
A formal comparison of conceptual data
modeling languages

C. Maria Keet

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
keet@inf.unibz.it

Abstract. An essential aspect of conceptual data modeling methodolo-
gies is the language’s expressiveness so as to represent the subject domain
as precise as possible to obtain good quality models and, consequently,
software. To gain better insight in the characteristics of the main con-
ceptual modeling languages, we conducted a comparison between ORM,
ORM2, UML, ER, and EER with the aid of Description Logic languages
of the DLR family and the new formally defined generic conceptual data
modeling language CMcom that is based on DLRifd . ORM, ER, EER,
and UML class diagrams are proper fragments of ORM2 and CMcom has
the most expressive common denominator with these languages. CMcom

simplifies prospects for automated, online, interoperability among the
considered languages so that modelers not only can continue using their
preferred modeling language yet be compatible with the other ones, but
also have a common ground that eases database and software integration
based on commonly used conceptual data models.

1 Introduction

Different conceptual data modeling languages exist for a plethora of reasons.
For object-oriented modeling, the main commonly used conceptual modeling
languages are (E)ER, UML class diagrams, and ORM(2) that come in various,
mostly graphical, notational variants. They, of course, share a common core,
but also cater for specifics with the type applications in mind. Several how-
to guides for transformations and metamodel comparisons between these, and
other, conceptual data modeling languages have been made, most notably [23,
24], but they focus on mappings of the respective graphical elements. Hence,
for each new notation—e.g., Barker ER, IE, and IDEF1X [27]—a new mapping
scheme has to be identified, resulting in an m:n mesh with (k − 1)k/2 required
mappings among k languages that also have to be maintained, not to mention
their implementations in CASE tools and diagram drawing software. A different
approach that avoids this problem has been taken by [12, 14, 15] who aim to
unify class-based modeling languages through the DLR family of Description
Logic (DL) languages. They focus on information integration, but also define
precise model-theoretic semantics for conceptual modeling languages. This ap-
proach also opens the avenue for formal 1:n mappings based on the language
constructs irrespective of the variations in graphical elements, because if one can

settle on a comparatively optimal DL language, then this language could func-
tion as the common foundation for all graphical variants and even fixed-syntax
natural language versions. However, this has been worked out only for restricted
versions of ER and frame-based systems, but not full EER and UML class di-
agrams or ORM/ORM2. In addition, in the meantime more expressive flavours
of DLR have been investigated so as to maximize expressiveness of the language
yet stay within a decidable fragment of first order logic. Advantages of the lat-
ter are to enable computational support for both integration of conceptual data
models and support automated satisfiability and consistency checking to detect
modeling errors and derive implicit information so as to enhance the quality of
conceptual models [18, 19, 28]. We extend and refine Calvanese et al’s [12, 14, 15]
approach by, first, integrating previously obtained results regarding advances on
and mappings between conceptual modelling languages and characteristics of
the corresponding DL languages and, second, taking into account standardized
(UML, IDEF1X) and semi-standardized (Barker ER, IE, ORM, ORM2) con-
ceptual data modeling languages as well as their implementations in modeling
tools such as VisioModeler, NORMA, CaseTalk, RationalRose, VP-UML, Om-
niGraffle, and SmartDraw [2–4, 8–14, 16, 18–23, 25–30, 32, 33]. We identify their
greatest common denominator, DLRifd , which will be used to formally define the
generic common conceptual data modeling language CMcom that thus has an
equi-satisfiable DLRifd knowledge base. Second, this CMcom is used to compare
ER, EER, UML class diagrams, ORM, and ORM2, where it will be shown in
an unambiguous way that UML, ER, EER, and ORM are different proper frag-
ments of ORM2. The results we thus obtain with CMcom simplify computational
implementations for interoperability of conceptual data models modeled in dif-
ferent graphical languages; hence, being compatible with established modeling
languages and practices yet moving forward toward realization of a logic-based,
computer-aided, and conceptual modeling-based information integration frame-
work.

In the remainder of the paper, we first deal with the theoretical background
of the main Description Logic languages tailored to formal conceptual modelling
(section 2) and introduce the CMcom syntax and semantics. Subsequently, ER,
EER, UML class diagrams, ORM, and ORM2 are defined and compared in
section 3. We conclude in section 4.

2 Theoretical background

2.1 Description Logics and the DLR family of languages

Description Logics (DL) languages are decidable fragments of first order logic and
are used for logic-based knowledge representation, such as conceptual modelling
and ontology development. The basic ingredients of all DL languages are concepts
and roles, where a DL-role is an n-ary predicate (n ≥ 2). In addition, a DL
language has several constructs, thereby giving greater or lesser expressivity
and efficiency of automated reasoning over a logical theory. DL knowledge bases
are composed of the Terminological Box (TBox), which contains axioms at the

Table 1. Semantics of DLR and DLRifd .

>I
n ⊆ (∆I)n AI ⊆ ∆I

PI ⊆ >I
n (¬C)I = ∆I \ CI

(¬R)I = >I
n \RI (C1 u C2)

I = CI
1 ∩ CI

2

(R1 uR2)
I = RI

1 ∩RI
2 ($i/n : C)I = {(d1, ..., dn) ∈ >I

n|di ∈ CI}
>I

1 = ∆I (∃[$i]R)I = {d ∈ ∆I |∃(d1, ..., dn) ∈ RI .di = d}
(≤ k[$i]R)I = {d ∈ ∆I ||{(d1, ..., dn) ∈ RI

1 |di = d|} ≤ k}

concept-level, and the Assertional Box (ABox) that contains assertions about
instances. A TBox corresponds to a formal conceptual data model or can be
used to represent a type-level ontology; refer to [6] for more information about
DLs and their usages.

