
s,

E
E

R
,
a
n
d

O
R

M
/
F

B
M

(f
o
r

in
d
ic

a
ti

v
e

p
u
rp

o
se

).

M
e
ta

m
o
d
e
l

U
M

L
v
2
.4
.1

E
E
R

O
R
M

/
F
B
M

R
el

a
ti

o
n
sh

ip
a
ss

o
ci

a
ti

o
n
,
ca

n
b

e
2
-a

ry
a
cc

o
rd

in
g

to
th

e
M

O
F

2
.4

.1
,

b
u
t

a
ls

o
>

2
-a

ry
a
cc

o
rd

in
g

to
th

e
S
u
p

er
st

ru
ct

u
re

S
p

ec
2
.4

.1

re
la

ti
o
n
sh

ip
,
≥

2
-a

ry
a
to

m
ic

/
co

m
p

o
u
n
d

fa
ct

ty
p

e,
≥

1
-

a
ry

P
re

d
ic

a
te

a
b
se

n
t

a
b
se

n
t

p
re

d
ic

a
te

R
o
le

a
ss

o
ci

a
ti

o
n

en
d

/
m

em
b

er
en

d
co

m
p

o
n
en

t
o
f

a
re

la
ti

o
n
sh

ip
ro

le

E
n
ti

ty
ty

p
e

cl
a
ss

ifi
er

a
b
se

n
t

o
b

je
ct

ty
p

e

O
b

je
ct

ty
p

e
cl

a
ss

en
ti

ty
ty

p
e

n
o
n
-l

ex
ic

a
l
o
b

je
ct

ty
p

e
/

en
ti

ty
ty

p
e

A
tt

ri
b
u
te

a
tt

ri
b
u
te

a
tt

ri
b
u
te

,
b
u
t

w
it

h
o
u
t

in
cl

u
d
in

g
a

d
a
ta

ty
p

e
in

th
e

d
ia

g
ra

m
a
b
se

n
t

(r
ep

re
se

n
te

d
d
iff

er
en

tl
y
)

D
im

en
si

o
n
a
l

a
t-

tr
ib

u
te

a
b
se

n
t

(n
o

re
co

rd
in

g
o
f

d
im

en
si

o
n
)

a
b
se

n
t

a
b
se

n
t

(r
ep

re
se

n
te

d
d
iff

er
en

tl
y
)

C
o
m

p
o
si

te
a
tt

ri
b
u
te

m
o
re

g
en

er
a
l:

a
p
ro

p
er

ty
ca

n
b

e
a

co
m

-
p

o
si

te
o
f

a
n
o
th

er
p
ro

p
er

ty
(a

n
d

a
n

a
t-

tr
ib

u
te

is
a

p
ro

p
er

ty
)

co
m

p
o
si

te
a
tt

ri
b
u
te

im
p
li
ci

tl
y

p
re

se
n
t

b
y

a
d
d
in

g
n
ew

ro
le

s

M
u
lt

iv
a
lu

ed
a
t-

tr
ib

u
te

a
b
se

n
t

(r
ep

re
se

n
te

d
d
iff

er
en

tl
y
)

m
u
lt

iv
a
lu

ed
a
tt

ri
b
u
te

a
b
se

n
t

(r
ep

re
se

n
te

d
d
iff

er
en

tl
y
)

V
a
lu

e
ty

p
e

a
b
se

n
t

a
b
se

n
t

le
x
ic

a
l

o
b

je
ct

ty
p

e
/

va
lu

e
ty

p
e,

w
it

h
o
u
t

d
im

en
si

o
n

D
im

en
si

o
n
a
l

va
lu

e
ty

p
e

a
b
se

n
t

a
b
se

n
t

le
x
ic

a
l

o
b

je
ct

ty
p

e
/

va
lu

e
ty

p
e,

w
it

h
d
im

en
si

o
n

D
a
ta

ty
p

e
D

a
ta

ty
p

e;
L

it
er

a
lS

p
ec

ifi
ca

ti
o
n

a
b
se

n
t

d
a
ta

ty
p

e

O
b

je
ct

su
b
ty

p
e

su
b

cl
a
ss

su
b
ty

p
e

su
b
ty

p
e

S
u
b
-r

el
a
ti

o
n
sh

ip
su

b
se

tt
in

g
o
r

su
b
ty

p
in

g
o
f

a
ss

o
ci

a
ti

o
n

su
b
ty

p
in

g
th

e
re

la
ti

o
n
sh

ip
(n

o
t

p
re

se
n
t

in
a
ll

E
E

R
va

ri
a
n
ts

)
su

b
se

t
co

n
st

ra
in

t
o
n

fa
ct

ty
p

e

N
es

te
d

o
b

je
ct

ty
p

e
a
ss

o
ci

a
ti

o
n

cl
a
ss

a
ss

o
ci

a
ti

v
e

en
ti

ty
o
b

je
ct

ifi
ed

fa
ct

ty
p

e

C
o
m

p
o
si

te
a
g
g
re

g
a
te

co
m

p
o
si

te
a
g
g
re

g
a
ti

o
n

a
b
se

n
t

a
b
se

n
t

S
h
a
re

d
a
g
g
re

g
a
te

sh
a
re

d
a
g
g
re

g
a
ti

o
n

a
b
se

n
t

a
b
se

n
t