For formal conceptual data modelling, we introduce DLR first [9]. This DL
language was specifically developed to provide a formal characterization of con-
ceptual modelling languages to (i) enable automated reasoning over the con-
ceptual data models to improve their quality and that of the resulting software
application, and (ii) to use it as unifying paradigm for database integration
through integrating their respective conceptual models [12, 14]. Take atomic re-
lations (P) and atomic concepts A as the basic elements of DLR, which allows
us to construct arbitrary relations (arity ≥ 2) and arbitrary concepts according
to the following syntax:

R −→ >n| P | ($i/n : C) | ¬R | R1u R2

C −→ >1| A | ¬C | C1 u C2 | ∃[$i]R | ≤ k[$i]R
i denotes a component of a relation (the equivalent of an ORM-role); if compo-
nents are not named, then integer numbers between 1 and nmax are used, where
n is the arity of the relation. k is a nonnegative integer for cardinality con-
straints. Only relations of the same arity can be combined to form expressions
of type R1u R2, and i ≤ n, i.e., the concepts and relations must be well-typed.
The model-theoretic semantics of DLR is specified through the usual notion of
interpretation, where I= (∆I , ·I), and the interpretation function ·I assigns to
each concept C a subset CI of ∆I and to each n-ary R a subset RI of (∆I)n,
such that the conditions are satisfied following Table 1. A knowledge base is a
finite set KB of DLR (or DLRifd) axioms of the form C1 v C2 and R1 v R2.
An interpretation I satisfies C1 v C2 (R1 v R2) if and only if the interpreta-
tion of C1 (R1) is included in the interpretation of C2 (R2), i.e. C

I(t)
1 ⊆ C

I(t)
2

(RI(t)
1 ⊆ R

I(t)
2). >1 denotes the interpretation domain, >n for n ≥ 1 denotes

a subset of the n-cartesian product of the domain, which covers all introduced
n-ary relations; hence “¬” on relations means difference rather than the com-
plement. The ($i/n : C) denotes all tuples in >n that have an instance of C
as their i-th component. The following abbreviations can be used: C1 t C2 for
¬(¬C1 u ¬C2), C1 ⇒ C2 for ¬C1 t C2, (≥ k[i]R) for ¬(≤ k − 1[i]R), ∃[i]R for
(≥ 1[i]R), ∀[i]R for ¬∃[i]¬R, R1tR2 for ¬(¬R1u¬R2), and (i : C) for (i/n : C)
when n is clear from the context.

There are four extensions to DLR. The most interesting in the current scope
is DLRifd [10], because it captures most, or even all, of the expressivity of com-
mon conceptual modelling languages. DLRifd has two additional constructs com-
pared to DLR. First, DLRifd supports identification assertions on a concept C,
which has the form (id C[i1]R1, ..., [ih]Rh), where each Rj is a relation and each
ij denotes one component of Rj . This gives greater flexibility how to identify
DL-concepts, most notably external uniqueness in ORM, ER’s weak entity types,
and objectification. Second, DLRifd supports non-unary f unctional dependency
assertions on a relation R, which has the form (fd R i1, ..., ih → j), where
h ≥ 2, and i1, ..., ih, j denote components of R (unary fds lead to undecidability
[10]), which are useful primarily for UML class diagram’s methods and ORM’s
derived-and-stored fact types. Observe that there is no change in semantic rules
because the algorithm for the extensions is checked against a (generalized) ABox
[10]. Two extensions in another direction give greater expressiveness for repre-
senting knowledge with DL-roles. First, DLRµ contains the fixpoint construct
for recursive structures over single-inheritance trees of a role [11] and thereby
can represent acyclicity, transitivity, asymmetry, and (ir)reflexivity of DL-roles
(ORM ring constraints). Second, DLRreg adds support for regular expressions
over roles, which includes the role composition operator “◦” and reflexive transi-
tive closure [13]. Another direction was taken by [3, 4], who developed a temporal
extension to DLR (named DLRUS), which has additional Until and Since oper-
ators for temporal conceptual modelling with the temporal EER ERV T for the
corresponding temporal databases.

2.2 The generic common conceptual data model CMcom

With the DLRifd syntax and semantics from the previous section, we are now
able to define the CMcom conceptual date modeling language. The formalisation
adopted here is based on previous presentations [2, 10, 15] extended with extk
and fd for DLRifd ’s id and fd, respectively, and making objectification obj,
subroles isaU , role exclusion rex, and disjunctive mandatory roles rdm explicit;
that is, given a particular conceptual data model in the generic conceptual data
modeling language CMcom, then there is an equi-satisfiable DLRifd knowledge
base. The “new” isaU , rex, and rdm can be represented in DLRifd as [ri]Ri v
[ri]Rj , [ri]Ri v ¬[ri]Rj , and Ci v tn

i=1∃[rj]Ri among n relations each for the
jth role with j ≤ n, respectively. To date, these constraints have not been used
other than for the ORM2 to DLRifd mapping [29, 30] because ORM and ORM2
do have these fine-grained notion, unlike UML and ER. Given that they are not
harmful at all to UML and (E)ER, they are added to CMcom. We first introduce
the syntax, illustrate it with an example, and then proceed to the semantics.

Definition 1. (Conceptual Data Model CMcom syntax) A CMcom concep-
tual data model is a tuple

Σ = (L,rel,att,card, isaC , isaR, isaU ,disj,cover,key,extk, fd,obj
rex,rdm)

such that:

1. L is a finite alphabet partitioned into the sets: C (class symbols), A (attribute
symbols), R (relationship symbols), U (role symbols), and D (domain sym-
bols); the tuple (C,A,R,U ,D) is the signature of the conceptual data model
Σ.

2. att is a function that maps a class symbol in C to an A-labeled tuple over
D, att(C) = 〈A1 : D1, . . . , Ah : Dh〉.

3. rel is a function that maps a relationship symbol in R to an U-labeled tuple
over C, rel(R) = 〈U1 : C1, . . . , Uk : Ck〉, and k is the arity of R.

4. card is a function card : C ×R×U 7→ N× (N∪{∞}) denoting cardinality
constraints. We denote with cmin(C,R, U) and cmax(C,R, U) the first and
second component of card.

5. isaC is a binary relationship isaC ⊆ C × C.
6. isaR is a binary relationship isaR ⊆ R × R. isaR between relationships is

restricted to relationships with the same arity.
7. isaU is a binary relationship isaU ⊆ U × U . isaU between roles of relation-

ships is restricted to relationships with the same arity.
8. disj,cover are binary relations over 2C × C, describing disjointness and

covering partitions, respectively, over a group of isa that share the same
superclass.

9. key is a function, key : C 7→ Ai, that maps a class symbol in C to its key
attribute(s) where 1 < i ≤ n and n denotes the arity of the relation or total
amount of attributes of C.

10. extk is an identification assertion (external uniqueness / weak entity type)
extk : C 7→ Ri×Uj where 1 < i ≤ n and each Ri denotes a relation and each
Uj denotes the component of Ri, with 1 ≤ j ≤ m where m denotes the arity
of relation Ri (intuitively, such an assertion states that no two instances of
C agree on the participation to R1, . . . , Ri).

11. fd is a functional dependency assertion on a relation, fd : R 7→ Ui×j where
i ≥ 2 and U1, ..., Ui, j denote components of R.

12. obj is an objectification function that maps an n-ary relation symbol R ∈ R
to n binary relations r1, . . . rn over C (R′ ∈ C), obj(R) = 〈[U1]r1,cmax(R′,
r1, U1) = 1,cmax(C1, r1, U2) = 1, . . . , [U1]rn,cmax(R′, rn, U1) = 1,
cmax(Cn, rn, U2) = 1〉 and extk(R′) = 〈U1[r1], . . . , [Un]rn〉.

13. rex, rdm are binary relations over 2U × U , describing disjointness parti-
tions over a group of roles U of relations in R of the same arity to which C
participates.

Observe that attribute symbols A refer in ORM parlance to value types (dashed
ovals) and can participate in a relation rel (depending on the formalization, for
ORM and ORM2, one thus has C ∪A), and fds are useful for UML methods in
UML and derived (-and-stored) fact types in ORM and ORM2, but they could
be used for suboptimal modeling of relations that ought to be normalised first [1,
23]. Such variations will be specified in detail in the next section where we com-
pare them in detail. The example below gives a flavour of how the syntax as given
in Definition 1 can map to icons in a graphical CMcom conceptual model that
uses UML class diagram, EER, and ORM2 notation. In principle, one can map

the CMcom syntax to any set of icons or fixed-syntax pseudo-natural language
as long as the relation between the CMcom syntax and icons (or pseudo-NL) has
been specified. Put differently, with CMcom the mappings between the concep-
tual modeling languages can be 1:n instead of developing and maintaining m:n
mappings.

Example: graphical syntax for CMcom. Mappings from CMcom syntax to
commonly used UML, EER, and ORM/ORM2 are shown in Fig. 1, where we
have, among others, the isa visualized with a directed arrow (e.g. Author isa
Person), cardinality constrains, such as card(Author, Writes, auth) = (1, n)
with a “1..*” in UML, craw’s feet and line in EER and blob and line in ORM2
(the reading label and name of the binary predicate are assumed to be equiv-
alent here), and disj and cover with the constraint “disjoint, complete”
in UML, in EER with double directed arrows and encircled d, and in ORM2
with an encircled blob with an X (e.g., Author, Editor are disjoint and cover
Person). Last, a key(Person) = id is shown in ORM2 as (id), in a separate
oval with underlined id in EER and as attribute with domain shown in UML as
id:string. These constraints have their equivalent representation in DLRifd as
follows: Author v Person (subsumption), Author v ∃[auth]writes (at least
one), Author v ¬Editor (disjoint), Person v Author t Editor (covering),
and Person v ∃=1[From]id, > v ∃≤1[To](id u [From] : Person) (key). ♦

A

C

{disjoint,complete}

B

Fig. 1. Examples of graphical syntax for CMcom with ORM2 drawn in NORMA (A),
UML class diagram drawn in VP-UML (B), and EER drawn with SmartDraw (C).

The model-theoretic semantics associated with this generic CMcom modeling
language is defined as follows.

Definition 2. (CMcom Semantics) Let Σ be a CMcom conceptual data model.
An interpretation for the conceptual model Σ is a tuple B = (∆B∪∆B

D, ·B), such
that:

– ∆B is a nonempty set of abstract objects disjoint from ∆B
D;

– ∆B
D =

⋃
Di∈D ∆B

Di
is the set of basic domain values used in Σ; and

– ·B is a function that maps:
• Every basic domain symbol D ∈ D into a set DB = ∆B

Di
.

• Every class C ∈ C to a set CB ⊆ ∆B—thus objects are instances of
classes.

• Every relationship R ∈ R to a set RB of U-labeled tuples over ∆B—
i.e. let R be an n-ary relationship connecting the classes C1, . . . , Cn,
rel(R) = 〈U1 : C1, . . . , Un : Cn〉, then, r ∈ RB → (r = 〈U1 : o1, . . . , Un :
on〉∧∀i ∈ {1, . . . , n}.oi ∈ CB

i). We adopt the convention: 〈U1 : o1, . . . , Un :
on〉 ≡ 〈o1, . . . , on〉, when U-labels are clear from the context.

• Every attribute A ∈ A to a set AB ⊆ ∆B × ∆B
D, such that, for each

C ∈ C, if att(C) = 〈A1 : D1, . . . , Ah : Dh〉, then, o ∈ CB → (∀i ∈
{1, . . . , h},∃ai. 〈o, ai〉 ∈ AB

i ∧ ∀ai.〈o, ai〉 ∈ AB
i → ai ∈ ∆B

Di
).

B is said a legal database state or legal application software state if it satisfies
all of the constraints expressed in the conceptual data model:

– For each C1, C2 ∈ C: if C1 isaC C2, then CB
1 ⊆ CB

2 .
– For each R1, R2 ∈ R: if R1 isaR R2, then RB

1 ⊆ RB
2 .

– For each U1, U2 ∈ U , R1, R2 ∈ R, rel(R1) = 〈U1 : o1, . . . , Un : on〉,
rel(R2) = 〈U2 : o2, . . . , Um : om〉, n = m, R1 6= R2: if U1 isaU U2, then
UB

1 ⊆ UB
2 .

– For each R ∈ R with rel(R) = 〈U1 : C1, . . . , Uk : Ck〉: all instances of R
are of the form 〈U1 : o1, . . . , Uk : ok〉 where oi ∈ CB

i and 1 ≤ i ≤ k.
– For each cardinality constraint card(C,R,U), then:

o ∈ CB → cmin(C,R, U) ≤ #{r ∈ RB | r[U] = o} ≤ cmax(C,R, U).
– For all C,C1, . . . , Cn ∈ C: if {C1, . . . , Cn} disj C, then,
∀i ∈ {1, . . . , n}.Ci isa C ∧ ∀j ∈ {1, . . . , n}, j 6= i.CB

i ∩ CB
j = ∅.

– For all C,C1, . . . , Cn ∈ C: if {C1, . . . , Cn} cover C, then,
∀i ∈ {1, . . . , n}.Ci isa C ∧ CB =

⋃n
i=1 CB

i .
– For each C ∈ C, A ∈ A such that key(C) = A, then A is an attribute and
∀a ∈ ∆B

D.#{o ∈ CB | 〈o, a〉 ∈ AB} ≤ 1.
– For each C ∈ C, Rh ∈ R, h ≥ 1, rel(Rh) = 〈U : C,U1 : C1, . . . , Uk : Ck〉,

k ≥ 1, k + 1 the arity of Rh, such that extk(C) = [U1]R1, . . . , [Uh]Rh, then
for all oa, ob ∈ CB and for all t1, s1 ∈ RB

1 , ..., th, sh ∈ RB
h we have that:

oa = t1[U1] = ... = th[Uh]
ob = s1[U1] = ... = sh[Uh]

tj [U] = sj [U], for j ∈ {1, ..., h}, and for U 6= j

 implies oa = ob

where oa is an instance of C that is the Uj-th component of a tuple tj of Rj,
for j ∈ {1, ..., h}, and ob is an instance of C that is the Uj-th component of
a tuple sj of Rj, for j ∈ {1, ..., h}, and for each j, tj agrees with sj in all
components different from Uj, then oa and ob are the same object.

– For each R ∈ R, Ui, j ∈ U , for i ≥ 2, i 6= j, rel(R) = 〈U1 : C1, . . . , Ui :
Ci, j : Cj〉, fd(R) = 〈U1, . . . , Ui → j〉, then for all t, s ∈ RB, we have that
t[U1] = s[U1], ..., t[Ui] = s[Ui] implies tj = sj.

– For each R, r1, . . . , rn ∈ R, R′, C1, . . . , Cn ∈ C, U1, . . . , Un, us, ut ∈ U , R
has arity n, rel, cmax, and extk interpreted as above, such that obj(R) =
〈[us]r1,cmax(R′, r1, us) = 1,cmax(C1, r1, ut) = 1, . . . , [us]rn,cmax(R′, rn,
us) = 1,cmax(Cn, rn, ut) = 1〉, then
∀i ∈ {2, . . . , n}.{Ui, us, ut ∈ UB ∧ ri ∈ RB ∧ oi, r

′ ∈ CB ∧ 〈U1 : o1, U2 :
o2, . . . , Un : on〉 ∈ RB | ri[us] = r′ ∧ ri[ut] = oi}.

– For each Ui ∈ U , i ≥ 2, Ri ∈ R, each Ri has the same arity m (with m ≥ 2),
Cj ∈ C with 2 ≤ j ≤ i(m − 1) + 1, and rel(Ri) = 〈Ui : Ci, . . . Um : Cm〉
(and, thus, Ri ∈ RB

i and oj ∈ CB
j), if {U1, U2, . . . Ui−1} rex Ui, then

∀i ∈ {1, . . . , i}.oj ∈ CB
j → cmin(oj , ri, ui) ≤ 1 ∧ ui 6= u1 ∧ . . . ∧ ui 6= ui−1

where ui ∈ UB
i , ri ∈ RB

i .
– For each Ui ∈ U , i ≥ 2, Ri ∈ R, each Ri has the same arity m (with m ≥ 2),

Cj ∈ C with 2 ≤ j ≤ i(m − 1) + 1, and rel(Ri) = 〈Ui : Ci, . . . Um : Cm〉, if
{U1, U2, . . . Ui−1} rdm Ui, then
∀i ∈ {1, . . . , n}.oj ∈ CB

j → cmin(oj , ri, ui) ≥ 1 where ui ∈ UB
i , ri ∈ RB

i .

3 Comparison

Given that the methodology for comparison of the modeling languages is through
a formal language with precise syntax and semantics, one encounters distinct
issues of which the two main ones are to

1. Establish what exactly is, or is not, part of “the” EER and “the” ORM
languages, and if one should allow textual or OCL constraints to be part of
the language, too; and

2. Decide what to do with an officially informal conceptual modeling language
(UML [32]) or if there are alternative formalisations (ORM [22, 26]).

They are tightly related issues, because if one has a formal specification of the
syntax and semantics of a conceptual modeling language as with CMcom, it is
utterly unambiguous as to what is, and what is not, in the language. One ap-
proach to address this is to also provide the syntax and semantics of ER, EER,
UML class diagrams, ORM, and ORM2 in the same fashion as CMcom. Alterna-
tively, one could take industry-grade CASE tools and examine what the de facto
standards are, or a consensus take on it where industry-grade tools, standards,
academic prototypes, and research are converging. One can add a further issue,
which is terminological (see below) together with historically grown preferences.
Given that the more distant goal of the comparison is to have, on the one hand,
a common, formal, foundation for conceptual data modeling languages, yet on
the other hand, interoperability among conceptual models in different graphi-
cal syntax—hence, permitting maintaining the diversity—we take the converging
approach in the remainder of this section. First, we list common (near-)equivalent
terms of UML, ORM, (E)ER, and DL so as to avoid potential confusion. Con-
cerning the main terms, we have, roughly, and for indicative purpose only :

– Class, object type, entity type, concept;
– Association, fact type, relationship, role;
– NA (component of an association), role, NA (component of a relationship),

role component;
– Disjoint, disjunctive mandatory / exclusive, disjoint, disjoint;
– Complete, covering / total, covering, complete / covering;
– NA, external uniqueness, weak entity type, identification assertion;
– NA (property of an association), ring constraint, NA, role property;
– Method, derived(-and-stored) fact type, NA, functional dependency.

Second, bearing in mind the above considerations, a graphical rendering of the
relations between the relevant languages is depicted in Fig.2, which concerns the
language constructs they have; that is, the higher up in the figure, the more
constructs that language has so that a modeler can represent the universe of
discourse more precisely in more detail.

Relationship between "fragments of ORM2" with respect to the common
conceptual data modeling languages

Existing formal partial transformations between conceptual modeling languages
Existing diagram-based partial transformations between conceptual modeling
languages

Extensions to DLR

ORM2

ORM
UML

EER

ER

DLRregDLRmu DLRusDLRifd

DLR

Fig. 2. Relations between common conceptual data modeling languages and the DLR
family of Description Logic languages; CMcom has an equi-satisfiable DLRifd knowl-
edge base. The higher up in the figure, the more constructors available in the language.

3.1 CMcom compared to ER, EER, UML, ORM, and ORM2

ER and EER. Before comparing ER and EER with other languages, we first
have to address “the” δ(ER, EER), which asks for definitions of “the” ER and
EER. Chen’s original proposal for ER does include weak entity types [16] (extk),
but this is not propagated to all ER tools, diagrammatic variants, and proposed
extensions. In addition, not all notational variants have icons for n-ary relations

when n > 2 and subtyping of entity types (e.g. Barker ER), although IDEF1X
[27] does include isaC for ER that is generally accepted as new in EER. This
seems better structured for EER that certainly contains support for subtyping
of entity types (but not of relationships [20, 27]), total & exclusive subtyping,
full cardinality constraints, and weak entity types. For practicing conceptual
modelers it may be superfluous to note, but fd assertions are used for relational
schemas [1], not ER and EER conceptual models, and therefore are not included
in the definitions below. We make the following two decisions for defining ER
and EER in terms of fragments of CMcom.

Definition 3. (CMER) A CMER conceptual data model is a tuple
Σ = (L,rel,att,card−,key,extk)

adhering to CMcom syntax and semantics except that card is restricted to any
of the values {≥ 0,≤ 1,≥ 1}, denoted in Σ with card−.

Definition 4. (CMEER) A CMEER conceptual data model is a tuple
Σ = (L,rel,att,card, isaC ,disj,cover,key,extk)

adhering to CMcom syntax and semantics.

Thus, CMER ⊂ CMcom and CMEER ⊂ CMcom. The δ(ER, EER) is the differ-
ence between CMER and CMEER, which is (card, isaC ,disj,cover), and that
of δ(EER, CMcom) is (isaR, isaU ,obj,rex,rdm, fd). Recollecting that DLRifd
is DLR with identification assertions and functional dependency, and thus that
a conceptual data model with equi-satisfiable DLR-knowledge base is a tuple
minus extk, fd, and obj:

ΣDLR = (L,rel,att,card, isaC , isaR, isaU ,disj,cover,key,rex,rdm)
then such a CMDLR model is neither equivalent to a CMER one nor to a CMEER

one. Obviously, δ(ER,CMcom) is the union of δ(ER, EER) and δ(EER, CMcom).

UML class diagrams. The main problem with assessing UML class diagrams
is that UML officially lacks a formal semantics (see OMG’s UML specification
[32]). Berardi et al. [8] gave a formal semantics to UML class diagrams both in
first order predicate logic and description logic (DLRifd). This UML-to-DLRifd
transformation addresses neither UML’s OCL fully nor the informally described
semantics of UML’s composite and shared aggregation constructs that intuitively
correspond to proper part-whole and part-whole relations due to presence (ab-
sence) of “asymmetric” in the respective descriptions in the UML specification
[32]. For both the first order logic and DLRifd formalisation of UML’s aggre-
gation, the formal semantics of the standard association relation (DL-role) is
used; hence, any issues with representing part-whole relations (e.g., [21, 31]) are
ignored. This poses no real practical problem, because due—or: thanks—to the
lack of formal semantics of the UML specification, one can choose one’s own
formal semantics for convenience. In addition, most DL languages do not have
a primitive for parthood relations anyway (nor have ORM(2) and (E)ER). All
other UML class diagram language constructs have been mapped into DLRifd
(see [8] for the mapping and examples). Here is not the place to assess UML’s

intentions with the filled and open diamond shapes for composite and shared
aggregation, but we note the elusive “extra” with a pw relation that, at least,
can be characterized as pw = 〈U1 : C1, U2 : C2〉, hence a binary relation. Fur-
ther, the formal UML and graphical support in Icom [8, 18] enable full access to
components of an UML association, but the UML specification [32] and tradi-
tional CASE tools such as RationalRose give only limited access to them in the
graphical representation (VP-UML now offers restricted cardinality specification
of {≤ 1, 1,≥ 1}), so that one cannot use isaU ; therefore, isaU is omitted from
the definition below (hence, also rex and rdm are absent).

Definition 5. (CMUML) A CMUML conceptual data model is a tuple
Σ = (L,rel,att,card, isaC , isaR,disj,cover,key,extk, fd,obj,pw)

adhering to CMcom syntax and semantics, except for the aggregation association
pw, with syntax pw = 〈U1 : C1, U2 : C2〉, that has no defined semantics.

Thus, given the absence of full access to association ends and the minimal char-
acterization of pw, de facto, CMUML ⊂ CMcom up until a proper, coherent
semantics is defined for pw and full access to association ends is supported in
either the UML specification or mainstream modeling tools, or both. Either way,
CMEER ⊂ CMUML holds with a δ consisting of (isaR, fd, obj, pw).

ORM and ORM2. While ORM enjoys the comparative advantage of a hav-
ing formal characterizations in first order logic [22, 26], variations and additional
constructs (primarily ring constraints) have been implemented in tools, such
as VisioModeler, and not all extensions in ORM2—exclusive total covering of
subtypes, role values, and deontic constraints—have been formalized [25]. More-
over, ORM is already undecidable due to constraints with patterns of the type
“constraint x over k ORM-roles” over an n-ary relation, n ≥ 3, and k < n be-
cause they correspond to arbitrary projections (subset over k roles, multi-role
frequency, set-equality over k roles, and role exclusion over k roles [29, 30]). On
the flip side, an analysis of 168 ORM diagrams with about 1800 constraints made
with LogicBlox software revealed that such constructs are rarely used in practice
[33], although it could use further analysis as to why this is so. With respect to
ORM2 and CMcom, CMcom is a proper subset, but, given Halpin’s formalization
[22], this is not the case for ORM. Due to space limitations, we do not repeat
Halpin’s formalization here, and omit role values1 and deontic constraints for
they are, at the time of writing, preliminary additions to the language or require
deontic logic, respectively.

Definition 6. A CMORM conceptual data model is a tuple
Σ = (L,rel,att,card, isaC , isaR, isaU ,key,extk, fd,obj,rex,rdm,

join,krol,ring−)
adhering to CMcom syntax and semantics, and, in addition, such that:
– join comprises the following constraints: {join-subset, join-equality, join-

exclusion} over ≥ 2 n-ary relations, n ≥ 2, as defined in [22].
1 ∀x, y(x ∈ {vi, ..., vk} → (R(x, y) → Ci(x)∧Cj(y))). A candidate approach for trans-

formation into a DLRifd representation is proposed in [29].

– krol comprises the following constraints: {subset over k roles, multi-role
frequency, set-equality over k roles, role exclusion over k roles} over an n-
ary relation, n ≥ 3, and k < n, as defined in [22].

– ring− comprises the following constraints: {intransitive, irreflexive, asym-
metric}, as defined in [22].

Definition 7. A CMORM2 conceptual data model is a tuple
Σ = (L,rel,att,card, isaC , isaR, isaU ,disj,cover,key,extk, fd,obj,

rex,rdm, join,krol,ring)
adhering to the syntax and semantics as defined for CMcom, and such that:
– krol and join are as in Definition 6.
– ring comprises the following constraints: {intransitive, irreflexive, asymmet-

ric, antisymmetric, acyclic, symmetric}, as defined in [22, 23].

Hence CMcom ⊂ CMORM2. Looking at the gap between the two, ring can be
met partially with DLRµ and DLRreg , but this comes at the cost that then one
can neither represent external uniqueness constraints nor non-unary functional
dependencies. Adding id and fd to DLRµ looks promising, but proof sketches
have yet to be worked out in detail.

3.2 Confronting EER, UML class diagrams and ORM2

With the unambiguous syntax and semantics of CMcom and the common con-
ceptual modeling languages, comparing the language constructs of ER, EER,
UML class diagrams, ORM, and ORM2 has become almost trivial. There are,
however, four finer-grained items that merit attention. First, key is for single
attribute keys (ORM2 reference scheme), whereas for a key consisting of mul-
tiple attributes (n-ary fact type where n ≥ 3) or weak entity types (external
uniqueness), one has to use extk. In addition, ORM requires that an internal
uniqueness constraint over k roles in an n-ary relation has to span ≥ n− 1 roles
to have an elementary fact type. For instance,
(i) An entity type and relation as Course(Course Name, Uni Year, Teacher) is valid

in ER, EER, UML, and CMDLR, but is not permitted in ORM and ORM2
because it is not an elementary fact type;

(ii) A key constraint as Course(Course Name, Uni Year, Teacher) is valid in ER,
EER, ORM, and ORM2, but it is not in the DLR family except for DLRifd
and, hence, CMcom.

Second, it might come as a surprise that CMUML is not a proper fragment
CMORM . This is because we took Halpin’s formal characterisation [22], thereby
missing support for total and exclusive subtypes (this cannot be represented in
VisioModeler 3.1 either). Given the underspecified pw, then clearly CMUML ⊂
CMORM2 holds, where ORM2 also enjoys software support to actually use all
additional constructs in NORMA [35]. Third, the difference between conceptual
modeling languages with attributes (UML, ER, and EER) and attribute-free
languages (ORM and ORM2). This aspect is somewhat hidden with DL lan-
guages and CMcom: while one has att and key in CMcom, in fact, in DLRifd

it is represented as a binary relation with predefined cardinality constraints (1
or max 1) just like the ORM(2) reference scheme graphical elements are shown
in a compact representation but have a binary relation underneath (cf. Fig.1-A
with the id for Person). In this way, one thus has it both ways with attributes
for the languages that need it and attribute-free for the others. Fourth, there are
constraints in CMORM and CMORM2 that are not covered in full by CMcom. In
this respect, one may wonder why the comparison has not been carried out with
full first order logic to have most of the desired expressivity (deontic constrains
require another logic). This route was chosen, because there are advantages to
using DL languages, and DLRifd in particular. With the plethora of well-studied
DL languages and their correspondences with conceptual data modeling lan-
guages, one gains a better insight in the properties of these conceptual modelling
languages through their (non-)correspondence with the DLs. From the extant
mappings it has become immediately clear that UML in CMUML is within the
decidable fragment of first order logic and, in fact, is in the ExpTime-complete
complexity class—because DLRifd is [9]. One can choose computationally more
appealing subsets in NP or NLogSpace for both UML and (E)ER when one takes
certain fragments [2, 28], e.g., without sub-relations, because apparently not all
constructs are used always in practice [17, 33]. Regarding DLRifd , it provides
the most expressive common denominator among the languages and thereby
provides the, thus far, best trade-off between expressiveness for conceptual data
modeling and computation. Although the emphasis is more often on the former
for traditional conceptual modeling, computation with conceptual models has
the distinct advantage of automated satisfiability and consistency checking with
reasoners, such as Racer and Pellet or a special-purpose reasoner [28, 33], before
generating a database or other application software (for examples what one gains
compared to a validator, consult, e.g., the Icom tutorial page [34]). The useful-
ness of this is, among others, that any unsatisfiable object types are detected at
the conceptual analysis stage instead of finding out in the implementation that
some table remains empty or java class never can be instantiated. Moreover, the
common formal foundation with CMcom offers an “interchange” to simplify the
linking and integration of conceptual data models made in different conceptual
data modeling languages2. Also, each modeler could, in principle, continue using
her preferred conceptual modeling language, yet have diagrams that are fully
compatible with the other conceptual modeling languages, as well as automated
precise translations. Pushing this even further, having taken a formal approach
to comparison of the languages cf. a how-to procedure, CASE tool developers
can choose any variation of the diagrammatical rendering of the CMcom syntax
and still avail of the transferrable results presented here.

Thus, the comparison updates [15] with the latest research into the DLR
family and by availing of DL languages, the here defined CMcom augments
the current informal mapping in e.g. [23] and thereby moves closer to online

2 Icom [18, 19] already supports specification of and reasoning over inter-model asser-
tions for UML class diagrams, and the interface is being extended to also support
EER and ORM graphical elements.

interoperability between ORM/ORM2, UML, and EER through a formal corre-
spondence between the conceptual modelling languages with the DLR family as
unifying paradigm at the junction.

4 Conclusions

The main commonly used conceptual data modelling languages—ER, EER,
UML class diagrams, ORM, and ORM2—were compared on their language con-
structs through the formally defined CMcom conceptual modeling language as
greatest common denominator that also has an equi-satisfiable DLRifd knowl-
edge base. Concerning available constructors in the modeling languages, it was
argued that UML, ER, EER, and ORM, are proper fragments of ORM2. The re-
sults obtained with CMcom simplifies interoperability of conceptual data models
modeled in different graphical languages.

We are currently looking into usage of DLRUS [3] to further explore feasibil-
ity of temporal extensions for languages other than temporal EER (ERV T) and,
e.g., for use with dynamic rules [7] and life cycle semantics of part-whole rela-
tions [5], and to examine if a “DLRµifd” remains within the decidable fragment
of first order logic to address ORM’s ring constraints.

References

1. Abiteboul, S., Hull, R., Vianu, V. Foundations of databases. Addison Wesley, USA.
1995.

2. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M. Rea-
soning over Extended ER Models. Proc. of ER’07, Springer LNCS 4801, 277-292.

3. Artale, A., Parent, C., Spaccapietra, S. Evolving objects in temporal information
systems. Annals of Mathematics and Artificial Intelligence, 2007, 50(1-2), 5-38.

4. Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M. A temporal description
logic for reasoning about conceptual schemas and queries. In: Proc. of JELIA ’02, S.
Flesca, S. Greco, N. Leone, G. Ianni (Eds.), Springer, 2002, LNAI 2424, 98-110.

5. Artale, A., Keet, C.M. Essential and mandatory part-whole relations in conceptual
data models. Proc of DL’08. 13-16 May 2008, Dresden, Germany. (in print).

6. Baader, F. Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds).
Description Logics Handbook, Cambridge University Press, 2003.

7. Balsters, H., Carver, A., Halpin, T., Morgan, T. Modeling dynamic rules in ORM.
Proc. of ORM 2006. Springer LNCS 4278, 2006, 1201-1210.

8. Berardi, D., Calvanese, D., De Giacomo, G. Reasoning on UML class diagrams.
Artificial Intelligence, 2005, 168(1-2):70-118.

9. Calvanese, D., De Giacomo, G. Expressive description logics. In: The Descrip-
tion Logic Handbook, Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-
Schneider, P. (Eds). Cambridge University Press, 2003. 178-218.

10. Calvanese, D., De Giacomo, G., Lenzerini, M. Identification constraints and func-
tional dependencies in Description Logics. In Proc. of IJCAI 2001, 2001, 155-160.

11. Calvanese, D., De Giacomo, G., Lenzerini, M. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In Proc. of IJCAI 1999,
84-89.

12. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R. Description
logic framework for information integration. In Proc. of KR’98, 2-13.

13. Calvanese, C., De Giacomo, G., Lenzerini, M. On the decidability of query con-
tainment under constraints. In: Proc. of PODS’98, 149-158, 1998.

14. Calvanese, D., Lenzerini, M., Nardi, D. Description logics for conceptual data
modeling. In: Chomicki, J., Saake, G. (Eds.), Logics for Databases and Information
Systems. Kluwer, Amsterdam. 1998.

15. Calvanese, D., Lenzerini, M. & Nardi, D. Unifying class-based representation for-
malisms. Journal of Artificial Intelligence Research, 11:199-240, 1999.

16. Chen, P.P. The Entity-Relationship model—Toward a unified view of data. ACM
Transactions on Database Systems, 1976, 1(1): 9-36.

17. Erickson, J., Siau, K. The complexity of UML: differentiating practical and theo-
retical complexity. In Proc. of EMMSAD’04, Vol 1., 309-316.

18. Fillottrani, P., Franconi, E., Tessaris, S. The new ICOM ontology editor. In: 19th
International Workshop on Description Logics (DL’06), Lake District, UK. May 2006.

19. Franconi, E., Ng, G. The iCom tool for intelligent conceptual modelling. 7th Int’l
Workshop on Knowledge Representation meets Databases. Berlin, Germany. 2000.

20. Gogolla, M., Hohenstein, U. Towards a semantic view of an Extended Entity-
Relationship Model. ACM Transactions on Database Systems, 1991, 16(3), 369-416.

21. Guizzardi, G. Ontological foundations for structural conceptual models. PhD The-
sis, Telematica Institute, Twente University, Enschede, the Netherlands. 2005.

22. Halpin, T.A. A logical analysis of information systems: static aspects of the data-
oriented perspective. PhD Thesis, University of Queensland, Australia. 1989.

23. Halpin, T. Information Modeling and Relational Databases. San Francisco: Morgan
Kaufmann Publishers, 2001.

24. Halpin, T. A. Comparing Metamodels for ER, ORM and UML Data Models. In:
Advanced Topics in Database Research, vol. 3, K. Siau (Ed.), Idea Publishing Group,
Hershey PA, USA, Ch. II, pp 23-44.

25. Halpin, T. ORM2. In Proc. of ORM 2005. In: OTM Workshops 2005. Halpin, T.,
Meersman, R. (eds.), Springer LNCS 3762, 676-687.

26. Hofstede, A.H.M. ter, Proper, H.A.. How to Formalize It? Formalization Principles
for Information Systems Development Methods. Information and Software Technol-
ogy, 1998, (40(10): 519-540.

27. Integrated Definition Methods (IDEF1X). http://www.idef.com/IDEF1X.html.
28. Kaneiwa, K., Satoh, K. Consistency Checking Algorithms for Restricted UML

Class Diagrams. In: Proc. of FoIKS ’06, Springer LNCS 3861, 2006. 219-239.
29. Keet, C.M. Prospects for and issues with mapping the Object-Role Modeling lan-

guage into DLRifd . In: Proc. of DL’07, 8-10 June 2007, Bressanone, Italy. CEUR-WS
Vol-250, 331-338.

30. Keet, C.M. Mapping the Object-Role Modeling language ORM2 into Description
Logic language DLRifd . KRDB Research Centre TR KRDB07-2, Faculty of Computer
Science, Free University of Bozen-Bolzano, Italy. 2007. arXiv:cs.LO/0702089v1.

31. Motschnig-Pitrik, R. & Kaasbøll, J. (1999). Part-Whole Relationship Categories
and Their Application in Object-Oriented Analysis. IEEE Transactions on Knowl-
edge and Data Engineering, 1999, 11(5):779-797.

32. Object Management Group. Unified Modeling Language: Superstructure. v2.0.
formal/05-07-04. http://www.omg.org/cgi-bin/doc?formal/05-07-04.

33. Smaragdakis, Y., Csallner, C., Subramanian, R. Scalable automatic test data gen-
erations from modeling diagrams. In: ASE’07, Nov. 5-9, Atlanta, Georgia, USA. 4-13.

34. Icom. http://www.inf.unibz.it/∼franconi/icom/.
35. NORMA. http://sourceforge.net/projects/orm/.

